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We propose and analyze a mechanism for rectification of spin transport through a small junction between
two spin baths or leads. For interacting baths, we show that transport is conditioned on the spacial asymmetry
of the quantum junction mediating the transport, and attribute this behavior to a gapped spectral structure of
the lead-system-lead configuration. For noninteracting leads, a minimal quantum model that allows for spin
rectification requires an interface of only two interacting two-level systems. In our paper, we have performed
a thorough study of the current, including its time dependence and steady-state value. We obtain approximate
results with a weak-coupling Born master equation in excellent agreement with matrix-product-state calculations
that are extrapolated in time by mimicking absorbing boundary conditions. These results should be observable
in controlled spin systems realized with cold atoms, trapped ions, or in electrons in quantum dot arrays.
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I. INTRODUCTION

Recent experimental developments in solid-state and
atomic physics have opened opportunities to explore prop-
erties of quantum transport in and out of equilibrium [1–7].
One important element of quantum transport is the possi-
bility to generate rectification of currents, or nonreciprocal
transport, that is, currents whose magnitude depends on the
bias direction. Such phenomena may arise from asymmetry
and nonlinearity in the underlying dynamics—on a quantum
mechanical level, effective nonlinearity is associated with
interactions between particles [8]. In recent years, the study
and design of systems that rectify transport has continuously
expanded into the quantum regime; for example, in optical
systems [9–25] and spin models [26–40]. Most of the recent
literature has focused on phenomenological Markovian baths
that drive the system of interest, and spin rectification was
demonstrated for XXZ systems with asymmetric coupling
along the Z axis [32,33,37]. The ZZ couplings correspond
to density-density interactions, as the system can be mapped
to spin-less interacting fermions. The presence of such in-
teractions is believed to be paramount for the presence of
rectification of the spin current.

In this paper. we address the problem of controlling trans-
port between two many-body systems. In this setting, non-
Markovian effects [41–48] are naturally expected. We adopt
an open system approach beyond the Markov approximation
to analyze a nonequilibrium many-body problem. Two inter-
acting leads modeled as XXZ spin chains are coupled by a
small interface, the open system, as depicted in Fig. 1(a).
For a noninteracting interface, we present a mechanism for
rectification of spin currents, which arises from the spectral

structure of the leads [see Fig. 1(d)]. We also show that for
structureless leads, a noninteracting system is fully reciprocal
in agreement with the previous literature. Conversely, for
structureless baths, a minimal model allowing for efficient
rectification requires a junction of two interacting spins.

Before addressing rectification of the spin current, we
establish the accuracy and efficiency of the open system
approach and show that the (non-Markovian) Born weak-
coupling master equation governing the dynamics of the
small junction is in excellent agreement with matrix-product-
state (MPS) simulations of the global dynamics. The sudden
connection between system and leads generates two light
cones, a weak and fast moving cone and a strong and slow
moving cone. As a byproduct, we extend MPS simulations
by mimicking absorbing boundaries that dissipate the weak
light cone. The Born equation is determined by the first-order
correlations of the leads, which decay as power laws in XXZ
spin chains [49,50]. Since such slow decay is a generic feature
of many-body systems [51], the effects reported here could be
observed in a variety of difference systems, including trapped
atoms [1–3], ions [4,5], and superconducting leads coupled to
quantum dots [6,7,52].

II. MODEL AND TRANSPORT

We first discuss the general transport properties. As de-
picted in Fig. 1(a), we consider left and right leads coupled
to an interface with a coupling Hamiltonian given by

V = VL + VR, Vi = 2γ [BiS
†
i + B†

i Si], (1)

where BL(R) are left (right) bath operators at the junction
coupled with the corresponding system operators SL(R). The
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FIG. 1. (a) Representation of bath-system-bath coupling and ef-
fective evolution of the central interface that depends on its past
history and time correlations of the bath. (b) The system-lead state
|�〉 depicted as a matrix product state reflecting the corresponding
Hamiltonian structure of bulk-coupling. (c) The small asymmetric
interface between the leads is represented as a two-qubit structure.
(d) The system-bath asymptotic nonequilibrium spectral function
A�(ω) under the Born approximation for different Jz couplings
showing the spectral structure of the bath with a gap around ω = 0
for certain regimes in the limit HS � HB (JS, γ = 0.01J).

system-bath coupling strength γ is assumed to be small com-
pared to the system’s and baths’ frequency scales. The global
dynamics are then governed by ρ̇SB = −i[HS + HB + V, ρSB],
with HS the system Hamiltonian and HB = HL + HR the sum
of left and right lead Hamiltonians.

In an interaction picture, we define Ṽ (t ) = eiH0tVe−iH0t ,
with H0 = HS + HB dictating the dynamics of the com-
bined system-bath density matrix ρ̃SB. A system operator O
(that commutes with HS for simplicity) follows a continu-
ity Heisenberg equation from which we define the current
operator at the left (L) system-bath junction dO

dt |L = j (O)
L =

i[VL, O]. Its average value may be written in a second-order
iterated form,

IL(t ) = tr
{
ρSB(t ) j (O)

L

} = −i
∫ t

0
dt ′〈[ j̃ (O)

L (t ), Ṽ (t ′)
]〉

t ′ , (2)

in which we have eliminated the first-order term for conve-
nience (this is exact for the cases we address here). A similar
expression follows for the current at the right junction. Note
that Eq. (2) is exact and requires solving the system-bath
many-body dynamics since 〈· · · 〉t ′ = tr{· · · ρSB(t ′)}. We will
focus on 1/2-spin transport such that O = Z = S†S − SS†,
leading to the spin-current operator:

j (Z )
L = jL = i[VL, ZL] = −i4γ [BLS†

L − SLB†
L]. (3)

Equation (2) can be rewritten as IL(t )=−i8γ 2
∫ t

0 dt ′�L(t, t ′),
in terms of the nonequilibrium two-particle retarded-Green’s

function [53]:

�L(t, t ′) = −i�(t − t ′)〈B̃L(t )B̃†
L(t ′ )̃S†

L(t )̃SL(t ′)

− B̃†
L(t )B̃L(t ′ )̃SL(t )̃S†

L(t ′)

+ B̃L(t )B̃†
R(t ′ )̃S†

L(t )̃SR(t ′)

− B̃†
L(t )B̃R(t ′ )̃SL(t )̃S†

R(t ′) + H.c.〉t ′ . (4)

The total average current flowing through the system is de-
fined as I (t ) = [IL(t ) − IR(t )]/2 = −i8γ 2

∫ t
0 dt ′�(t, t ′), with

the total Green’s function � = [�L − �R]/2. The asymptotic
current can be expressed as

I (∞) = −i
8γ 2

√
2π

∫ ∞

−∞
dt ′

∫ ∞

−∞
dωeiωt ′

�(ω)

= 8γ 2A�(0), (5)

where we have defined the joint nonequilibrium spectral func-
tion as A�(ω) = −Im{�(ω)} with �(ω) being the Fourier
transform of �(∞, t ′) [in practice the asymptotic behavior is
captured by �(t ′ + ∞,∞)]. Therefore, A�(0) plays a similar
role to a generalized zero-frequency conductivity.

III. WEAK-COUPLING APPROXIMATIONS

So far, the expressions derived for the current are exact.
However, to proceed further, it is convenient to consider ap-
proximations to the global system-bath state. One possibility
is to use the Kubo approximation [53–56], which assumes
that the weak perturbation only causes a small change in the
global system-bath state ρ̃SB(t ) ≈ ρ̃SB(0) + γ f (t ). Although
this is a good approach for the state of the baths, it can be a
poor approximation for the state of the small interface. The
Born ansatz takes this into account and allows the system
to evolve by considering that the global state is ρ̃SB(t ) ≈
ρ̃S (t ) ⊗ [̃ρB(0) + γ f (t )]. With Kubo’s linear response the-
ory [53–56], the quantum average in Eq. (4) is substituted
by 〈· · · 〉00 = tr{· · · ρSB(0)}. Similarly, with the Born ansatz,
the average becomes 〈· · · 〉t ′0 = tr{· · · ρ̃(t ′) ⊗ ρB(0)}. These
approximations assume that terms of order higher then γ 2

can be neglected. Also note that the Kubo approximation
to the Green’s function Eq. (4) factors the first term (for
example) into 〈B̃L(t )B̃†

L(t ′)〉0〈S̃†
L(t )̃SL(t ′)〉0, while the Born

approximation leads to 〈B̃L(t )B̃†
L(t ′)〉0〈S̃†

L(t )̃SL(t ′)〉t ′ . Both ap-
proximations neglect correlations between system and bath,
but also the correlations that emerge between different baths
mediated by the system. Thus, the last two terms of Eq. (4)
are dropped [57].

With the Born ansatz, tracing over the bath degrees of
freedom we may compute the evolution for the system state
[58,59]. Dropping the subindex for the system state we have
the Born master equation,

˙̃ρ = −4γ 2
∫ t

0
dt ′ ∑

i

[〈B̃†
i (t )B̃i(t

′)〉S̃i(t )̃S†
i (t ′ )̃ρ(t ′)

+〈B̃i(t )B̃†
i (t ′)〉(S̃†

i (t )̃Si(t
′ )̃ρ(t ′) − S̃i(t

′ )̃ρ(t ′ )̃S†
i (t )

)
−〈B̃†

i (t )B̃i(t
′)〉S̃†

i (t ′ )̃ρ(t ′ )̃Si(t ) + H.c.
]
, (6)

with the bath correlations dictating the dynamics of the system
with memory effects as illustrated in Fig. 1(a). Computing the
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long time evolution of the system state via Eq. (6) can still
be time-consuming due to the integral-differential nature of
the equation of motion and the show power-law decay of bath
correlations. An exact Redfield master equation can be derived
directly targeting the Born steady state (see Appendix B).
A phenomenological approach that leads to a Lindblad form
[60–63] can be used far away from the spectral gap.

IV. EXAMPLE OF AN XXZ BATH

We consider the leads (left and right) to both be described
by XXZ spin-1/2 chains, with a Hamiltonian of the form

HL(R)
XXZ =

∞∑
r=−∞

2J
[
σ L(R)†

r σ
L(R)
r+1 + σ

L(R)†
r+1 σ L(R)

r

]
+ J (bath)

z ZL(R)
r ZL(R)

r+1 , (7)

with Zr = σ †
r σr − σrσ

†
r , with σr = |0〉r〈1|r and J and Jz the

coupling strengths.
The interface system is composed by two coupled asym-

metric spins as represented in Fig. 1(c), with the Hamiltonian

HS = 2JS (σLσ
†
R + σ

†
L σR) + 
(ZL − ZR) + J (system)

z ZLZR, (8)

where 
 is the relative detuning between the spins. As shown
in Fig. 1(b), the left (right) system spin couples to a single spin
of the left (right) lead. This is described with a Hamiltonian
of the form Eq. (1) with SL(R) = σL(R) and BL(R) = σ

L(R)
0 .

We analyze a nonequilibrium protocol in which the left (−)
and right (+) leads are prepared at zero temperature with a
large bias ±∑

r μZr added to their respective Hamiltonians
while the system is initially prepared in an arbitrary state.
Thus a global product state between the system and the leads
is prepared with the leads oppositely maximally polarized.
Then the bias is turned off and the global system is allowed
to evolve generating spin currents. The infinite bias limit
also allows us to obtain analytical results. The infinite bias
also probes the system in a highly nonlinear regime prone to
present rectification. Both the currents and rectification would
vanish as the bias goes to zero. The system behaves effectively
linearly at low bias as it maps to a Luttinger liquid. In this
case, the basic ingredient for rectification is absent. Here, we
focus on the maximally biased case and we did not include
any analysis for low bias that deviates from the central case
study.

In the infinite bias limit, analytic results can be drawn un-
der the first-order Holstein-Primakoff transformation for the
baths [64] ZL(R)

r = 2[1 − aL(R)†
r aL(R)

r ] and σ L(R)
r = −√

2aL(R)†
r .

Under this approximation, the Hamiltonian of the baths take
the quadratic form

HL(R)
XXZ ≈ − 2

∑
r

J
[
aL(R)†

r aL(R)
r+1 + H.c.

] + 2Jza
L(R)†
r aL(R)

r . (9)

The corresponding correlation function obeys 〈B†
L(t )BL(0)〉 =

ei4Jbath
z tJ0(4Jt ), with J0 being the zeroth-order Bessel func-

tion. This result was confirmed by exact MPS simulations
(see Appendix C).

Consequently, the decay rate that governs the relaxation
dynamics of the interface can be written as

�(ω) = γ 2
∫ ∞

0
dτeiωτ 〈B†

L(τ )BL(0)〉

= iγ 2[(4Jz + ω + i0+)2 − (4J )2]−1/2, (10)

for each system transition of energy ω. The decay rate may
diverge, for example, at ω = 0 and Jz = J , which could inval-
idate the perturbative approximation [65]. The divergence can
be avoided by slightly detuning the system away from the sin-
gularity. For the particular case addressed here, all transitions
with ω = E ′ − E = 0 (HS|E〉 = E |E〉) are forbidden due to
the symmetry 〈E ′|Si|E〉 = 0, thus ensuring the validity of the
perturbative approach even at singular points.

V. ABSORBING BOUNDARIES

Using MPS simulations represented in Fig. 1(b), similar to
Refs. [66–76], we find that the resulting dynamics are in great
agreement with master equation for weak coupling. However,
such regime produces very slow system relaxation that de-
mands very large leads to prevent boundary reflections, ren-
dering the simulations quickly unfeasible. To prevent this, we
incorporate dissipation mechanisms in the baths mimicking
absorbing boundary conditions (see Appendix A). This allows
for a considerable extension of the time scales reachable by
MPS simulations. The current light cones in the leads with
and without the absorbing boundaries are compared in Fig. 2.

VI. CURRENTS, SPECTRAL FUNCTIONS
AND RECTIFICATION

When the system Hamiltonian is a small perturbation (the
limit HS → 0) the transport is largely governed by the physics
of the bath. Generically, we expect ballistic transport for
Jz < J with nonzero asymptotic currents, while diffusive or
insulating behavior is expected for Jz > J with vanishing
asymptotic currents. If HS = 0, the zero-frequency spectral
function follows the bath spectral function and we have A� ≈
AXXZ with

AXXZ(ω = 0) = Re{[2π (J2 − J2
z )]−1/2}/2, (11)

for μ � J which is shown in Fig. 2. Thus I (∞) increases
with J (bath)

z up to the Heisenberg point and then suddenly
vanishes for J (bath)

z > J with the gap opening of AXXZ(ω)
around ω = 0. In Fig. 1(d), we show the full system-bath
asymptotic nonequilibrium spectral function A�(ω) under
the Born approximation with the gap opening for J (bath)

z > J
in agreement with the above analysis for the bath spectral
function.

In Fig. 2, we compare the different approximations to the
current. The MPS simulation shows an initial current burst
that is also captured by the Kubo and Born approaches. The
relaxation of the system state after this burst is captured by
the Born approach while ignored by Kubo. Although reli-
able, the Born evolution is time-consuming. The steady-state
properties are then captured by the long time limit of the
Born equation (dark dashed line), which amounts to a single
algebraic equation to be solved (Appendix B). The long time
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FIG. 2. Currents at each bond in one of the leads without (top
left) and with (top right) absorbing boundaries for Jz = J , Jsystem

z = 0
and JS = 
 = γ = 0.01J . Reflection from the boundaries are sup-
pressed in the right panel. Bottom left: The MPS, Kubo, and Born
spin currents as a function of time at the Heisenberg point J =
Jbath

z . The dark-dashed line corresponds to Eq. (B1) and the light-
dashed line to Eq. (B3). Bottom right: The corresponding asymptotic
currents. Parameters are Jsystem

z = 0 and JS = 
 = γ = 0.01J .

currents are shown in Fig. 2 in agreement with the qualitative
analysis of AXXZ. The discrepancy between Kubo and the
Born steady state results is significant whenever the currents
are finite and is more drastic at the Heisenberg point, in which
the spectral function is far from constant.

The asymmetry parameter 
 of the system interface can
induce nonreciprocal currents. To analyze this, we define the
rectification associated to the total spin transported,

R
(T ) = I
(T ) − I−
(T )

I
(T ) + I−
(T )
, (12)

such that I
 = 1
T

∫ T
0 I
(t ′)dt ′ corresponds to the average

current at a given asymmetry 
. There is usually a trade-
off between the rectification factor and the current, in the
sense that increasing the asymmetry might lead to higher R;
however, it usually also decreases the current since the sites
become more and more out of tune [9–11]. Thus, as a last
definition we have the diode factor D
 = Isign(R
 )
R
 that
captures this trade-off and provides an overall fraction of the
current that is rectified.

As seen in Fig. 2, the simple Kubo approach provides an
effective upper bound for the current, allowing for a qualita-
tive description of the rectification mechanism. Analyzing the
Kubo version of A� at zero frequency and at the Heisenberg
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FIG. 3. Analytical Kubo results for the short time response. Left:
The joint spectral function. Upper right: The rectification factor and
(lower-right) the diode factor. Parameters are Jz = J .

point, we have a simple expression for the rectification factor,

RKubo

 (t ≈ 1/γ ) = 


[
J2

S + 
2
]−1/2

, (13)

for JS,
 � J = Jz � μ. In Fig. 3, we show that A�(0)
is asymmetric with respect to 
. In the perturbative limit
JS → 0, a positive 
 leads to a gapless spectral function,
while a negative 
 leads to the open gap yielding perfect
rectification R = 1. A finite JS leads to a smooth crossover
in A� while still presenting finite rectification. In Fig. 3, we
also show the high rectification factor and the diode factor,
accounting for the trade-off between asymmetry and total
output current.

The Kubo results are very accurate for short times; how-
ever, for long times we have to resort to the Born ap-
proach in Fig. 4. For weak system Hamiltonian, a rectifica-
tion peak manifests just before the Heisenberg point (before
the gap opening) as expected by the Kubo analysis (left
panel of Fig. 4). Increasing the magnitude of the system
Hamiltonian shifts this peak toward lower bath-interactions,
indicating that the global spectral gap is shifted by the system
Hamiltonian. Higher currents flow from the spin with positive
frequency to the spin of negative frequency. In the opposite
case of interacting interface and noninteracting leads, the re-
sults are markedly different (right panel in Fig. 4). The optimal
transport direction is inverted and higher currents flow from
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FIG. 4. Asymptotic Born results for the diode factor for (left)
a noninteracting system with interacting leads and (right) an
interacting-system with noninteracting leads. We set 
 = JS .
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the negative-frequency spin to the positive one. We emphasize
that the above results are only captured by the Born approach,
which accounts for the dependency of the system dynamics on
the spectral properties. In contrast, the local Lindblad equation
only considers a single decay rate (i.e., decay channel) for the
system and therefore fails for structured baths, particularly
when the system frequencies are spread, i.e., when JS ≈ J
(see Appendix B).

VII. CONCLUSION

In summary, we have analyzed in detail weak-coupling ap-
proximations for transport scenarios which are far from equi-
librium, showing how the Born approach goes well beyond
linear response and is in good agreement with exact MPS
results. Considering a setting with a small system between
two XXZ leads, we have shown the presence of nonreciprocal
transport. We have presented a mechanism for optimal rec-
tification associated to the asymmetric spectral structure of
system+bath induced by the system spacial imbalance. Our
results indicate that phenomenological Lindblad approaches
may fail since they do not take into account the spectral
structure. Lastly, the mapping of the bath to a noninteracting
model suggests that rectification may emerge for structured
baths even in complete absence of interactions.

The data corresponding to the article is made available by
the University of Strathclyde [77].

ACKNOWLEDGMENTS

E.M. thanks Thierry Giamarchi, Ignacio Cirac, Mari-
Carmen Banuls, Daniel Valente, and Thiago Werlang for
inspiring discussions. Work at the University of Strathclyde
was supported by the EPSRC Programme Grant DesOEQ
(No. EP/P009565/1), and by the EOARD via AFOSR Grant
No. FA9550-18-1-0064. This work was supported by an SFI-
Royal Society University Research Fellowship (J.G.). This
project received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation program (Grant Agreement No. 758403).
I.D.V. was financially supported by the Nanosystems Initiative
Munich (NIM) under Project No. 862050-2 and the DFG
Grant No. GZ: VE 993/1-1.

APPENDIX A: ABSORBING-BOUNDARIES
MPS SIMULATIONS

Simulating absorbing boundary conditions in classical
physics is a relatively simple task typically accomplished
by setting derivatives to zero at the boundary. In quantum
mechanics, this is still an open problem, in general, with some
remarkable strategies for infinite-boundary-MPS simulations
[75]. This strategy uses an infinite-MPS algorithm to compute
the ground state, such as that presented in Ref. [74]. The
authors of Ref. [75] then create a localized perturbation in
the center of the i-MPS and evolve the state using a finite-
MPS time-evolution algorithm. The only difference in the
time evolution is how the sites at the boundary are treated.

FIG. 5. Infinite boundary MPS (IBMPS) results. Spin projection
along z axis for the antiferromagnetic spin-1 Heisenberg model of
100 spins (left) after applying a spin creation operator at site 51,
(σ †

51). Spin current at each bond in one of the leads for our open-
system model (right). Reflection from the boundaries are delayed but
not suppressed.

These need to be evolved by an effective Hamiltonian that
takes into account the half infinite boundaries. In Ref. [75],
the scheme is applied to the spin-1 Heisenberg model in the
antiferromagnetic phase and they show that the perturbation is
absorbed by the boundary, allowing them to evolve a smaller
system for longer without worrying about boundary effects.
However, this strategy fails for the setting considered here. In
Fig. 5 (left), we apply this algorithm to the same system as
the authors of Ref. [75], i.e., the spin-1 Heisenberg model.
The only difference is that we evolve the system with TDVP
instead of TEBD. We show that while the perturbation is
initially absorbed by the boundary, after evolving to longer
times we do still see a reflected component. This delay in the
reflection is not enough to allow us to evolve an open-system
model for a significantly longer time.

The situation gets worse when we apply this scheme to
our open-system model, i.e., two sites coupled to two large
leads where the leads are initially in a product state and the
Hamiltonian is the spin-1/2 XXZ model. In Fig. 5 (right), we
see that at the boundary of one of the leads, there is almost
no delay in the reflection of the current, meaning that there
is no advantage over simply using a finite-MPS algorithm.
The analysis indicates that the success of the strategy of
Ref. [75] is highly dependent on the system and specific
application. And while it indeed has great potential in some
circumstances, as shown by their calculation of the lowest
excitation branch of the spin-1 Heisenberg model [75], it is
not applicable in the context presented here. This analysis
justifies the need to develop a different approach to absorbing
boundary conditions.

We include dissipative processes into the original dynamics

d|�〉 =
[
−iHdt −

∑
r

(
1

2
J†

r Jrdt − JrdQr

)]
|�〉, (A1)
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of the correlation in log-log scale for (upper left) μ � 1. The red
dashed line is the asymptotic expression in Eq. (C2), respectively.
The Bessel function result is indistinguishable from the MPS results.
Upper right: The fitted power-law exponent and (lower right) the
corresponding phase frequency, assuming GXXZ ∼ eiφt t−α . Thus we
have confirmation that α = 1/2 and φ = 4Jz.

with H = HS + HB + V and dQr = 〈J†
r + Jr〉dt + dWr , with

dWr being Wiener process [78]. These dissipative processes
are an auxiliary tool to absorb excitation in the bath and
prevent their reflection at the boundary. The Jr operators
have to be chosen for the specific problem and there is no
general recipe for constructing them. On the left lead, which
is prepared in an all up state, we set Jr = √

ζ (r)σ †
r and on

the opposite side we set Jr = √
ζ (r)σr with ζ (r) = e−γBr with

r being the distance from the boundary and γB the effective
range of these dissipative processes.

As can be seen in the right panel of Fig. (5), the sud-
den contact between the system and the lead generates two
light cones. One which is weaker and travels as fast as
the bath quasiparticles and one which is stronger but much
slower. The strategy we have presented here absorbs the
first light cone. The second light cone cannot be absorbed
faithfully. Therefore, the absorbing boundaries do extend the
time span of the MPS simulations (here we observe a factor
of at least 4) but do not offer a route to capture the steady
state.

APPENDIX B: STEADY STATE MASTER EQUATIONS

Assuming that the bath correlations do decay, no matter
how slow, and that consequently the system reaches a steady
state, we have the long time limit of the Born master equation,

ρ̇(t → ∞) = 0 = −i[HS, ρ]

−
∑

s,ω,ω′,α,α′

[
�

(s)
α,α′ (ω′)

(
K (s)†

α (ω)K (s)
α′ (ω′)ρ

− K (s)
α′ (ω′)ρK (s)†

α (ω)
) + H.c.

]
, (B1)

with �
(s)
α,α′ (ω) = γ 2

∫ ∞
0 dτeiωτ 〈X̃ (s)

α (τ )X̃ (s)
α′ (0)〉, whose real

part is an effective relaxation rate and imaginary part a system

frequency ω [59]. We have assumed the eigendecomposition
HS = ∑

E EP(E ), P(E ) = |E〉〈E | with

K (s)
α (ω) =

∑
E ′−E=ω

P(E )K (s)
α P(E ′), (B2)

K (s)
α = iα[S†

s + (−1)αSs], and X (s)
α = (−i)α[Bs + (−1)αB†

s ]
with α = 0, 1. The master Eq. (B1) is commonly referred
to as the global approach since it contains the K operators
which can be delocalized in space; however, it is not of
Lindblad form since we have not discarded terms that couple
different frequencies ω = ω′. Alternatively, phenomenologi-
cal assumptions of the form 〈B̃†

i (t )B̃i(t ′)〉 ≈ �
(i)
h δ(t − t ′) and

〈B̃i(t )B̃†
i (t ′)〉 ≈ �(i)

p δ(t − t ′) lead to the zero frequency local
approach,

ρ̇t→∞ ≈ − i[HS, ρ] −
∑

s

[
�(s)

p (S†
s Ssρ − SsρS†

s ) + H.c.
]

−
∑

s

[
�

(s)
h

(
SsS

†
s ρ − S†

s ρSs
) + H.c.

]
, (B3)

with �
(s)
h = 4γ 2

∫ ∞
0 dτ 〈B̃†

s (τ )B̃s(0)〉 and �(s)
p = 4γ 2

∫ ∞
0

dτ 〈B̃s(τ )B̃†
s (0)〉. Note that �

(s)
h and �(s)

p can be expressed

in terms of the zero frequency �
(s)
α,α′ (ω = 0). Hence, the

phenomenological Lindblad approach described in Eq. (B3)
is only accurate when the system frequencies are not spread
in comparison to the bath spectral function, in such a way that
the decay rates corresponding to each system decay channel
�

(s)
α,α′ (ω) in Eq. (B1) can be well approximated by a single one

�
(s)
α,α′ (ω) ≈ �

(s)
α,α′ (ω = 0). Taking into account the multiple

decay channels of the system appears to be crucial not only
to describe transport properties, as described here, but also to
describe thermalization [60–63].

APPENDIX C: TIME CORRELATIONS

Let us start by determining the bath correlations begin-
ning with cases that can be quickly solved analytically, that
is, the noninteracting XX model with Jz = 0 [51]. To de-
scribe the bulk physics, we may assume periodic boundary
conditions and perform the Jordan-Wigner transformation
σx = eiπ

∑x−1
x′=0 c†

x′ cx′ cx, shift the momentum of the fermions by
π as cx → (−1)xcx, and perform a Fourier transformation
cx = 1√

N

∑N−1
k=0 qkei2πxk/N leading to the decoupled repre-

sentation of the Hamiltonian HXX = ∑
k ωkq†

kqk , with ωk =
−4J cos(2πk/N ) the usual tight-binding or free particles on a
1D lattice dispersion relation. The correlations are then given
by

Gbulk
XX (t, β, μ) = 〈σ †(t )σ (0)〉 = lim

N→∞
1

N

∑
k

n(ωk )eiωkt

= 2

N

∫ 4J

−4J

dk

dω
n(β, ω,μ)eiωt dω, (C1)

with dk
dω

= N
8Jπ

[1−( ω
4J )2]

−1/2
and n(β, ωk, μ)=tr{q†

kqkρE } =
[1 + eβ(ωk−μ)]

−1
assuming an initial equilibrium state ρE ∝

e−β(H−μ
∑

x Zx/2). At zero temperature, the mode occupation
tends to the Heaviside step function n(β → ∞, ω, μ) =
�[−(ω − μ)], thus we omit β in the following. In this limit,
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we can easily determine the correlations and their asymptotic
(t � 1) forms collecting only the leading (slowest) power law.

For large μ, we have

Gbulk
XX (t, μ � 1) = J0(4Jt ) ∼ cos[π/4 − 4Jt]√

2πJt
, (C2)

such that Jn is the nth order Bessel function.
Reincorporating interactions into the model, we opt to

treat the large μ and arbitrary Jz regime via a first-order
Holstein-Primakoff transformation [64] Zx = 2[1 − a†

xax] and
σx = −√

2a†
x . Under this approximation, the Hamiltonian

takes the form

HXXZ ≈ −2J
∑

x

[a†
xax+1 + H.c.] − 4Jz

∑
x

a†
xax, (C3)

with a clear interpretation of Jz as a local potential or de-
tuning with the edge sites receiving only half of the de-

tuning of the bulk sites since they have only one neighbor.
Applying the free particle techniques outlined previously,
we find

Gbulk
XXZ(t, μ � 1) = ei4Jzt Gbulk

XX (t, μ � 1). (C4)

The system equilibrium correlations can also be obtained
by similar techniques. We have systematically checked that
our conclusions are not dependent on the initial state of the
system. Therefore, for simplicity we choose to work with
an initially down polarized |↓↓〉. The system correlation of
interest is then

〈S̃L(t )̃S†
L(0)〉 = cos

(
2t

√

2 + J2

S

)
−

i
 sin
(
2t

√

2 + J2

S

)√

2 + J2

S

. (C5)
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