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Two-dimensional Dirac fermions are subjected to two types of interactions, namely, the long-range Coulomb
interaction and the short-range on-site interaction. The former induces excitonic pairing if its strength α is larger
than some critical value αc, whereas the latter drives an antiferromagnetic Mott transition when its strength
U exceeds a threshold Uc. Here, we study the impacts of the interplay of these two interactions on excitonic
pairing with the Dyson-Schwinger equation approach. We find that the critical value αc is increased by weak
short-range interaction. As U increases to approach Uc, the quantum fluctuation of the antiferromagnetic order
parameter becomes important and interacts with the Dirac fermions via the Yukawa coupling. After treating
the Coulomb interaction and Yukawa coupling interaction on an equal footing, we show that αc is substantially
increased as U → Uc. Thus, the excitonic pairing is strongly suppressed near the antiferromagnetic quantum
critical point. We obtain a global phase diagram on the U -α plane and illustrate that the excitonic insulating
and antiferromagnetic phases are separated by an intermediate semimetal phase. These results provide a possible
explanation of the discrepancy between recent theoretical progress on excitonic gap generation and existing
experiments in suspended graphene.
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I. INTRODUCTION

Two-dimensional (2D) massless Dirac fermions are the
low-energy excitations of a number of condensed matter sys-
tems. Examples include d-wave high-Tc cuprate superconduc-
tors [1,2], graphene [3–7], the surface of three-dimensional
(3D) topological insulators [8], and organic conductor α-
(BEDT-TTF)2I3 [9]. While the single-particle properties of
Dirac fermion systems have already been extensively studied,
the strong correlation effects are still not well understood.
Ordinary metals are known to be robust against repulsive
interactions [10], which renders the validity of Fermi liquid
theory. In contrast, the repulsive interactions are much more
important in two-dimensional (2D) Dirac fermion systems
and may lead to several possible phase-transition instabilities
[5–7,11]. Generically, there are two types of repulsive interac-
tions, namely, long-range Coulomb interaction and Hubbard-
like on-site interaction. The former is spin blinded, whereas
the latter acts on two electrons with different spins and is thus
spin distinguished.

When the strength parameter U of on-site repulsive inter-
action is greater than a critical value Uc, there is a quantum
phase transition from gapless semimetal (SM) to antiferro-
magnetic (AFM) Mott insulator [12]. The SM-AFM quantum
critical point (QCP) falls in the university class of the Gross-
Neveu-Yukawa model [12]. Apart from the SM-AFM transi-
tion, Sato et al. [13] studied the transition between the SM
and Kekulé valence-bond solid caused by on-site interaction.
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When other sorts of repulsions are considered, SM materials
could exhibit richer phase-transition structures [13–20]. For
instance, Raghu et al. [14] investigated the cooperative effects
of nearest- and next-nearest-neighbor repulsions, and found
a number of insulating phases, including charge density wave
(CDW), AFM, and topological Mott phases that display quan-
tum anomalous Hall (QAH) and quantum spin Hall (QSH)
effects, although subsequent studies revealed that the topolog-
ical Mott phases can be destroyed by fluctuations [17].

In case the Fermi level is located exactly at the band-
touching point, the long-range Coulomb interaction is poorly
screened due to the vanishing of density of states (DOS). If
the Coulomb interaction is weak, the system remains gap-
less but the fermion velocity is substantially renormalized
[7,21]. When the Coulomb interaction strength parameter α

exceeds a critical value αc, a finite energy gap is dynamically
generated via the formation of excitonic-type particle-hole
pairs [22–46]. This then turns the originally gapless SM
into a gapped excitonic insulator (EI). Another interesting
possibility is that the Coulomb-like interaction can induce
an electron-electron pairing, as predicted and discussed in
Refs. [47,48].

In previous works, the Coulomb interaction and the on-
site interaction were usually investigated separately. Their
interplay can give rise to intriguing properties, especially
in the strong interaction regimes. Interesting progress has
recently been made towards more detailed knowledge of this
interplay. Tang et al. [18] have studied the influences of
long-range Coulomb and on-site interactions on the ground-
state properties of 2D Dirac fermion systems by combining
the nonperturbative quantum Monte Carlo (QMC) simulation
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and the renormalization group (RG) technique. Their work
[18] reproduced the previously discovered logarithmic veloc-
ity renormalization and confirmed that the SM-AFM tran-
sition occurs at some critical value Uc. They further found
that Uc increases as α grows, which indicates that the
Coulomb interaction disfavors AFM transition. These results
are summarized in the phase diagram shown in Fig. 1 of
Ref. [18].

The results reported in Ref. [18] are only applicable to the
region of weak Coulomb interaction. The region of strong
Coulomb interaction appears to be inaccessible to the numer-
ical methods developed in Refs. [18] and [19]. As aforemen-
tioned, strong Coulomb interaction is able to induce excitonic
pairing and SM-EI transition. This problem has attracted
broad interest in the past two decades. Extensive theoretical
efforts have been devoted to examining whether the SM-
EI transition can be realized in graphene. In Refs. [18,19],
the influence of on-site interaction on the SM-EI transition
has not been addressed. Moreover, it remains unclear how
the SM-EI transition is affected by the SM-AFM quantum
criticality.

In this paper, we study the excitonic pairing of 2D Dirac
fermions by considering both the long-range Coulomb and on-
site interactions. In particular, we will investigate the impact
of on-site interaction on the fate of excitonic pairing. For small
values of U , the Coulomb interaction and on-site interaction
need to be treated on an equal footing. When U grows, the
AFM correlation is gradually enhanced. As U → Uc, the
system approaches the AFM QCP and the quantum fluctua-
tions of the AFM order parameter interact strongly with the
Dirac fermions via the Yukawa-type coupling. To examine the
influence of AFM quantum criticality on excitonic pairing, we
need to study the interplay between the Coulomb interaction
and the Yukawa coupling interaction.

The nonperturbative Dyson-Schwinger (DS) equation ap-
proach will be employed to compute the excitonic gap and
to determine αc. In our calculations, the series expansion is
controlled by the small parameter 1/N , where N is the spin
degeneracy of a Dirac fermion. Within this framework, the
Coulomb interaction parameter α can take any value. This
allows us to access the strong Coulomb interaction regime.
The Yukawa coupling can also be handled by the 1/N expan-
sion. However, the on-site interaction is spin distinguished, to
be explained below, and the 1/N expansion becomes invalid.
In the case of weak on-site interaction, we will perform a
weak-coupling expansion.

After incorporating the impact of weak on-site interaction,
we find that the critical value αc for EI transition is slightly
increased. At the AFM QCP (Uc), the value of αc is increased
dramatically by the Yukawa coupling interaction. Indeed, αc

is an increasing function of Yukawa coupling constant λ.
Apparently, excitonic pairing is significantly suppressed by
the quantum fluctuation of the AFM order parameter. As U
decreases from Uc, the system departs from AFM QCP and the
suppression of excitonic pairing caused by AFM fluctuation
is weakened. Combining these results with those reported in
Ref. [18], we obtain a schematic global phase diagram on the
U -α plane, shown in Fig. 1. It seems that the EI phase cannot
be directly converted into an AFM Mott insulating phase: they
are separated by an intermediate SM phase.

FIG. 1. The global phase diagram of a 2D Dirac fermion system
on the plane spanned by Coulomb interaction parameter α and the
on-site interaction parameter U . The critical line of Uc is taken from
Ref. [18]. The solid part of the EI critical line is plotted based on our
DS equation results, and the dashed part of this line is plotted based
on extrapolation.

Our theoretical results provide a possible explanation of the
discrepancy between recent theoretical progress and existing
experiments in graphene. It is known that α takes its maximal
value α = 2.16 when graphene is suspended in vacuum. The
zero-temperature ground state of suspended graphene should
be an insulator if αc < 2.16. In a recent work, Carrington et al.
[33] has performed a careful DS equation study by going
beyond many of the previously used approximations and
found that αc ≈ 2.0, which is slightly below α = 2.16. This
result suggests that suspended graphene would be insulating
at zero temperature. However, this is apparently at odds with
previous experiments [21,49]. According to the analysis of
Ref. [50], graphene seems to be close to the AFM QCP, and
thus the impact of AFM quantum criticality on αc needs to
be seriously taken into account. Our results show that the
proximity to AFM QCP substantially increases the critical
value αc, which makes the SM-EI transition very unlikely in
realistic graphene.

The rest of the paper is organized as follows. In Sec. II,
we present the DS equation for a dynamical excitonic gap.
The gap equation is solved and analyzed in Sec. III, and the
physical application of the result is discussed in Sec. IV. The
results are summarized in Sec. V.

II. DYSON-SCHWINGER GAP EQUATION

The free 2D Dirac fermions are described by the
Lagrangian in Minkowski space,

L0 =
∑

σ

�̄σ (τ, x)i(γ0∂0 − vγi∂i )�σ (τ, x), (1)

where �σ is a four-component spinor field and �̄σ = �†
σ γ0.

The index σ sums from 1 to N , with N = 2 being the spin
degeneracy of the Dirac fermion. The 4 × 4 γ matrices are de-
fined via Pauli matrices as γ0,i = τ3 ⊗ (σ3, iσ2,−iσ1), which
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satisfy the Clifford algebra. The fermion velocity v is taken to
be a constant.

We will consider three different sorts of interactions, in-
cluding the long-range Coulomb interaction, the spinful on-
site interaction, as well as the Yukawa coupling between Dirac
fermions and AFM quantum fluctuation. If the system is far
from the AFM QCP, we need to study only the first two
interactions. But when the system is sufficiently close to the
AFM QCP, the interplay of Coulomb interaction and Yukawa
coupling should be carefully investigated. Below we present
the effective field theories for these three interactions in order.

A. Pure Coulomb interaction

The pure Coulomb interaction can be modeled by the
following Lagrangian:

LC = −ea0

∑
σ

�̄σ γ0�σ + a0
|∇|
2e2

a0, (2)

where a0 is an auxiliary scalar field introduced to represent
Coulomb interaction. It is easy to verify that the Lagrangian
L0 + LC respects the continuous chiral symmetry �σ →
eiγ5θ�σ , where γ5 = −σ2 ⊗ σ0 anticommutes with γ0,i.

The pure long-range Coulomb interaction has already been
widely studied [22–46]. In Refs. [11,48], Downing and Port-
noi have considered the problem of electrostatic confinement
of Dirac fermions and found a zero-energy bielectron bound
state in scalar potentials. In this paper, we study only the
excitonic particle-hole pairing realized in systems with a large
number of Dirac fermions.

As mentioned in Sec. I, the Coulomb interaction can be
studied within the framework of 1/N expansion. Below, we
will adopt an approximation that retains only the leading-
order contribution of 1/N expansion. To this order, the contri-
bution of wave-function renormalization can be ignored. The
free propagator of Dirac fermions is

G0
σ (ω, k) = 1

ωγ0 − v(γ1kx + γ2ky)
. (3)

Interaction turns this free propagator into

Gσ (ω, k) = 1

ωγ0 − v(γ1kx + γ2ky) − mσ (ω, k)
, (4)

where mσ (ω, k) is the fermion mass function. Once mσ (ω, k)
acquires a finite value due to the Coulomb interaction, an
excitonic mass gap is generated and the gapless SM is con-
verted into a fully gapped EI. In order to examine whether an
excitonic gap is generated, we write down the following DS
equation:

mσ (ε, p) = 1

4

∫
dω

2π

d2k
(2π )2

Tr[γ0Gσ (ω, k)γ0V (, q)], (5)

where  = ε − ω and q = p − k. Here, the effective
Coulomb interaction is given by

V (, q) = 1

V −1
0 (, q) + �c(, q)

, (6)

eγ0

Gσ

eγ0

Gσ Gσ

Gσ

λσ λσ

Πc Πφ

FIG. 2. Feynman diagrams of �c and �φ . The difference be-
tween two diagrams lies in the expression of the vertices.

where �c(, q) is the polarization function and

V0(q) = 2πe2δ(t )

κ|q| (7)

is the bare Coulomb interaction, with κ = ε0εr being the
dielectric constant. To the leading order of 1/N expansion,
the Feynman diagram for �c(, q) is shown in Fig. 2. At the
random phase approximation (RPA) level, the one-loop �c is
calculated as follows [22]:

�c(, q) = −N
∫

dω

2π

d2k
(2π )2

Tr [γ0G0(ω, k)

× γ0G0(ω + , k + q)]

= N

8

q2√
vq2 − 2

. (8)

After performing the Wick rotation (ω → iω), we get the
following DS gap equation in Euclidean space [22]:

mσ (ε, p) =
∫

dω

2π

d2k
(2π )2

mσ (ω, k)

ω2 + p2
x + p2

y + mσ (ω, k)2

× 1
|q|

2πvα
+ N

8
q2√

2+v2q2

, (9)

where a new parameter α = e2/vκ is defined to measure the
effective interaction strength. For a given flavor N , the above
gap equation has a nontrivial solution, i.e., m �= 0, only when
α > αc. The QCP between SM and EI phases is located at α =
αc. If the value of α is fixed, a nonzero gap could be generated
only when N < Nc.

B. Weak on-site interaction

As shown by Herbut and collaborators [12,54], the generic
on-site interaction is complex and can be decomposed into
eight independent four-fermion coupling terms. Here, fol-
lowing Ref. [18], we consider only the spin-distinguished
interaction term

LI = g
∑

σ

(σ�̄σ�σ )2, (10)

which is responsible for the transition into the AFM Mott
insulating phase. In Ref. [18], this is referred to as the spinful
Gross-Neveu (GN) interaction. It is also called the chiral
Heisenberg GN interaction [51]. According to Ref. [12], g is
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FIG. 3. Diagrams of leading (K1) and subleading (K2) order
contributions to the GN interaction kernel. Blue and red solid lines
stand for fermions with spin σ and spin −σ , respectively.

related to U through the identity g = −Ua2

8 , where a is the
lattice spacing.

Upon expanding the quadratic term appearing in LI , we get
two sorts of four-fermion couplings:

LI = g
∑

σ

�̄σ�σ �̄σ�σ − 2g�̄σ1�σ1�̄σ2�σ2 . (11)

For a given spin σ , the coupling �̄σ�σ �̄σ�σ amounts to
the GN interaction with flavor N = 1. Such a coupling term
cannot be treated by means of 1/N expansion. The coupling
constant g has the dimension of inverse mass. It is convenient
to define a dimensionless parameter g̃ = g�/v, where the mo-
mentum cutoff � is connected to a via the relation � ∼ a−1.
In the following, we will choose to carry out series expansion
in powers of g̃. This method is invalid in the strong-coupling
regime. Tang et al. [18] have numerically investigated the
strong-coupling regime by means of QMC simulation and
found that the system enters into an AFM Mott insulating
phase once |g̃| becomes sufficiently large.

We first ignore the Coulomb interaction and examine
whether or not the pure spinful GN interaction leads to
dynamical generation of the excitonic gap. According to
the analysis of Ref. [52], the DS equation can be formally
written as

G−1
σ = (

G0
σ

)−1 −
∑
σ ′

Tr[Kσ,σ ′Gσ ]

+ 1

2

∑
σ ′

Tr

[
Gσ ′

δKσ,σ ′

δGσ

Gσ ′

]
, (12)

where Kσ,σ ′ is the four-fermion interaction kernel. Kσ,σ ′ can
be obtained from the sum of all the two-particle irreducible
vacuum diagrams in the full fermion propagators [52],
represented by V2IR(G). V2IR(G) is connected to the kernel
Kσσ ′ in the following way:

V2IR(G) =
∑
σ,σ ′

1

2
Tr[Gσ Kσ,σ ′Gσ ′]. (13)

In this paper, we will retain both the leading-order and
sub-leading-order corrections. The corresponding Feynman
diagrams are presented in Fig. 3.

The leading-order contributions to K are

(K1)σ1,σ1 = vg̃

�
, (K1)σ1,σ2 = −2

vg̃

�
. (14)

The sub-leading-order contributions are

(K2)σ1,σ1 (q) = −
∫

d3k

(2π )3
Tr

[(
vg̃

�

)2

G0
σ1

(k)G0
σ1

(q + k)

]

−
∫

d3k

(2π )3
Tr

[(
2
vg̃

�

)2

G0
σ2

(k)G0
σ2

(q + k)

]

= −5

(
vg̃

�

)2

�g(q), (15)

(K2)σ1,σ2 (q) = −
∫

d3k

(2π )3
Tr

[(
2
vg̃

�

)2

G0
σ1

(k)G0
σ2

(q + k)

]

= −4

(
vg̃

�

)2

�g(q), (16)

where q ≡ (, q) and k ≡ (ω, k), and we define

�g(q) =
∫

dω

2π

d2k
(2π )2

(2π )3Tr
[
G0

σi
(k)G0

σi
(q + k)

]
, (17)

which is independent of spin directions. After doing simple
calculations, we find that �g(q) = 1

4v2

√
v2q2 − 2. From

Fig. 3, we see that the first two orders of corrections satisfy
the relation [52] δKi

δG = 0 for both i = 1 and i = 2. Therefore,
the DS equation for fermion self-energy takes the form

i�σ (ε, p) = −
∑
σ ′

∫
dω

2π

d2k
(2π )2

Tr[i(K1)σ,σ ′ (, q)iGσ ′ (ω, k)]

+
∑
σ ′

∫
dω

2π

d2k
(2π )2

[i(K2)σ,σ ′ (, q)][iGσ ′ (ω, k)]

= −vg̃

�

∫
dω

2π

d2k
(2π )2

Tr[Gσ (ω, k)] + 9

(
vg̃

�

)2

×
∫

dω

2π

d2k
(2π )2

(2π )3�g(, q)Gσ (ω, k). (18)

In the small g̃ region, we ignore the fermion damping and
velocity renormalization; thus the fermion self-energy can be
identified as the excitonic mass gap. We derive the following
DS gap equation:

mσ (ε, p) = i
4vg̃

�

∫
dω

2π

d2k
(2π )2

mσ (ω, k)

ω2 − v2k2 − m2
σ (ω, k)

− i9

(
vg̃

�

)2 ∫
dω

2π

d2k
(2π )2

�g(, q)

× mσ (ω, k)

ω2 − v2k2 − m2
σ (ω, k)

.

After Wick rotation, this equation is recast as

mσ (ε, p) = 4vg̃

�

∫
dω

2π

d2k
(2π )2

mσ (ω, k)

ω2 + v2k2 + m2
σ (ω, k)

− 9

4v2

(
vg̃

�

)2 ∫
dω

2π

d2k
(2π )2

× mσ (ω, k)
√

v2q2 + 2

ω2 + v2k2 + m2
σ (ω, k)

. (19)
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The leading-order correction to dynamical gap generation
has been previously analyzed in Ref. [53]. Notice there is a
sign difference in the definition of g̃. In Ref. [53], a finite gap
is generated only when g̃ < g̃c = −π2/4 (in the limit of N →
∞); in our case the critical value becomes g̃c = π2/2. In this
work we only consider negative g̃, and thus the GN interaction
cannot induce excitonic pairing by itself. However, the GN
interaction might affect the fate of excitonic pairing induced
by the Coulomb interaction. This will be studied in Sec. III A.

C. Yukawa coupling interaction near AFM QCP

When the strength of spinful GN interaction increases, the
AFM correlation is enhanced. The gapless Dirac SM becomes
an AFM Mott insulator once U exceeds some critical value Uc,
which defines a zero-temperature AFM QCP. As revealed by
Tang et al. [18], Uc appears to be an increasing function of α

in the region of weak Coulomb interaction. Previous studies
on such an AFM quantum criticality [12,54] demonstrated
that the Yukawa coupling between the Dirac fermion and
AFM quantum fluctuation, described by the scalar field φ,
determines the low-energy properties of the AFM QCP if
the Coulomb interaction is ignored. Here, we are particularly
interested in whether the excitonic pairing is suppressed or
promoted near the AFM QCP.

To describe the AFM fluctuation, we add to L0 the follow-
ing Lagrangian density of φ field:

Lb = −φ
(
∂2
τ + v2

φ∇2 + r
)
φ − λ0

4!
φ4 +

∑
σ

λφ · σ�̄σ�σ ,

(20)

where λ is the strength parameter for Yukawa coupling inter-
action and σ = ±1 is fermion spin. The AFM order parameter
[12,18] is given by A = 〈∑σ σ �̄σ�σ 〉. The scalar field φ

stands for the quantum fluctuation around this mean value.
The boson mass r can be identified as the tuning parameter
for the SM-AFM transition, and r = 0 at the QCP. Here, we
consider only the SM side of the QCP, and thus suppose r � 0.
To facilitate analytical calculations, we introduce two new
coupling constants for two spin components: λσ = λσ . It is
worth mentioning that λσ has the same dimension as

√
r.

Once Lb is introduced, the continual chiral symmetry is
explicitly broken. Nevertheless, the total action still preserves
a discrete chiral symmetry �σ → γ5�σ , as long as the scalar
field φ transforms simultaneously in the following way: φ →
−φ. When a finite gap is generated via excitonic pairing, the
above discrete chiral symmetry will be dynamically broken.

The Feynman diagrams of the fermion self-energy are
shown in Fig. 4, where V stands for the dressed Coulomb

FIG. 4. Feynman diagram of the fermion self-energy due to
Coulomb interaction and Yukawa coupling.

interaction function and Dφ for the dressed propagator of the
φ field. To the leading order of 1/N expansion, the dynamical
gap satisfies the following DS equation:

mσ (ε, p) = i

4

∫
dω

2π

d2k
(2π )2

Tr[γ0Gσ (ω, k)V (, q)γ0]

+ i(λσ )2

4

∫
dω

2π

d2k
(2π )2

Tr[Gσ (ω, k)Dφ (, q)],

(21)

where ε =  + ω and p = q + k.
The free propagator of the bosonic field φ is

D0
φ (, q) = 1

2 − v2q2 − r2
.

Similar to the long-range Coulomb interaction, here we as-
sume the boson velocity equals the fermion velocity. This free
propagator is also renormalized by the collective excitations.
Including this effect leads to the following dressed bosonic
propagator:

Dφ (, q) = 1

D0
φ (, q)−1 + �φ (, q)

, (22)

where the screening effect is embodied in the polarization
function �φ (, q). To the leading order of 1/N expansion,
the diagram of �φ (, q) is presented in Fig. 2, given by the
integral

�φ (, q) = −
∑

σ

∫
dω

2π

d2k
(2π )2

Tr
[
λσ G0

σ (ω, k)λσ

× G0
σ (ω + , k + q)

]
. (23)

According to the detailed calculations presented in
Appendix, �φ has the simple form

�φ (, q) = −N (λσ )2

v2

√
v2q2 − 2

4
, (24)

which is consistent with that obtained in Ref. [55].
After performing calculations, we get the gap equation

mσ (ε, p) =
∫

dω

2π

d2k
(2π )2

mσ (ω, k)

ω2 + v2k2 + mσ (ω, k)2

× 1
|q|

2πvα
+ N

8
q2√

2+v2q2

− (λσ )2
∫

dω

2π

d2k
(2π )2

× mσ (ω, k)

ω2 + v2k2 + mσ (ω, k)2

× 1

2 + v2q2 + r2 + N (λσ )2

v2

√
2+v2q2

4

, (25)

where Wick rotation has been performed. There is a minus
sign in the contribution due to the Yukawa coupling interac-
tion. Two important conclusions can be deduced. First, the
Yukawa coupling tends to suppress excitonic pairing. Second,
the Yukawa coupling by itself is not able to trigger excitonic
pairing.
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III. NUMERICAL RESULTS

In this section, we solve the DS equations numerically and
analyze the physical implications of the solutions. We will first
consider the case of weak GN interaction and then the vicinity
of AFM QCP. Our aim is to determine their influence on the
value of αc. To make numerical evaluation easier, we carry out
the following rescaling transformations:

mσ

v�
→ mσ ,

|p|
�

→ p,
|k|
�

→ k,
|q|
�

→ q,

λ2
σ

v�
→ λ2

σ ,
ω

v�
→ ω,



v�
→ ,

ε

v�
→ ε. (26)

By doing so, all the parameters that appear in the gap equa-
tions are made dimensionless.

A. Interplay of Coulomb and GN interactions

To examine the interplay between the long-range Coulomb
and short-range GN interactions, we combine Eqs. (9) and
(19), and then solve the total gap equation self-consistently
for different values of g̃ at N = 2 and α = 2.2, which are the
physical flavor and the physical α of suspended graphene.

To simplify numerical evaluation, it is useful to first adopt
the commonly used instantaneous approximation [22], which
assumes that the fermion gap, the Coulomb interaction func-
tion, and the four-fermion interaction kernel are independent
of energy. The impact of the energy dependence will be ex-
amined later. Under this approximation, the total gap equation
can be written as

mσ (p) =
∫

d2k
(2π )2

mσ (k)

2
√

k2 + mσ (k)2

1
|q|

2πα
+ N

8 |q|

+ g̃
∫

d2k
(2π )2

mσ (k)

2
√

k2 + m2
σ (k)

− 9

4
(g̃)2

∫
d2k

(2π )2

|q|mσ (k)

2
√

k2 + m2
σ (k)

. (27)

After solving this equation, we present the numerical re-
sults in Fig. 5, where m0 is defined as the value of fermion gap
at zero momentum. As |g̃| grows, m0 decreases considerably.
This implies that weak GN interaction tends to suppress the
excitonic gap. The α dependence of m0 is shown in Fig. 6.
We observe that, as GN interaction increases, the value of
αc will be slightly increased. When g̃ = −0.7, we find that
αc = 2.0.

The instantaneous approximation has been previously used
in the DS study of excitonic gap generation [22]. Exten-
sive works confirmed that the value of αc obtained under
this approximation is actually not far from that obtained
by incorporating higher-order corrections. In this sense, the
instantaneous approximation leads to a qualitatively reliable
conclusion. Further, we have also solved the gap equation by
incorporating the energy dependence of the gap function and
the Coulomb interaction. The sub-leading-order correction
due to spinful GN interaction exhibits a logarithmic depen-
dence on the energy cutoff. Our numerical results show that

FIG. 5. The g̃ dependence of zero-momentum excitonic gap m0

at α = 2.2 and N = 2.

increasing the energy cutoff more or less modifies the values
of g̃c and αc. However, the qualitative conclusion that GN
interaction suppresses excitonic pairing is not changed. Here,
we choose an energy cutoff �E = 10v�.

B. Interplay of Coulomb interaction and Yukawa coupling
interaction near the AFM QCP

We now consider the interplay of Coulomb interaction
and Yukawa coupling interaction. The corresponding DS gap
equation is given by Eq. (25). Numerical calculations verify
that the solution of this gap equation is insensitive to the
energy cutoff. Below, the energy cutoff is taken as �E =
1000v�.

To get a rapid glimpse of the main results, we will
first neglect the energy dependence of both the fermion
self-energy and the interaction functions. This approx-
imation can be implemented by making the following

FIG. 6. The α dependence of zero-momentum gap m0 for differ-
ent values of vg̃ at N = 2.

245130-6



EXCITONIC PAIRING OF TWO-DIMENSIONAL DIRAC … PHYSICAL REVIEW B 99, 245130 (2019)

FIG. 7. The α dependence of m0 for different values of λ at N =
2. Clearly, αc is an increasing function of λ.

replacement:

mσ (ε, p) → mσ (p), (28)

V (, q) → V (q), (29)

Dφ (, q) → Dφ (q). (30)

Under this approximation, the DS gap equation becomes

mσ (p) =
∫

d2k
(2π )2

mσ (k)

2
√

k2 + mσ (k)2

1
|q|

2πα
+ N

8 |q|

− (λσ )2
∫

d2k
(2π )2

mσ (k)

2
√

k2 + mσ (k)2

× 1

q2 + r2 + N (λσ )2 |q|
4

. (31)

We have solved this equation numerically, and we show
in Fig. 7 the α dependence of excitonic gap obtained at zero
momenta, namely, m(p = 0), for different values of λ. If the
AFM QCP is entirely ignored, corresponding to λ = 0, the
critical value αc ≈ 1.9. If λ takes a very small value λ =
0.001, αc is increased to αc ≈ 2.3. For λ = 0.005 and 0.01,
we find that αc = 2.8 and 3.5, respectively. Therefore, the
excitonic gap generation can be significantly suppressed at the
AFM QCP.

Further, we study how λ changes the critical fermion flavor
Nc. We fix α at α = 3.2, and solve Eq. (34) to obtain the
relation between λ and Nc, with results presented in Fig. 8.
For very small values of λ, Nc ≈ 2.2. For λ > 0.005, Nc is
reduced below 2. For Dirac fermions with physical flavor
N = 2, the excitonic pairing cannot occur due to the presence
of sufficiently strong Yukawa coupling interaction.

The dependence of αc on λ at fixed flavor N = 2 is shown
in Fig. 9. At the AFM QCP with r = 0, αc increases rapidly
as λ grows and finally goes to infinity at sufficiently large
λ. This is another signature that AFM quantum criticality
disfavors excitonic gap generation. As r increases, the system

FIG. 8. The critical line of SM-EI transition on the λ-N plane.
Here the Coulomb interaction parameter is fixed at α = 3.2.

moves away from the AFM QCP into the SM region. In this
process, the quantum fluctuation of the AFM order parameter
is weakened, and the suppressing effect of excitonic pairing
becomes progressively unimportant.

In Ref. [18], the authors found that the Coulomb interaction
tends to increase Uc. Here our finding is that AFM quantum
fluctuation suppresses excitonic pairing. There seems to be
a repulsion between the excitonic pairing and the AFM or-
dering. Based on these results, we plot a schematic phase
diagram on the U -α plane in Fig. 1. The critical line of Uc

goes rightwards as α increases [18], whereas the critical line
of αc goes upwards as U → Uc from the left side. A previous
RG study [12] predicted that the Dirac fermion system may
undergo a first-order transition from EI to AFM Mott insula-
tor. Our results indicate that such a direct transition does not
occur and that the excitonic insulating phase and AFM Mott
insulating phase are actually separated by an intermediate
gapless SM phase.

FIG. 9. The λ dependence of αc at a number of values of r. Here
the fermion flavor is N = 2.
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We have also numerically solved Eq. (25), in which αc =
0.7 at λ = 0, and reached the same conclusion that the
quantum AFM criticality tends to suppress excitonic gap
generation. Therefore, the schematic phase diagram presented
in Fig. 1 is still qualitatively correct after taking the energy
dependence into account.

IV. APPLICATION OF THE RESULTS

Determination of the precise value of αc proves to be a
highly nontrivial challenge. In QED3, the fermion propagator
and the gauge boson propagator are coupled to each other
by a set of DS integral equations [56]. The same is true for
our case, since the Coulomb interaction can be effectively
described by the coupling between the Dirac fermion and
the temporal component of the U(1) gauge boson. The full
fermion propagator has the following generic form:

G(ε, p) = 1

γ0εZ (ε, p) − v(γ1 px + γ2 py)A(ε, p) − m(ε, p)
,

where Z (ε, p) and A(ε, p) are the wave-function renormaliza-
tions and m(ε, p) is the fermion gap function. The dressed
boson propagator is given by Eq. (6), where the polarization
function should be replaced by the full one. The full polariza-
tion is determined by the dressed fermion propagator and the
interaction vertex function �. Once the expression for vertex
function is known, the dressed fermion and boson propagators
could be determined. In practice, it is not possible to obtain the
exact solutions of the coupled DS equations, and one always
needs to introduce certain approximations (truncations) to re-
place the full propagators and the full vertex function with ap-
proximate ones. In the literature there are two commonly used
vertex functions: the bare vertex and the Ball-Chiu [57] vertex.

Extensive DS equation studies of excitonic pairing in
graphene have revealed that the precise value of αc is very
sensitive to the specific approximation. To demonstrate this,
we list in Table I a number of representative values of αc ob-
tained by employing various approximations. If one assumes
Z = A = 1 and ignores the vertex correction, the critical value
αc = 1.9 in the instantaneous approximation and αc = 0.7 af-
ter including the energy dependence. Two of the authors [29]

TABLE I. DS equation results for the critical value αc at the
flavor N = 2. Z , A, m, and α are defined in the context. �BC

stands for the Ball-Chiu vertex correction. �RPA
c is the RPA-level

polarization given by Eq. (8), and �SC
c represents the polarization

function obtained from self-consistent DS equation calculations. The
symbol ⊗ refers to the instantaneous approximation, and

√
indicates

that the energy dependence is taken into account. The corresponding
function is neglected if the space is left blank.

Z A m �BC �SC
c �RPA

c α Reference

⊗ ⊗ 1.9 Current paper
⊗ √

0.92 [35]√ √
0.7 Current paper√ √ √ √ √
3.2 [29]√ √ √ √ √
2.9 [32]√ √ √ √ ⊗ 1.99 [33]√ √ √ √ √
2.06 [33]

have incorporated Z and A, utilized the first term of Ball-Chiu
vertex, and adopted the RPA expression of polarization �c.
Under such approximations, it was found [29] that α ≈ 3.2.
It was pointed out in Ref. [29] that αc could be considerably
decreased if the feedback of the excitonic gap on �c is in-
cluded. Recently, Carrington et al. [33] have carried out more
refined DS equation calculations after taking into account Z ,
A, the first term of the Ball-Chiu vertex, and also the feedback
effects of Z , A, and m on �c, and obtained αc ≈ 2.06. It
is surprising that the value αc = 1.9 obtained in the present
paper by employing the crude instantaneous approximation is
actually quite close to the above result. Moreover, the value
αc obtained by Carrington et al. [33] is smaller than the
physical value α = 2.16 of suspended graphene. In the light
of this result, one might have to conclude that clean, undoped
suspended graphene is an EI at low temperatures.

Ellias et al. [21] has measured the cyclotron mass in
suspended graphene and found no evidence of a finite gap
at rather low energies (∼0.1 meV). This finding was further
supported by the measurements of Mayorov et al. [49]. How
can one reconcile the recent theoretical result of Carrington
et al. [33] and these experiments?

Here we propose that the seeming discrepancy can be
explained by noticing the fact that graphene is not far from
the AFM QCP. Wehling et al. [50] has calculated the on-site
interaction parameter U in suspended graphene by using three
different approaches. The critical value Uc needed to trigger
AFM Mott transition seems to be only slightly larger than
the physical U [18], which implies that realistic graphene is
close to the AFM QCP [18]. Apparently, the AFM quantum
fluctuation is important in graphene and should be seriously
considered in the study of EI transition. As revealed in our
calculations, AFM quantum fluctuation can strongly suppress
excitonic pairing by increasing the value of αc. Therefore, we
conclude that the gapless SM state of suspended graphene is
actually quite robust.

V. SUMMARY AND DISCUSSION

In summary, we have investigated the nonperturbative ef-
fect of dynamical excitonic gap generation in a 2D Dirac
fermion system. The Dirac fermions are subjected to two
types of interactions, namely, the long-range Coulomb in-
teraction and the short-range on-site interaction. The former
interaction can trigger excitonic pairing, whereas the latter
leads to AFM Mott insulating quantum phase transition in
the strong-coupling regime. The DS equation approach is em-
ployed to study the influence of on-site interaction on the fate
of excitonic gap generation. We first have shown that the crit-
ical Coulomb interaction strength αc is slightly suppressed by
the weak GN interaction. As the system approaches the AFM
QCP, the dynamics of Dirac fermions is strongly influenced by
the quantum critical fluctuation of AFM order parameter. We
have demonstrated that excitonic gap generation is suppressed
by the AFM quantum fluctuation. Such a suppression effect is
most significant at the AFM QCP but gradually diminishes
when the system moves away from the QCP. If the 2D Dirac
fermion system is close to the AFM QCP, as what happens
in graphene, it would be very difficult to generate a finite
excitonic gap.
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Based on these results, we provide supplementary infor-
mation to the global phase diagram reported in Ref. [18].
On the phase diagram, the EI phase is not neighboring to
the AFM phase but is separated from the AFM phase by an
intermediate gapless SM phase, as illustrated schematically in
Fig. 1. This conclusion is different from the one previously
stated in Ref. [12]. As indicated by our results, it is hardly
possible to transform a 2D Dirac fermion system from an EI
phase directly to an AFM Mott insulating phase. The reason
is that the quantum critical AFM fluctuation can effectively
prevent excitonic pairing.

When both α and U take large values, the Dirac fermion
system could either be a AFM Mott insulator or a CDW. It
might still be a gapless SM. To determine the quantitatively
more precise phase diagram in such a strongly interacting

regime, it is necessary to investigate the mutual influence
between strong Coulomb interaction and strong on-site inter-
action in a more self-consistent manner, which will be carried
out in future work.

ACKNOWLEDGMENTS

The numerical calculations were mainly performed on the
supercomputing system of the Supercomputing Center of the
University of Science and Technology of China. The authors
acknowledge financial support from the National Natural
Science Foundation of China under Grants No. 11847234,
No. 11574285, and No. 11504379, and the Anhui Provincial
Natural Science Foundation under Grant No. 1908085QA16.

APPENDIX: CALCULATION OF THE POLARIZATION �φ

We now provide the calculational details of the polarization function for the dressed propagator of bosonic AFM fluctuation.
To the leading order of 1/N expansion, this polarization is defined as

i�φ (, q) = −
∑

σ

∫
dω

2π

d2k
(2π )2

Tr
[
λσ G0

σ (ω, k)λσ G0
σ (ω + , k + q)

]

= −
∑

σ

∫
dω

2π

d2k
(2π )2

Tr

[
λσ

1

−γ0ω + vγ k + me
λσ

1

−γ0(ω + ) + vγ (k + q) + me

]
, (A1)

where me is a constant mass of Dirac fermion. Making the replacements q = vq and k = vk, we rewrite it in the form

i�φ (, q) = −
∑

σ

∫
dω

2π

d2k
(2π )2

Tr

[
λσ

v2

1

−γ0ω + γ k + me
λσ

1

−γ0(ω + ) + γ (k + q) + me

]

= −4
∑

σ

(
λσ

v

)2 ∫
dω

2π

d2k
(2π )2

(
( + ω)ω − (k + q) · k + m2

e

)
(
( + ω)2 − (k + q)2 − m2

e

)(
ω2 − k2 − m2

e

) . (A2)

Making use of the Feynman integral

1

AB
=

∫ 1

0
dx

1

[(1 − x)A + xB]2
, (A3)

we proceed as follows:

i�φ = −4
∑

σ

(
λσ

v

)2 ∫ 1

0
dx

∫
dω

2π

d2k
(2π )2

[
( + ω)ω − (k + q) · k + m2

e

]
[
x( + ω)2 − x(k + q)2 − xm2

e + (1 − x)ω2 − (1 − x)k2 − (1 − x)m2
e

]2

= −4
∑

σ

(
λσ

v

)2 ∫ 1

0
dx

∫
dω

2π

d2k
(2π )2

[
( + ω)ω − (k + q) · k + m2

e

]2[
(x − x2)(2 − q2) + (ω + x)2 − (k + xq)2 − m2

e

]2 . (A4)

Defining ω′ = ω + x and k′ = k + xq, we further get

i�φ = −4
∑

σ

(
λσ

v

)2 ∫ 1

0
dx

∫
dω′

2π

d2k′

(2π )2

(ω′ − x)[ω′ + (1 − x)] − [k′ + (1 − x)q] · (k′ − xq) + m2
e(

(x − x2)(2 − q2) + (ω′)2 − k′2 − m2
e

)2

= −4
∑

σ

(
λσ

v

)2 ∫ 1

0
dx

∫
dω′

2π

d2k′

(2π )2

ω′2 + (1 − 2x)ω′ − x(1 − x)2 − k′2 − (1 − 2x)q · k′ + x(1 − x)q2 + m2
e[

(x − x2)(2 − q2) + ω′2 − k′2 − m2
e

]2 .

(A5)

Introducing C =
√

(x − x2)(2 − q2) − k′2 − m2
e leads to

i�φ = 4
∑

σ

(
λσ

v

)2 ∫ 1

0
dx

∫
dω′

2π

d2k′

(2π )2

[
ω′2

(ω′2 + C2)2
− (x − x2)(2 − q2) + k′2 − m2

e

(ω′2 + C2)2

]
.
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Since ∫ +∞

−∞
dx

x2

(x2 + a2)2
= π

2a
,

∫ +∞

−∞
dx

1

(x2 + a2)2
= π

2a3
, (A6)

we find that

i�φ = −4
∑

σ

(
λσ

v

)2 ∫ 1

0
dx

∫
d2k′

(2π )3

[
π

2C
− π (C2 + 2k′2)

2C3

]

= 4
∑

σ

(
λσ

v

)2 ∫ 1

0
dx

∫
d2k′

(2π )3

2πk′2

2
√[

(x − x2)(2 − q2) − k′2 − m2
e

]3
.

After carrying out a series of calculations, we eventually obtain

i�φ = − iN (λσ )2

8v2

[
� − 2

√
q2 − 2 − m2

e

]
, (A7)

where � is the ultraviolet momentum cutoff. In the massless limit, i.e., me = 0, we have

�φ = −N (λσ )2

4v2

√
v2q2 − 2. (A8)

After Wick rotation ( → i), we can have the polarization function in Euclidean space,

�E
φ = −N (λσ )2

4v2

√
v2q2 + 2. (A9)

[1] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17
(2006).

[2] J. Orenstein and A. J. Millis, Science 288, 468 (2000).
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,

Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Science 306, 666 (2004).

[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[5] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[6] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod.
Phys. 83, 407 (2011).

[7] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H.
Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).

[8] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[9] M. Hirata, K. Ishikawa, K. Miyagawa, M. Tamura, C. Berthier,

D. Basko, A. Kobayashi, G. Matsuno, and K. Kanoda, Nat.
Commun. 7, 12666 (2016).

[10] R. Shankar, Rev. Mod. Phys. 66, 129 (1994).
[11] C. A. Downing and M. E. Portnoi, Phys. Status Solidi B

1800584 (2019), doi: 10.1002/pssb.201800584.
[12] I. F. Herbut, Phys. Rev. Lett. 97, 146401 (2006).
[13] T. Sato, M. Hohenadler, and F. F. Assaad, Phys. Rev. Lett. 119,

197203 (2017).
[14] S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys. Rev.

Lett. 100, 156401 (2008).
[15] C. Weeks and M. Franz, Phys. Rev. B 81, 085105 (2010).
[16] A. G. Grushin, E. V. Castro, A. A. Cortijo, F. de Juan, M. A. H.

Vozmediano, and B. Valenzuela, Phys. Rev. B 87, 085136
(2013).

[17] M. Daghofer and M. Hohenadler, Phys. Rev. B 89, 035103
(2014).

[18] H.-K. Tang, J. N. Leaw, J. N. B. Rodrigues, I. Herbut, P.
Sengupta, F. F. Assaad, and S. Adam, Science 361, 570 (2018).

[19] P. Buividovich, D. Smith, M. Ulybyshev, and L. von Smekal,
Phys. Rev. B 98, 235129 (2018).

[20] T.-S. Zeng, W. Zhu, and D. Sheng, npj Quant Mater 3, 49
(2018).

[21] D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov,
A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva,
K. S. Novoselov, F. Guinea, and A. K. Geim, Nat. Phys. 7, 701
(2011).

[22] D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001).
[23] E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A.

Shovkovy, Phys. Rev. B 66, 045108 (2002).
[24] D. V. Khveshchenko and H. Leal, Nucl. Phys. B 687, 323

(2004).
[25] G.-Z. Liu, W. Li, and G. Cheng, Phys. Rev. B 79, 205429

(2009).
[26] D. V. Khveshchenko, J. Phys.: Condens. Matter 21, 075303

(2009).
[27] O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Phys. Rev. B

81, 075429 (2010).
[28] J. Sabio, F. Sols, and F. Guinea, Phys. Rev. B 82, 121413(R)

(2010).
[29] J.-R. Wang and G.-Z. Liu, New J. Phys. 14, 043036 (2012).
[30] C. Popovici, C. S. Fischer, and L. von Smekal, Phys. Rev. B 88,

205429 (2013).
[31] J. Gonzalez, Phys. Rev. B 92, 125115 (2015).
[32] M. E. Carrington, C. S. Fischer, L. von Smekal, and M. H.

Thoma, Phys. Rev. B 94, 125102 (2016).
[33] M. E. Carrington, C. S. Fischer, L. von Smekal, and M. H.

Thoma, Phys. Rev. B 97, 115411 (2018).
[34] H.-X. Xiao, J.-R. Wang, H.-T. Feng, P.-L. Yin, and H.-S. Zong,

Phys. Rev. B 96, 155114 (2017).

245130-10

https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1126/science.288.5465.468
https://doi.org/10.1126/science.288.5465.468
https://doi.org/10.1126/science.288.5465.468
https://doi.org/10.1126/science.288.5465.468
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1038/ncomms12666
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1002/pssb.201800584
https://doi.org/10.1002/pssb.201800584
https://doi.org/10.1002/pssb.201800584
https://doi.org/10.1002/pssb.201800584
https://doi.org/10.1103/PhysRevLett.97.146401
https://doi.org/10.1103/PhysRevLett.97.146401
https://doi.org/10.1103/PhysRevLett.97.146401
https://doi.org/10.1103/PhysRevLett.97.146401
https://doi.org/10.1103/PhysRevLett.119.197203
https://doi.org/10.1103/PhysRevLett.119.197203
https://doi.org/10.1103/PhysRevLett.119.197203
https://doi.org/10.1103/PhysRevLett.119.197203
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevLett.100.156401
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevB.81.085105
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.87.085136
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1103/PhysRevB.89.035103
https://doi.org/10.1126/science.aao2934
https://doi.org/10.1126/science.aao2934
https://doi.org/10.1126/science.aao2934
https://doi.org/10.1126/science.aao2934
https://doi.org/10.1103/PhysRevB.98.235129
https://doi.org/10.1103/PhysRevB.98.235129
https://doi.org/10.1103/PhysRevB.98.235129
https://doi.org/10.1103/PhysRevB.98.235129
https://doi.org/10.1038/s41535-018-0120-5
https://doi.org/10.1038/s41535-018-0120-5
https://doi.org/10.1038/s41535-018-0120-5
https://doi.org/10.1038/s41535-018-0120-5
https://doi.org/10.1038/nphys2049
https://doi.org/10.1038/nphys2049
https://doi.org/10.1038/nphys2049
https://doi.org/10.1038/nphys2049
https://doi.org/10.1103/PhysRevLett.87.246802
https://doi.org/10.1103/PhysRevLett.87.246802
https://doi.org/10.1103/PhysRevLett.87.246802
https://doi.org/10.1103/PhysRevLett.87.246802
https://doi.org/10.1103/PhysRevB.66.045108
https://doi.org/10.1103/PhysRevB.66.045108
https://doi.org/10.1103/PhysRevB.66.045108
https://doi.org/10.1103/PhysRevB.66.045108
https://doi.org/10.1016/j.nuclphysb.2004.03.020
https://doi.org/10.1016/j.nuclphysb.2004.03.020
https://doi.org/10.1016/j.nuclphysb.2004.03.020
https://doi.org/10.1016/j.nuclphysb.2004.03.020
https://doi.org/10.1103/PhysRevB.79.205429
https://doi.org/10.1103/PhysRevB.79.205429
https://doi.org/10.1103/PhysRevB.79.205429
https://doi.org/10.1103/PhysRevB.79.205429
https://doi.org/10.1088/0953-8984/21/7/075303
https://doi.org/10.1088/0953-8984/21/7/075303
https://doi.org/10.1088/0953-8984/21/7/075303
https://doi.org/10.1088/0953-8984/21/7/075303
https://doi.org/10.1103/PhysRevB.81.075429
https://doi.org/10.1103/PhysRevB.81.075429
https://doi.org/10.1103/PhysRevB.81.075429
https://doi.org/10.1103/PhysRevB.81.075429
https://doi.org/10.1103/PhysRevB.82.121413
https://doi.org/10.1103/PhysRevB.82.121413
https://doi.org/10.1103/PhysRevB.82.121413
https://doi.org/10.1103/PhysRevB.82.121413
https://doi.org/10.1088/1367-2630/14/4/043036
https://doi.org/10.1088/1367-2630/14/4/043036
https://doi.org/10.1088/1367-2630/14/4/043036
https://doi.org/10.1088/1367-2630/14/4/043036
https://doi.org/10.1103/PhysRevB.88.205429
https://doi.org/10.1103/PhysRevB.88.205429
https://doi.org/10.1103/PhysRevB.88.205429
https://doi.org/10.1103/PhysRevB.88.205429
https://doi.org/10.1103/PhysRevB.92.125115
https://doi.org/10.1103/PhysRevB.92.125115
https://doi.org/10.1103/PhysRevB.92.125115
https://doi.org/10.1103/PhysRevB.92.125115
https://doi.org/10.1103/PhysRevB.94.125102
https://doi.org/10.1103/PhysRevB.94.125102
https://doi.org/10.1103/PhysRevB.94.125102
https://doi.org/10.1103/PhysRevB.94.125102
https://doi.org/10.1103/PhysRevB.97.115411
https://doi.org/10.1103/PhysRevB.97.115411
https://doi.org/10.1103/PhysRevB.97.115411
https://doi.org/10.1103/PhysRevB.97.115411
https://doi.org/10.1103/PhysRevB.96.155114
https://doi.org/10.1103/PhysRevB.96.155114
https://doi.org/10.1103/PhysRevB.96.155114
https://doi.org/10.1103/PhysRevB.96.155114


EXCITONIC PAIRING OF TWO-DIMENSIONAL DIRAC … PHYSICAL REVIEW B 99, 245130 (2019)

[35] O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Phys. Rev. B
80, 165429 (2009).

[36] J. E. Drut and T. A. Lähde, Phys. Rev. Lett. 102, 026802 (2009).
[37] J. E. Drut and T. A. Lähde, Phys. Rev. B 79, 165425 (2009).
[38] J. E. Drut and T. A. Lähde, Phys. Rev. B 79, 241405(R) (2009).
[39] W. Armour, S. Hands, and C. Strouthos, Phys. Rev. B 81,

125105 (2010).
[40] W. Armour, S. Hands, and C. Strouthos, Phys. Rev. B 84,

075123 (2011).
[41] P. V. Buividovich and M. I. Polikarpov, Phys. Rev. B 86, 245117

(2012).
[42] M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson, and M. I.

Polikarpov, Phys. Rev. Lett. 111, 056801 (2013).
[43] D. Smith and L. von Smekal, Phys. Rev. B 89, 195429 (2014).
[44] I. S. Tupitsyn and N. V. Prokof’ev, Phys. Rev. Lett. 118, 026403

(2017).
[45] F. de Juan and H. A. Fertig, Solid State Commun. 152, 1460

(2012).
[46] A. V. Kotikov and S. Teber, Phys. Rev. D 94, 114010 (2016).

[47] L. L. Marnham and A. V. Shytov, Phys. Rev. B 92, 085409
(2015).

[48] C. A. Downing and M. E. Portnoi, Nat. Commun. 8, 897
(2017).

[49] A. S. Mayorov, D. C. Elias, I. S. Mukhin, S. V. Morozov,
L. A. Ponomarenko, K. S. Novoselov, A. K. Geim, and R. V.
Gorbachev, Nano. Lett. 12, 4629 (2012).

[50] T. O. Wehling, E. Sasioglu, C. Friedrich, A. I. Lichtenstein,
M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett. 106, 236805
(2011).

[51] J. A. Gracey, Phys. Rev. D 97, 105009 (2018).
[52] N. Dorey and R. D. Kenway, Nucl. Phys. B 333, 419 (1990).
[53] K. Kaveh and I. F. Herbut, Phys. Rev. B 71, 184519 (2005).
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