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Rare-earth nickelates exhibit a remarkable metal-insulator transition accompanied by a symmetry-lowering
structural distortion. Using model considerations and first-principles calculations, we present a theory of this
phase transition which reveals the key role of the coupling between electronic and lattice instabilities. We show
that the transition is driven by the proximity to an instability towards electronic disproportionation which couples
to a specific structural distortion mode, cooperatively driving the system into the insulating state. This allows us
to identify two key control parameters of the transition: the susceptibility to electronic disproportionation and the
stiffness of the lattice mode. We show that our findings can be rationalized in terms of a Landau theory involving
two coupled order parameters, with general implications for transition-metal oxides.
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I. INTRODUCTION

The coupling of electrons to lattice degrees of freedom pro-
vides a key opportunity to control the properties of strongly
correlated materials as in, e.g., epitaxial heterostructures [1].
Such a coupling often leads to concomitant electronic and
structural transitions, which have been observed in V2O3 [2],
manganates [3], Ca2RuO4 [4,5], etc. Rare-earth nickelates
(RNiO3) [6–8] represent an ideal playground in this respect
because their metal-insulator transition (MIT), tightly associ-
ated with a lattice mode, is easily tunable [9,10].

The MIT in RNiO3 is accompanied by a bond dispro-
portionation (BD), i.e., a coherent contraction of the NiO6

octahedra on one sublattice [short-bond (SB) octahedra] and
an expansion of the octahedra on the other sublattice [long-
bond (LB) octahedra], also referred to as the “breathing
mode” (BM) [7,11]. The resulting “bond-disproportionated
insulator” (BDI) is also characterized by an electronic dis-
proportionation (ED), whereby the local configuration of SB
octahedra is close to d8L2 and that of LB octahedra is close
to d8 [12–15], or, in terms of “frontier” eg orbitals, to e0

g and
e2

g, respectively [16–19]. The electron localization on the LB
sublattice is the result of a “site-selective Mott transition”
[20], occurring irrespective of the (ground-state) magnetic
ordering for all systems with R cations smaller than Nd, and
lowering the energy of the insulating phase below that of the
metallic phase [14,21–23]. Therefore, magnetic order seems
to play only a secondary role for the smaller R cations from
Lu to Sm, enhancing an already existing tendency towards the
MIT [24–26].

The mechanism of the interplay between electronic and
lattice degrees of freedom is not yet understood. This question

is of key importance to identify the driving force responsible
for the BD and for the first-order transition [27] into the
paramagnetic insulating state. This transition was previously
described either as a pure charge-order transition [28] or as
a result of only the coupling between lattice modes [29].
Recently, the authors of Ref. [30] proposed that the transition
corresponds to the gradual softening of the BM, associated
with the opening of a Peierls gap at the Fermi level, where
they used density functional theory (DFT) calculations includ-
ing the +U correction. This theory describes the transition
as second order, contradicting the results of the differential
scanning calorimetry which provide clear evidence of the
first-order transition [27]. The theory also contradicts Raman-
spectroscopy studies revealing no hint of the BM softening
[31]. Furthermore, the obtained band structure is not com-
patible with observed optical spectra of nickelates [32,33].
In addition, it cannot describe the MIT into the paramagnetic
state since DFT + U requires a magnetically ordered state to
produce an insulating gap [34,35]. Crucially, in the absence of
magnetic ordering, the Peierls gap does not open at the Fermi
level [17,33] and cannot thus be responsible for the insulating
nature of the paramagnetic phase.

Here, we present a theory describing specifically the in-
terplay between the electronic and structural aspects of the
paramagnetic MIT found for R = Lu to Sm. We show that the
paramagnetic MIT is driven by the proximity to a spontaneous
ED, which leads to a strongly nonlinear electronic response
with respect to variations of the BM amplitude, resulting
in a first-order phase transition. Furthermore, we show that
this nonlinear behavior and the first-order nature is key for
a correct description of the paramagnetic MIT and obtaining
a finite, stable-equilibrium BM amplitude. Moreover, our
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theory also identifies the BM stiffness and the electronic
susceptibility at q = ( 1

2 , 1
2 , 1

2 ) as key parameters controlling
the transition. Experimentally, these parameters can be tuned
by the choice of the R cation [6] or by epitaxial strain in
thin films and heterostructures [9,10,36]. We validate our the-
ory by performing combined DFT and dynamical mean-field
theory (DMFT) [37,38] calculations, allowing us to explore
the trends across the rare-earth series. We also rationalize the
overall physical picture in terms of a Landau theory involving
two coupled order parameters: the ED and an order parameter
associated with the metallicity of the system.

The paper is organized as follows. First, in Sec. II we
introduce the model description and analyze its behavior by
identifying control parameters of the coupled transition. Next,
in Sec. II we verify these findings with our realistic DFT +
DMFT calculations. Finally, in Sec. IV, we present a Landau
theory rationalizing our findings further, and in Sec. V, we
summarize our main results.

II. MODEL DESCRIPTION

We start by constructing a simplified model which repro-
duces the main features of the MIT in RNiO3. The model
retains only the key low-energy degrees of freedom: the
interacting electrons in the two frontier eg orbitals and the
BM amplitude Q. The purely electronic part of the Hamil-
tonian, Hband + Hint, consists of a simplified tight-binding
(TB) model, Hband = −∑

i, j,m,m′,σ tmm′
i j d†

imσ d jmσ , and a local
interaction term Hint. Here, i, j indicate sites within a simple
cubic lattice, m = 1, 2 correspond to the dx2−y2 and dz2 orbitals
on each site, and hopping matrices tmm′

i j are obtained using
the Slater-Koster construction with two hopping amplitudes, t
and t ′, limited to nearest-neighbor and next-nearest-neighbor
sites, respectively [39]. The interaction term Hint involves two
coupling constants, a repulsive interaction U and an intra-
atomic (Hund’s) exchange J , and takes the standard two-
orbital Hubbard-Kanamori form [40]. The purely lattice part
is described by an elastic term: Hlatt = K

2 Q2, with K being the
stiffness of the BM. Finally, importantly, the coupling of the
BM amplitude to the electrons is captured by the term

He−l = 1

2

∑
mσ

�s
m[Q]

[∑
i∈SB

n̂imσ −
∑
i∈LB

n̂imσ

]
, (1)

where n̂imσ = d†
imσ dimσ is the electron occupation operator

and �s
m[Q] is a (Peierls-like) modulation of the on-site po-

tential seen by orbital m due to the BM structural distortion
parametrized by Q. It couples to the operator measuring the
ED between the LB and SB octahedra. The total Hamiltonian
thus reads

H = Hband + Hint + He−l + Hlatt. (2)

At this stage, we define the amplitude Q as the dispropor-
tionation in octahedral bond lengths, b = b0 + Q/2 for LB
and b = b0 − Q/2 for SB octahedra. The modulation of the
on-site potential �s

m[Q] is given by the difference between the
on-site energies of the SB and LB sites:

�s
m[Q] = εm[b0 − Q/2] − εm[b0 + Q/2]

≈ (dεm/db)b0 Q ≡ gmQ, (3)

where we have expanded in Q and introduced the electron-
lattice coupling parameter gm. Here, we assumed that �s

m[Q]
is linear in Q, which we checked by our DFT calcula-
tions for various representatives of the series (see Fig. 6 in
Appendix A).

As emphasized in Refs. [17,18], an appropriate low-energy
description of the negative-charge-transfer character of RNiO3

and of their tendency to form a BDI state is obtained with U −
3J � �s. In this regime, the orbital polarization is strongly
suppressed, implying that the on-site energies are, to a good
approximation, orbital independent: εz2 ≈ εx2−y2 . We thus as-
sume that the eg states are degenerate and omit the index m in
one-electron quantities (i.e., gm = g, �s

m = �s) [41].
Minimizing the total energy,

E = 〈H〉 ≡ Eel[ν] − gQν

2
+ KQ2

2
, (4)

with respect to Q (using the Hellman-Feynman theorem)
yields

2K

g
Q̄ = ν[Q̄], (5)

where ν[Q] = 〈n̂LB − n̂SB〉Q is the average ED for a given
amplitude Q, while Q̄ denotes the equilibrium value of
the amplitude corresponding to local energy minima (so-
lutions corresponding to energy maxima are discarded).
Equation (5) is the central equation of this paper: It enables
one to determine the equilibrium BM amplitude from the
knowledge of the electronic response encoded in ν[Q] for a
given lattice stiffness K and electron-lattice coupling g. The
stability of the solutions of this equation is determined by the
renormalized stiffness

κ ≡ ∂2E

∂Q2
= K − g2

2

∂ν

∂�s
. (6)

Assuming no spontaneous ED (ν[Q = 0] = 0), we obtain
κ = K − χeg2/2, where χe ≡ (∂ν/∂�s)Q=0 is the electronic
susceptibility associated with a “charge” modulation at a wave
vector q = ( 1

2 , 1
2 , 1

2 ) (see Appendix A 3 for more informa-
tion). Hence, the (linear) stability of the high-symmetry phase
is controlled by the electronic response χe which must be
compared to 2K/g2.

We investigate the solutions to Eq. (5) by performing
DMFT calculations to obtain ν[Q] for various values of the
bandwidth W (see Appendix A 4 for details). The results are
shown in Fig. 1. The calculations were performed first for
increasing values and then for decreasing values of Q, which
resulted in a hysteresis. The most important feature of this plot
is the strongly nonlinear dependence of ν on Q. Solutions of
Eq. (5) are obtained by intersecting ν[Q] with the straight line
(2K/g)Q.

This nonlinear shape of the ν[Q] curves plays an important
role in determining the nature of the transition. For a given
value of K/g and depending on W , there are either one, two, or
three intersection points (disregarding symmetry-equivalent

solutions for Q < 0). Consider K/g = 5.3 Å
−1

. If W is large
(W � 2.07 eV in Fig. 1), the straight line intersects the ED
curve only at Q = 0, rendering it the only solution to Eq. (5).
As W is decreased, it reaches a value below which there are
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K/g = 8.8 Å−1
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FIG. 1. Electronic disproportionation ν of the TB model as a
function of bond disproportionation Q for various values of the
bandwidth W (in eV). Open and solid symbols correspond to insu-
lating and metallic branches, respectively. The dashed lines represent
(2K/g)Q for two values of K/g, with the intersection points giving
the solutions to Eq. (5). Inset: Spectral weight as a function of Q.

three intersection points (W = 1.95 eV). The middle intersec-
tion point corresponds to an unstable solution (κ < 0). The
two remaining stable solutions, Q = 0 and Q = Q̄[K,W ] >

0, mark the coexistence of two different phases. At even
smaller values of W (W � 1.8) the solution at Q = 0 gets
destabilized because κ[Q = 0] < 0. We are then left with only
one solution, Q = Q̄[K,W ] > 0, telling us that only the BD
phase is stable here. The behavior of the solutions of Eq. (5)
as a function of W tells us that the BD transition is first
order. Importantly, this is not directly related to the hysteretic
behavior of ν[Q]. Even if there were no such hysteresis, the
particular nonlinear dependence of ν[Q] would imply that
the BD transition is first order. The inset of Fig. 1 displays
the spectral weight at the Fermi level as a function of Q. We
see that the system undergoes a transition from metallic to
insulating behavior as Q is increased and that the transition
regime corresponds to the strongly nonlinear regime of ν[Q].
Hence, it is the MIT which is responsible for the strong
nonlinearity of ν[Q].

We can now discuss the control parameters of the com-
bined BD/MIT, where Eq. (5) shows that the transition be-
havior depends on parameters g, K , and χe. We extract these
parameters from our DFT calculations (see Appendix A 2 for
details), and the obtained values for g, K , their ratios, χe, and
the eg bandwidth W are shown in Table I. To get a better
feel for these numbers, one can estimate the maximum pos-
sible equilibrium BM amplitude by setting ν = 2 in Eq. (1),
which yields Q̄max = 2(g/2K ) ≈ 0.095 Å, a value that sets
the correct scale of distortions observed in experiment (e.g.,
Q̄ = 0.075 Å for LuNiO3). This provides a strong argument
in favor of the presented mechanism of the electron-lattice
coupling as the dominant one in determining the structural
transition.

The electron-lattice coupling g is found to vary by about
12% along the rare-earth series. Moreover, the stiffness K

TABLE I. Values for g, K , 2K/g, 2K/g2, the eg bandwidth W ,
and the dx2−y2 component of the electronic susceptibility χ1,1 for the
three investigated compounds R = Lu, Sm, and Pr, extracted from
DFT calculations.

g K 2K/g 2K/g2 W χ1,1

R (eV/Å) (eV/Å
2
) (1/Å) (1/eV) (eV) (1/eV)

Lu 3.75 39.29 20.96 5.59 2.32 0.69
Sm 4.02 41.45 20.61 5.13 2.51 0.50
Pr 4.24 44.47 20.98 4.95 2.68 0.39

also varies by a similar amount and in the same direction
(increasing from Lu to Sm). As a result, the ratio 2K/g,
which enters the equation of state, is fairly constant along the
series. The renormalized stiffness controlling the sensitivity to
disproportionation at small Q is proportional to 2K/g2 − χe,
with χe being the electronic susceptibility. From Table I it can
be seen that the first term varies by about 10% along the series,
but the electronic susceptibility varies by almost a factor of 2
from Pr to Lu. As a result, for the bulk materials, the transition
is sensitively controlled by the electronic susceptibility (i.e.,
by the bandwidth and rotation and tilt angles [28]) and not by
the stiffness K or electron-lattice coupling g. In heterostruc-
tures and under strain, the BM stiffness K varies, while g
remains unaffected [36]. K is thus likely to be an important
control parameter in those cases. This may shed light on the
results of Ref. [42] and motivates the variation of K/g in our
model calculations.

The effects of the two control parameters K and χe (tuned
via K/g and W , respectively) are summarized in Fig. 2. The
dashed curves indicate the boundaries (spinodals) of the BDI
and metallic phases, with a narrow coexistence region in
between. Solid lines show stable nonzero solutions Q̄[K,W ].
For fixed K , the bandwidth W (equivalently, χe) determines
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FIG. 2. Phase diagram of the TB model as a function of band-
width W and BD Q. Circles are critical points for the metallic and
insulating phases; dashed curves are spinodal lines obtained as fits
to α(W − Wc )

3
2 (see Sec. IV on the Landau theory). The solid lines

with triangles and stars display the stable equilibrium values of Q for
two values of K/g. Vertical dashed lines designate lower and upper
critical values of W for the structural transition.
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FIG. 3. Top: ED ν as a function of increasing Q (solid symbols)
and decreasing Q (open symbols) for R = Lu (red), Sm (blue), and Pr
(green). The gray line represents (2K/g)Q with values g = 3.8 eV/Å

and K = 39.3 eV/Å
2

extracted from DFT. Inset: Electronic sus-
ceptibilities as a function of the Ni-O-Ni angle: χ1,1 is the dx2−y2

component, and χ2,2 is the dz2 component. Bottom: spectral weight
at the Fermi level as a function of Q.

whether the paramagnetic ground state is a BDI phase.
Moreover, the variation of K controls smoothly the position
of the phase boundaries.

III. REALISTIC DFT + DMFT CALCULATIONS

We now perform ab initio DFT + DMFT calculations to
confirm the physics found in the model calculations and
assess materials trends quantitatively. The impurity model
is constructed by projecting onto a low-energy eg sub-
space following the scheme described in Refs. [17,18] (see
Appendix A 4 for details).

Figure 3 shows the calculated ν(Q) for R = Lu, Sm, and
Pr (top panel). The overall nonlinear behavior of ν(Q) is
very similar to that in the model calculations (Fig. 1), with
the nonlinearity clearly related to the MIT (Fig. 3, bottom
panel), also indicating a first-order character of the BD/MIT.
This confirms that the model indeed incorporates the essential
underlying physics. Furthermore, we obtain a strong decrease
in the amplitude of the nonlinearity in ν(Q) from R = Lu
towards R = Pr, consistent with the bandwidth variation in
the model.

For the realistic calculations, we checked the change in
bandwidth W for different R cations obtained by DFT. The
corresponding values of W for R = Lu, Sm, and Pr are shown
in Table I (see also Fig. 5 in Appendix A). One can see that
the bandwidth decreases by ∼13% from R = Pr to R = Lu. On
the other hand, the dx2−y2 component of the electronic suscep-
tibility displayed in Fig. 3 (top, inset) increases steadily and
almost doubles its value from Pr to Lu as the Ni-O-Ni bond

angle is reduced. Together, this shows that the increased octa-
hedral rotations for R = Lu compared to R = Pr have a much
stronger impact on the electronic susceptibility χe than on the
bandwidth W . This effect can be understood by realizing that
the bandwidth is mainly determined by the nearest-neighbor
hopping parameter t , while the susceptibility is also crucially
dependent on the next-nearest-neighbor hopping parameter t ′
(more precisely, on the ratio t ′/t), affecting the shape of the
Fermi surface [28,39]. The bandwidth provides thus only an
indirect measure of the changes in the true control parameter
χe determining the proximity to the instability.

Finally, the values obtained for K and g from DFT (see
Table I) lead to stable equilibrium BM amplitudes Q̄ for all
investigated compounds. This is shown in Fig. 3, where Q̄
is obtained from the crossing points of (2K/g)Q (gray line)
with the ν[Q] curves. The value obtained for Q̄ for LuNiO3 of
0.073 Å is in very good agreement with available experimen-
tal data (Qexp = 0.075 Å [27]). PrNiO3 seems to be very close
to the transition, as its Q̄ value is very close to the MIT, and the
stable BM would eventually be lost if a reduced U were used
for PrNiO3, as suggested by our constrained random-phase
approximation calculations [22]. Moreover, previous studies
find that the magnetic order appears to be crucial in stabiliz-
ing the BD phase in PrNiO3 and NdNiO3 [7,22,24,25]. The
stability and influence of the magnetic order goes beyond the
scope of our work and requires further investigation. However,
the overall trend of an increase in Q and in the stability of
the BM through the series for smaller R cations is consistent
with experiments and in line with earlier studies [19,22,35].
Moreover, these results clearly show the capabilities of the
method to correctly capture the coupled paramagnetic MIT
and the resulting stability of the BM distortion compared to a
DFT + U description.

IV. LANDAU THEORY

We finally show that the main qualitative features of the
MIT found above can be rationalized in terms of a Landau
theory, which involves two coupled scalar order parameters:
the ED ν and an additional order parameter, φ, which dis-
tinguishes between metallic (conventionally associated with
φ > 0) and insulating behavior (φ < 0). The reason why this
second-order parameter is required is clear from the results
above: a nonzero value of ν can correspond either to a
metallic phase (at small values of the on-site modulation �s

or, equivalently, of Q) or to an insulating one. In other words,
a metallic monoclinic phase with a nonzero value of the BM
amplitude Q is, in principle, possible, in agreement with re-
cent experimental findings [43]. Such an order parameter has
been introduced to describe the Mott transition in the DMFT
framework, in analogy with the liquid-gas transition [44,45].
Note that the present Landau theory aims at describing the
MIT between the two paramagnetic phases, while the earlier
Landau descriptions [24,39] aimed at the magnetic transition
(see also Ref. [5] in relation to ruthenates.)

Assuming the simplest coupling allowed by symmetry,
φν2, the paramagnetic transitions can be described by the
following energy functional:

F [ν, φ] = Fν + Fφ + λφν2, (7)
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with

Fν = 1
2 bν2 + 1

4 cν4 − �sν + 1
2κ�2

s ,
(8)

Fφ = 1
2 aφ2 + 1

4 uφ4 − hφ,

where u, c > 0 and the coupling parameter λ > 0 is of order
1. The coupling to the lattice is represented by the linear
term �sν, with �s serving as a symmetry-breaking field
(alternatively, the BM can be introduced with Q = g�s). In
the absence of ED, the system is a metal, so that we must
assume a and h are positive. Here, b is a key control parameter
related to χe, and it depends critically on external parameters
such as the bandwidth, b = b0(W − Wc).

Without loss of generality we can set u = c = a = 1.
Minimizing F [ν, φ] yields the following coupled equations of
state:

bν + ν3 + 2λφν = �s, (9)

φ + φ3 = h − λν2. (10)

The numerical solution of these equations is displayed in
Fig. 4 for various b. For b > 0, starting from a value φ =
φ0 > 0, typical for the metallic phase at ν = 0, and increasing
�s lead to a strongly nonlinear dependence of ν on �s, with
φ continuously decreasing (because of the −λν2 term) and
gradually reaching negative values (inset of Fig. 4). At a
critical value of b, the ν[�s] curves acquire a vertical tangent,
and beyond this value, an S shape with an unstable branch
is found, typical of a first-order transition, with two vertical
tangents delimiting the two spinodal values of �s: �−

s and
�+

s . When b is further decreased, a spontaneous instability is
found, with a jump of ν to a finite value for an infinitesimal
�s. This general behavior is in excellent qualitative agreement
with Fig. 1.

A more detailed analysis of the above equation can be
carried out by considering two limits: small and large values

of �s. The small-�s limit can be described in terms of
the linear susceptibility at ν = 0, χe = (b + 2λφ0)−1, asso-
ciated with the electronic disproportionation. Keeping terms
up to O(�2

s ), we can get the nonlinear susceptibility (see
Appendix B for details),

dν

d�s
= [

χ−1
e − Sχ2

e �2
s

]−1
, (11)

where S > 0 is a constant enhancement factor proportional
to λ2. The equation emphasizes the role of the φν2 cou-
pling in amplifying the electronic disproportionation, driving
it to the transition at �s = �+

s ≡ (b + 2λφ0)
3
2 /

√
S ∼ (W −

W +)
3
2 . At this point dν/d�s diverges, marking the spinodal

of the metallic phase.
Analogously, the analysis of the large-�s limit reveals

that also for the spinodal of the insulating phase we get
�−

s ∼ (W − W −)
3
2 (details are given in Appendix B). The

similar behaviors of the metallic and insulating spinodals are
confirmed by the DMFT results for the TB model displayed
in Fig. 1, where one can see that the two boundaries are fairly
parallel.

V. CONCLUSIONS

We have presented a theory of the combined structural
and electronic metal-insulator transition in bulk RNiO3. The
driving force of this transition is the proximity to the elec-
tronic disproportionation instability, which is cooperatively
reinforced by the coupling to the lattice breathing mode. The
transition is thus controlled both by the electronic charge
susceptibility and by the stiffness of this mode. The key
nonlinearities associated with this cooperative effect can be
rationalized in terms of a Landau theory. Our work provides
a pathway to understanding the MIT in other geometries,
such as ultrathin films and heterostructures, and is likely to
have general applicability to other materials with a strong
interplay between electronic correlations and lattice degrees
of freedom.
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FIG. 5. Bandwidth W of the eg bands as a function of rare-earth
ion R obtained from DFT corresponding to the Pbnm structure
(Q = 0.0 Å).

APPENDIX A: CALCULATION DETAILS

1. DFT calculations

DFT calculations were performed using the projector
augmented wave (PAW) method [46] implemented in the
Vienna Ab initio Simulation Package (VASP) [47–49] and the
exchange correlation functional according to Perdew, Burke,
and Ernzerhof [50]. For Ni, the 3p semicore states were
included as valence electrons in the PAW potential. For the
rare-earth atoms, we used PAW potentials corresponding to a
3+ valence state with f electrons frozen into the core, and
depending on the rare-earth cation, the corresponding 5p and
5s states were also included as valence electrons. A k-point
mesh with 10 × 10 × 8 grid points along the three reciprocal
lattice directions was used, and a plane wave energy cutoff
of 550 eV was chosen for the 20-atom Pbnm unit cell. The
structures were fully relaxed, both internal parameters and
lattice parameters, until the forces acting on all atoms were
smaller than 10−4 eV/Å. Generally, our calculated lattice
parameters agree very well with available experimental data
across the whole series, with maximal deviations of the unit
cell volume of a few percent or less. For example, for LuNiO3

the nonmagnetic calculation results in a unit cell volume that
deviates by −1.5% from the experimental high-temperature
structure [27]. As can be seen from Ref. [35], all rotation
and tilt angles are also in very good agreement with the
experimental structure.

To check the influence of the different control parameters
across the nickelate series, we extracted the bandwidth W of
the eg states from our DFT calculations for the relaxed Pbnm
structures, which is depicted in Fig. 5. Here, W is plotted as
function of the octahedral rotation distortion amplitude R+

4 ,
which is related to the Ni-O-Ni super-exchange angle [35].

2. Electron-lattice coupling

We use slightly different definitions of the BM amplitude
Q in the model and in the realistic calculations. In the model,
Q is defined as the difference in bond lengths (oxygen-atom
displacement is ∼Q/2), while in DFT + DMFT calculations,
the BM amplitude corresponds to a particular distortion mode

FIG. 6. �s[Q] for R = Lu (red), Sm (blue), and Pr (green) as
extracted from DFT. A clear linear dependency of �s[Q] from Q can
be observed for all three R cations.

(R+
1 ) of a symmetry-based mode decomposition [35,51,52].

Since the amplitude of this mode is proportional to the
displacement of oxygen atoms, its value is almost a factor
of 2 smaller than the model value of Q. More specifically,
an amplitude of Q = 0.1 Å would result in a displacement
of 0.058 Å of each oxygen atom. The decomposition in
distortion modes allows us to clearly separate the effect of
the BM from other distortions and hence allows for a better
comparison with the model. As experiments show [27,53],
structural parameters besides the breathing mode distortion
almost do not change during the MIT, and therefore, the use
of our relaxed Pbnm structures is well justified.

In the model calculations, Q = �s/g is controlled by vary-
ing the modulation parameter �s. The length scale is set by
setting g = 1.7 eV/Å, which is close to gDFT/2, with gDFT

being the value obtained in our DFT calculations for bulk
RNiO3 (see below). Model parameter K can be chosen rather
arbitrarily, and we vary it in a range of values that results in
equilibrium values of Q of the same order of magnitude as
the experimentally observed values (and the ones resulting
from DFT + DMFT calculations). Note that because of the
difference in the definition of Q the model values of K would
correspond to roughly four times larger values of the realistic
BM stiffness.

In our realistic calculations, parameters g and K are de-
termined from systematic DFT calculations for varying BM
amplitude, where the modulation field �s is extracted from
the difference of the corresponding on-site terms of the
Hamiltonian projected onto eg states via Wannier construc-
tion as described in Refs. [54,55]. To this end, we use the
TRIQS/DFTTOOLS software package [56,57]. The resulting val-
ues of �s turn out to be linear in Q in the relevant range of BM
amplitudes, as seen in Fig. 6, where we show several examples
of such calculations. In the context of DFT + DMFT calcu-
lations, the value of �s is corrected for the double-counting
(DC) contributions as described in Ref. [18].

The obtained values of the parameters allow for an estimate
of the relative strength of the electron-lattice coupling by
considering a polaron binding energy g2/(2K ), which is Ep ≈
184 meV for our obtained values g and K from DFT. The
corresponding dimensionless coupling parameter is then equal
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to λ = Ep/W ≈ 0.08 
 1 for LuNiO3 (it is even smaller for
other compounds in the series), which tells us that electrons
are coupled relatively weakly to the BM in nickelates. This
emphasizes the key role that the electronic instability plays in
effectively enhancing the coupling and destabilizing the BM.

3. Electronic susceptibility

Here, we show that the formula for the susceptibility given
in the text is related to the usual definition of the charge
susceptibility at a specific q point. If we consider an inho-
mogeneous perturbation potential of the form H ′ = ∑

i n̂iεi

(again, assuming orbital degeneracy and omitting the orbital
and spin indices), then the q-dependent charge susceptibility
is defined as

χ (q) = −∂n(q)

∂ε(q)

∣∣∣
ε→0

, (A1)

with

n(q) = 1

N

∑
i

〈n̂〉ie
iqRi , ε(q) = 1

N

∑
i

εie
iqRi ,

where Ri = m1
i a1 + m2

i a2 + m3
i a3 are the Bravais-lattice vec-

tors, aα are the translation vectors of the pseudocubic unit cell,
and mα

i ∈ Z (α = 1, 2, 3).
Considering a modulated field εi equal to �s/2 on SB sites

and to −�s/2 on LB sites, we have for a specific point qR =
2π
a ( 1

2 , 1
2 , 1

2 ) in a pseudocubic structure

n(qR) = 1

N

∑
i

〈n̂〉ie
iπ (m1

i +m2
i +m3

i )

= 1

N

(∑
i∈LB

〈n̂〉i −
∑
i∈SB

〈n̂〉i

)
= 1

2
ν

ε(qR) = 1

N

∑
i

εie
iπ (m1

i +m2
i +m3

i )

= 1

N

(∑
i∈LB

εi −
∑
i∈SB

εi

)
= −1

2
�s,

where we have associated LB and SB sites with the sites for
which the values of mi = ∑

α mα
i are even and odd, respec-

tively.
Then, we get

χ (qR) = ∂ν

∂�s

∣∣∣
ε→0

, (A2)

which is the definition of χe used in the main text.

4. DMFT calculations

DMFT calculations for the TB model Hamiltonian are
performed in the paramagnetic state. The bandwidth is given
by W = 6.1t , and the ratio, t ′/t = 0.13, is fixed for all cal-
culations. The interaction parameters are set to U = 1.8 eV,
J = 0.9 eV, similar to what has been used for a realistic
low-energy description of RNiO3 [17,18]. The temperature
is set to T = 1/100 eV � 120 K. The DMFT calculations
are performed using hybridization-expansion continuous-time
quantum Monte Carlo [58], as implemented in the TRIQS

package [57,59], with the rotationally invariant Kanamori-
type interaction term.

Within the realistic DFT + DMFT framework, we solve
the electronic problem defined by the lattice Hamiltonian,
Ĥ = Ĥkin + Ĥint + ĤV , utilizing the above-mentioned solver.
Here, the first term in Ĥ corresponds to the full eg bands
extracted from DFT, including all off-diagonal hoppings and
on-site terms; the second term is the local interaction Hamilto-
nian, where we use the rotationally invariant Kanamori form,
and the last term describes the intersite Coulomb interaction
V , as introduced in Ref. [18], which we include on a mean-
field level as a Hartree shift in the local self-energy.

We perform one-shot DFT + DMFT calculations, but ac-
cording to our test calculations (see also Ref. [22]), the
incorporation of intersite interactions on a Hartree level within
a one-shot DFT + DMFT scheme gives results that are very
similar to fully charge self-consistent DFT + DMFT calcula-
tions using only the local interaction term.

To correct for the DC error, we employ the scheme de-
scribed in Ref. [60], where we additionally perform a DC cor-
rection for the intersite interaction as described in Ref. [18].
For better comparability, we use the same interaction param-
eters, U = 1.8 eV, J = 0.4 eV, and V = 0.6 eV, for all com-
pounds throughout the series. These values are close to the
results of recent calculations using the constrained random-
phase approximation [18,22]. All calculations are done for the
paramagnetic phase, and the temperature was set to T = 1/40
eV � 290 K.

APPENDIX B: LANDAU THEORY

Here, we elaborate on the derivation of the critical-point
scaling mentioned in the main text. We start with the equations
of state given by Eqs. (9) and (10) in the main text and
consider separately metallic and insulating regimes.

Stability of the metallic phase. For the metallic regime, we
perform derivation by expanding in the limit of small �s. At
ν = 0, we set φ = φ0 > 0 to make sure the system is metallic
in the absence of BD.

The symmetry of the problem dictates that ν is an odd
function and φ is an even function of �s. To first order in
�s we get

ν0 ≈χe�s, (B1)

χe = 1

b + 2λφ0
, b > −2λφ0. (B2)

This result is not very interesting because it implies a
linear behavior of ν and a constant value of φ0 as a function
of �s, with �s having thus no effect on the metal-insulator
order parameter. This excludes any transition induced by bond
disproportionation, leaving only a simple externally driven
transition when b = 2λφ0.

To get the next leading order, let φ = φ0 + φ1, which gives

(φ0 + φ1)3 + (φ0 + φ1) = h − λν2
0 ,

3φ2
0φ1 + φ1 ≈ −λχ2

e �2
s ,

where terms of order o(�2
s ) are dropped.

We obtain the following solution:

φ1 = − λ

M
χ2

e �2
s , M = 1 + 3φ2

e . (B3)
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Importantly, we see that φ1 < 0, and φ hence decreases
quadratically with �s (see the inset of Fig. 4). Moreover, the
rate of the reduction is determined by the charge susceptibility
χe and also by the strength (“conductivity”) φ0 of the metallic
phase.

To estimate the dependence of the nonlinear susceptibility
on �s we take the derivatives of the equations of state, Eqs. (9)
and (10), with respect to �s. Denoting χ (�s) = ∂ν/∂�s and,
again, keeping only terms up to O(�2

s ), we have

3φ2 ∂φ

∂�s
+ ∂φ

∂�s
= − 2λνχ,

∂φ

∂�s
≈ −2

λ

M
νχ, (B4)

from which we have

3ν2χ + (b + 2λφ)χ + 2λν
∂φ

∂�s
= 1,

(
3ν2

0 + χ−1
e − 6

λ2

M
ν2

0

)
χ = 1, (B5)

χ−1
e − 3

(
2
λ2

M
− 1

)
χ2

e �2
s = χ−1,

where we have used Eqs. (B1), (B2), (B3), and (B4). The
resulting equation is precisely our Eq. (11) in the main text,
with S = 3(2λ2/M − 1).

The function χ (�s) is equal to χe at �s = 0, increases with
�s faster than χe�s, and diverges when �s = �+

s , with

�+
s = χ

− 3
2

e√
S

. (B6)

The important observation here is that

�+
s ∼ (b + 2λφ0)

3
2 ∼ (W − W +)

3
2 , (B7)

which is exactly the scaling employed in fitting the spinodal
of the metallic phase in Fig. 2.

Stability of the insulating phase. The insulating phase
can be analyzed in a similar fashion but starting from the

asymptotic large-�s solution:

ν ≈ �
1
3
s − (b + 2λφ)

1

3�
1
3
s

,

ν2 ≈ �
2
3
s − 2

3
(b + 2λφ) + (b + 2λφ)2

9�
2
3
s

.

By substituting this back into Eq. (10), we get

φ3 + φ = h − λ�
2
3
s + λ

2

3
(b + 2λφ),

φ3 + φ

(
1 − 4

3
λ2

)
= h + λ

2

3
b − λ�

2
3
s ,

φ3 − Pφ = h + λ
2

3
b − λ�

2
3
s ,

where we have neglected the terms containing inverse powers
of �s and introduced P = 4λ2/3 − 1.

The insulating phase becomes unconditionally unstable
when the right-hand side of the equation reaches the local
maximum of the left-hand side. The location of the maximum
φm is easily found from the left-hand side,

φm = −
√

P

3
.

This results in the following condition for the stability valid
in the large �s limit:

h + λ
2

3
b − λ�

2
3
s = 2

3

(
P

3

) 3
2

,

from which we get the critical value of �s,

�−
s =

[
2

3
b + h

λ
− 2

3λ

(
P

3

)] 3
2

. (B8)

Thus, in both the metallic and insulating cases, the scaling
of the critical �s is

�∗
s ∼(b − b∗)

3
2 ∼ (W − W ∗)

3
2 , (B9)

with �∗
s = �+

s ,�−
s for the metallic and insulating spinodals,

respectively. These scalings have been used to fit both bound-
aries in Fig. 2.
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