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The Kondo lattice model is a paradigmatic model for the description of local moment systems, a class of
materials exhibiting a range of strongly correlated phenomena including heavy fermion formation, magnetism,
quantum criticality, and unconventional superconductivity. Conventional theoretical approaches invoke frac-
tionalization of the local moment spin through large-N and slave particle methods. In this work we develop
a formalism based on noncanonical degrees of freedom, building upon a recently developed approach for
strongly correlated electrons [E. Quinn, Phys. Rev. B 97, 115134 (2018)]. Specifically, we demonstrate that
higher dimensional representations of su(2|2) correspond to a splitting of the electronic degree of freedom on
the Kondo lattice, in a manner which entwines the conduction electrons with the local moment spins. This
provides a powerful means of organizing correlations, and offers a perspective on heavy fermion formation.
Unlike slave-particle methods, noncanonical degrees of freedom generically allow for a violation of the Luttinger
sum rule, and we interpret recent angle resolved photoemission experiments on Ce-115 systems in view
of this.
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I. INTRODUCTION

Metals with local moments provide a rich playground to
study unconventional phases and quantum phase transitions.
A range of interesting phenomena, including unconventional
superconductivity and non-Fermi liquid behavior, arise from
competition between magnetism and the Kondo effect [1–5].
When magnetism wins and the local moments order, the
electrons are free to form a canonical Fermi liquid. When
the Kondo effect dominates, the local moment is quenched
by the conduction electrons, giving rise to “heavy” electronic
quasiparticles with effective masses as large as 1000me [6].
This heavy fermion state is also characterized by an enlarge-
ment of the Fermi surface, observed in Hall conductivity
[7,8], magnetostriction [9], quantum oscillation [10], and
angle resolved photoemission (ARPES) [11–15] experiments.
These two regimes are generally separated by critical behavior
associated with Kondo breakdown, which manifests itself as a
non-Fermi liquid fan extending to finite temperatures [16–21].

A precise estimation of the enlargement of the Fermi
volume VFS requires a complete mapping of the Fermi sur-
face, a challenging task only very recently achieved with
ARPES [13–15]. The conclusions are remarkable: CeCoIn5

[13], CeIrIn5 [14], and CeRhIn5 [15] all show enlargement
which is significantly smaller than the anticipated VFS ∝
nc + n f , where nc and n f are the conduction electron and
local moment densities, respectively. For instance, in CeCoIn5

[13] the enhancement is only VFS ∝ nc + 0.2 ± 0.05.
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These observations suggest a violation of Luttinger’s sum
rule, a direct proportionality between electron density and
Fermi surface volume which has been established for a canon-
ical Fermi liquid [22–24].

Although the Kondo impurity problem is exactly solvable
[25–27], there is no exact solution for the Kondo lattice model.
The standard analytic approaches such as large-N employ
fractionalization of the local moment spin [18,28,29]. Within
this approach there are two possibilities for the Fermi surface
volume: (i) VFS ∝ nc when there is no Kondo hybridization
which occurs at high temperature; (ii) VFS ∝ nc + n f once
the Kondo hybridization sets in. This enlargement of the
Fermi surface is attributed to the local moment spin becoming
delocalized, thereby gaining charge in relation to Luttinger’s
sum rule. Dynamical mean-field theory [30,31], which is exact
in infinite dimensions, goes beyond the large-N mean-field
description by introducing finite lifetime effects, but is in
qualitative agreement with respect to Luttinger’s sum rule.

It is worth highlighting that these systems are not the only
cases where evidence for the violation of Luttinger’s sum rule
is observed. Another prominent example is the pseudogap
regime of the cuprates, where quantum oscillation and Hall
and thermal conductivity experiments indicate the existence
of a Fermi surface whose volume drops to zero as half-filling
is approached [32–34]. The analogy can be strengthened by
drawing a parallel between the non-Fermi liquid behavior
appearing between the small and large Fermi surface regimes
in local moment systems with that occurring between the
Fermi liquid and pseudogap regimes in the cuprates [35].
Linking rearrangement of the Fermi surface and non-Fermi
liquid behavior offers a promising paradigm for characterizing
the phase diagram of strongly correlated electronic matter.
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In this article we develop a theoretical framework for local
moment systems. We demonstrate that the degrees of freedom
of local moment systems can be reinterpreted through the
noncanonical graded Lie algebra su(2|2), and exploit this to
obtain a systematic description of strongly correlated behav-
ior. The resulting regime can be interpreted as a splitting of
the electronic degree of freedom [36], and exhibits a self-
hybridization of the band structure inducing a heavy effective
mass and enlargement of the Fermi surface.

The formalism we employ violates Luttinger’s sum rule
quite generally. Central to Luttinger’s theorem is the organiza-
tion of the correlations of an interacting system around canon-
ical fermion degrees of freedom via the Scwinger-Dyson
equation, let us cast it as G = 1

G−1
0 −�

. Recently it has been

established that correlations can instead be organized around
noncanonical degrees of freedom via an exact representation
of the Green’s function as G = g� = �

g−1
0 −�

, where � en-

codes the correlations resulting from the noncanonical nature
of the degree of freedom [37,38]. In the purely electronic
setting it was shown that this generically yields a violation of
Luttinger’s sum rule [36]. This can be regarded as formalizing
Hubbard’s approach based on graded projection operators
[39,40], as well as providing a framework for systematically
going beyond it. Here we obtain a nontrivial generalization
to the local moment setting, where the connection to graded
projection operators is lost, but the splitting of the electron is
maintained, giving rise again to violation of Luttinger’s sum
rule.

II. LOCAL MOMENT SYSTEMS

We consider the Kondo lattice Hamiltonian

H =
∑
p,σ

(εp − μ)c†
pσ cpσ + JK

∑
i

�si · �Si, (1)

an archetypal model to describe local moment physics in
which itinerant electrons interact with local spin moments
at each site of the lattice through a Kondo coupling. Here �s
denotes the conduction electron spin

sz = 1
2 (n↑ − n↓), s+ = c†

↑c↓, s− = c†
↓c↑, (2)

and �S denotes local moment spin. We consider the general
case of a spin-S local moment, and so the Hilbert space at
each site is 4(2S + 1) dimensional. For example, for the case
of a spin-1/2 local moment there are eight states per site:
|↓〉 , c†

↓ |↓〉 , c†
↑ |↓〉 , c†

↓c†
↑ |↓〉 , |↑〉 , c†

↓ |↑〉 , c†
↑ |↑〉 , c†

↓c†
↑ |↑〉.

In the absence of the Kondo coupling, when JK = 0,
the electrons and local moments are decoupled. For JK �= 0
however the interaction induces correlations in the system,
and our objective is to identify those which allow for a good
effective description of the resulting behavior. Heuristically,
we wish to identify the relevant degrees of freedom, and
organize the correlations about these. In practice, a quantum
degree of freedom is specified by the algebra it obeys and this
algebra provides the mathematical structure for organizing the
correlations induced by the interacting Hamiltonian.

Let us outline two distinct ways of characterizing
the local degree of freedom. First, the standard way is
to regard the electrons and spin moments independently.

Here the electrons are governed by the canonical anticom-
mutation relations {cσ , c†

σ ′ } = δσσ ′ , and the local spin mo-
ments are governed by the su(2) algebra [Sz, S±] = ±S±,
[S+, S−] = 2Sz. These provide reasonable degrees of freedom
for a regime of behavior where the electrons form a Fermi
liquid with a “small” Fermi surface and the spins are free to
order at low temperatures, as seen for example in CeRh2Si2

[41].
In this article we pursue a distinct description of the local

degree of freedom. This builds upon recent work arguing that
the graded Lie algebra su(2|2) is a valid degree of freedom for
organizing correlations in the purely electronic setting [36].
The su(2|2) algebra admits a family of 4(2S + 1)-dimensional
representations [42,43], which have a natural interpretation
as combining a local spin moment with the electron. Let us
consider fermionic operators written explicitly in terms of c
and S as follows:

q†
↓◦ = 1

2
c↑ + λ

2S + 1

(
1

2
c↑ − n↓c↑ + c↓S− + c↑Sz

)
,

q†
↑◦ = 1

2
c↓ + λ

2S + 1

(
1

2
c↓ − n↑c↓ + c↑S+ − c↓Sz

)
,

q†
↓• = 1

2
c†
↓ − λ

2S + 1

(
1

2
c†
↓ − n↑c†

↓ + c†
↑S− − c†

↓Sz

)
,

q†
↑• = −1

2
c†
↑ + λ

2S + 1

(
1

2
c†
↑ − n↓c†

↑ + c†
↓S+ + c†

↑Sz

)
.

(3)

These are related back to the canonical fermion operators
through

c†
↓ = q↑◦ + q†

↓•, c†
↑ = q↓◦ − q†

↑•, (4)

and so we refer to this as a splitting of the electron, as in the
electronic case.

Let us examine the algebra they generate. First, the anti-
commutation relations of the q are

{qσν, q†
σν} = 1 + λ2

4
+ λ

2S + 1
(νηz − σ�z ),

{q↓ν, q†
↑ν} = λ

2S + 1
�+, {qσ◦, q†

σ•} = λ

2S + 1
η+,

{q↑ν, q†
↓ν} = λ

2S + 1
�−, {qσ•, q†

σ◦} = λ

2S + 1
η−,

{qσν, qσ ′ν ′ } = {q†
σν, q†

σ ′ν ′ } = 1 − λ2

4
εσ ′σ ενν ′ ,

(5)

which generate the total spin operators

�� = �s + �S, (6)

combining the electronic and local moment spin, and the
electronic charge operators

ηz = 1
2 (n↑ + n↓ − 1), η+ = c†

↓c†
↑, η− = c↑c↓. (7)

In evaluating these anticommutators the Casimir identity �S ·
�S = S(S + 1) is used. The commutation relations between the
q and � are

[�z, q†
σν] = σ

2
q†

σν, [�z, qσν] = −σ

2
qσν,

[�+, q†
↓ν] = −q†

↑ν, [�+, q↑ν] = q↓ν, (8)

[�−, q†
↑ν] = −q†

↓ν, [�−, q↓ν] = q↑ν,
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and between the q and η are

[ηz, q†
σν] = ν

2
q†

σν, [ηz, qσν] = −ν

2
qσν,

[η+, q†
σ◦] = q†

σ•, [η+, qσ•] = −qσ◦, (9)

[η−, q†
σ•] = q†

σ◦, [η−, qσ◦] = −qσ•.

The � and η mutually commute, and each obeys an su(2)
algebra

[�z,�±] = ±�±, [�+,�−] = 2�z,

[ηz, η±] = ±η±, [η+, η−] = 2ηz. (10)

In this way the q generate the su(2|2) algebra whose algebraic
relations are Eqs. (5) and (8)–(10). Furthermore, the algebra
is extended to u(2|2) by incorporating the generator

θ = 1

2
− 1

2S + 1

(
�� · �� + 1

3
�η · �η

)
, (11)

which obeys

[θ, q†
σν] = 1 + λ2

4λ
q†

σν + 1 − λ2

4λ
εσσ ′ενν ′qσ ′ν ′ ,

(12)

[θ, qσν] = −1 + λ2

4λ
qσν − 1 − λ2

4λ
εσσ ′ενν ′q†

σ ′ν ′ ,

and commutes with the � and η.
The set of generators

8 × q, 3 × s, 3 × η, θ (13)

thus offer a second way to characterize the local degree of
freedom on the Kondo lattice. Our intention now is to regard
these as composite operators, and to employ the algebra they
obey to organize correlations so as to gain access to a strongly
correlated regime of behavior. Their algebra is noncanonical,
for example, the anticommutation relations of the q yield the
generators of the spin and charge su(2) subalgebras. This
obstructs the use of canonical methods for evaluating two-
point functions of the q. The noncanonical terms, however,
come with a prefactor λ

2S+1 , and we will employ a formalism
recently introduced by Shastry to organize the correlations
they induce. A powerful consequence of the splitting of the
electron, Eq. (4), is that once the two-point functions of the
q are obtained then the electronic Green’s function follows
immediately through linear combinations.

To proceed, it is necessary to reexpress the Kondo lattice
model through the generators (13). The kinetic term becomes
quadratic in q, through the linearity of Eq. (4). The Kondo
interaction �s · �S can be reexpressed as quadratic in � and
quartic in q, as both s and S give terms quadratic in q through
Eqs. (2) and (6). It is, however, also possible to reexpress
the Kondo interaction in a simpler way. For this we rewrite
Eq. (11) using the operator identities �s · �s = 3

4 (n↑ − n↓)2, �η ·
�η = 3

4 (n↑ + n↓ − 1)2, �s · �s + �η · �η = 3
4 , and �S · �S = S(S + 1)

to obtain

�s · �S = 1

3
�η · �η − 2S + 1

2
θ − 1 + 4S2

8
. (14)

This convenient expression reflects the power of recasting
the Kondo lattice model through su(2|2). It allows us to
cleanly identify the role of the Kondo coupling in splitting

the electronic band, due to linear action of θ on q from
Eq. (12).

III. ORGANIZING STRONG CORRELATIONS

We now exploit the su(2|2) algebra to gain access to a
strongly correlated regime of behavior. Let us emphasize that
we do not require the algebra su(2|2) to provide an explicit
symmetry of the model in any way; instead we use it to
organize correlations. Our ultimate objective is to compute the
electronic Green’s function

Gel
i jσ (τ ) = −〈ciσ (τ )c†

jσ (0)〉 = − 1

Z Tr(e−βHT [ciσ (τ )c†
jσ (0)]),

(15)

where Z = Tr e−βH , β is inverse temperature, a(τ ) =
eτHa e−τH , and T is the τ -ordering operator which is anti-
symmetric under interchange of fermionic operators.

This section closely mirrors Sec. III of Ref. [36] and
we adopt similar notations for the reader’s convenience. To
simplify, we collect the fermionic generators as

ψα
i = (q†

i↑◦ qi↓• q†
i↓◦ qi↑• qi↑◦ q†

i↓• qi↓◦ q†
i↑•),

(16)

with Greek indices, and the bosonic generators as

φa
i = (

�z
i �−

i �+
i ηz

i η−
i η+

i

)
, (17)

with Latin indices. The u(2|2) algebra is then compactly
expressed as{

ψα
i ,ψ

β
j

} = δi j
(

f αβ
I + f αβ

aφ
a
i

)
,

[
φa

i ,ψ
β
j

] = δi j f aβ
γ ψ

γ
i ,

[
φa

i ,φ
b
j

] = δi j f ab
cφ

c
i , (18)

[
θi,ψ

α
j

] = δi j f �α
βψ

β
i ,

[
θi,φ

a
j

] = 0,

where summation over repeated algebraic indices is implied.
Explicit expression for the structure constants f can be
read from Eqs. (5) and (8)–(10), and given explicitly in the
Appendix.

The Kondo lattice Hamiltonian can then be re-expressed in
terms of the split-electron degrees of freedom

H = −
∑
〈i, j〉

ti j,αβψα
i ψ

β
j +

∑
i

Vabφ
a
i φ

b
i +

∑
i

V�θi − μa

∑
i

φa
i .

(19)

Here 〈i, j〉 denotes the summation is over pairs of
sites, and the nonzero hopping parameters are ti j,51 =
ti j,61 = ti j,52 = ti j,62 = ti j,73 = −ti j,83 = −ti j,74 = ti j,84 = ti j

and their antisymmetric pairs ti j,αβ = −ti j,βα , where
ti j = − 1

V
∑

p eip(i− j)εp with V the total number of
lattice sites. The remaining nonzero parameters are
V44 = 2V56 = 2V65 = 1

3 JK , V� = − 2S+1
2 JK , and μ4 = 2μ.

We set ourselves the intermediate objective of computing
the matrix Green’s function of the q, that is

Gi j
α
β (τ, τ ′) = −〈

ψα
i (τ )ψ jβ (τ ′)

〉
, (20)

where ψiα = (ψα
i )† = ψ

β
i Kβα , which defines K given ex-

plicitly in the Appendix. The electronic Green’s function
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is immediately obtained from linear combinations of
these,

Gel
i j↓(τ ) = Gi j

1
1(τ ) + Gi j

1
2(τ ) + Gi j

2
1(τ ) + Gi j

2
2(τ ),

Gel
i j↑(τ ) = Gi j

3
3(τ ) − Gi j

3
4(τ ) − Gi j

4
3(τ ) + Gi j

4
4(τ ),

(21)

via Eqs. (4).
The challenge in computing G is the noncanonical nature

of the algebraic relations Eq. (18), which obstructs the use
of Wick’s theorem. To proceed we follow Shastry [37,38]
and employ the Schwinger formalism, introducing sources
for the bosonic generators φ into the imaginary-time thermal
expectation value as follows:

〈O(τ )〉 = Tr
(
e−βHT [e

∫ β

0 dτ ′S(τ ′ )O(τ )]
)

Tr(e−βHT [e
∫ β

0 dτ ′S(τ ′ )])
, (22)

with S (τ ) = ∑
i ζia(τ )φa

i (τ ). Then bosonic correlations can
be traded for functional derivatives through〈

φa
i (τ )O(τ ′)

〉 = ( 〈
φa

i (τ )
〉 + ∇a

i (τ )
)〈O(τ ′)〉, (23)

where ∇a
i (τ ) = δ

δζia(τ+ ) , and τ+ = τ + 0+ incorporates an in-
finitesimal regulator which ensures a consistent ordering when
τ = τ ′.

The matrix Green’s function obeys the equation of motion

∂τGi j
α
β (τ, τ ′) = −δ(τ − τ ′)

〈{
ψα

i (τ ),ψ jβ (τ )
}〉

+ 〈[
S (τ ),ψα

i (τ )
]
ψ jβ (τ ′)

〉
− 〈[

H,ψα
i (τ )

]
ψ jβ (τ ′)

〉
, (24)

together with the antiperiodic boundary condition
Gi j

α
β (β, τ ′) = −Gi j

α
β (0, τ ′). Evaluating the algebraic relations,

it takes the form

∑
k

[
δik

( − δα
γ ∂τ − f aα

γ ζia(τ ) − μa f aα
γ + V� f �α

γ − f aα
δVab f bδ

γ + 2 f aα
γVab

(〈
φb

i (τ )
〉 + ∇b

i (τ )
))

+ f αδ
I tik,δγ + f αδ

atik,δγ

(〈
φa

i (τ )
〉 + ∇a

i (τ )
)]
Gk j

γ

β (τ, τ ′)

= δ(τ − τ ′)δi j
(

f αγ
I + f αγ

a
〈
φa

i (τ )
〉)

Kγ β . (25)

The canonical way to proceed here is to invert G via the Schwinger-Dyson equation, but this is obstructed by the nontrivial
expectation value on the right-hand side. Here we bypass this difficulty by adopting Shastry’s trick of factorizing G in two:

Gi j
α
β (τ, τ ′) =

∑
l

∫ β

0
dτ ′′gil

α
γ (τ, τ ′′)�l j

γ

β (τ ′′, τ ′). (26)

Distributing the functional derivative in Eq. (25) across these factors, and bringing the terms with the functional derivative acting
on � to the right-hand side, a simplification can be made by exploiting the arbitrariness in the definition of � to set

�i j
α
β (τ, τ ′) = δ(τ − τ ′)δi j

(
f αγ

I + f αγ
a
〈
φa

i (τ )
〉)

Kγ β −
∑
k,l

∫ β

0
dτ ′′( f αε

atil,εδ + 2δil f bα
δVba

)
glk

δ
γ (τ, τ ′′)∇a

i (τ )�k j
γ

β (τ ′′, τ ′).

(27)
The equation of motion then reduces to

∑
k

[
δik

( − δα
γ ∂τ − f aα

γ ζia(τ ) − μa f aα
γ + V� f �α

γ − f aα
δVab f bδ

γ + 2 f aα
γVab

(〈
φb

l (τ )
〉 + ∇b

l (τ )
))

+ f αδ
I tik,δγ + f αδ

atik,δγ

(〈
φa

i (τ )
〉 + ∇a

i (τ )
)]

gk j
γ

β (τ, τ ′) = δ(τ − τ ′)δi j . (28)

We have thus converted Eq. (25) with one unknown G into two equations, (27) and (28), with two unknowns �, g. The advantage
is that Eq. (27) is a closed functional equation for �, while Eq. (28) has the form of a canonical equation of motion, and thus
can be inverted through the Scwhinger-Dyson equation in the standard way as follows:

g−1
i j

α
β (τ, τ ′) = g−1

0,i j
α
β (τ, τ ′) − �i j

α
β (τ, τ ′), (29)

where g0 is given exactly through[
δik

( − δα
γ ∂τ − f aα

γ ζia(τ ) − μa f aα
γ + V� f �α

γ

) + f αδ
I tik,δγ

]
g0,k j

γ

β (τ, τ ′) = δ(τ − τ ′)δi jδ
α
β , (30)

and � obeys the closed functional equation

�i j
α
β (τ, τ ′) = δ(τ − τ ′)δi j f aα

γVab f bγ
β − δ(τ − τ ′)

(
f αγ

ati j,γ β + 2δi j f bα
βVba

)〈
φa

i (τ )
〉

− δ(τ − τ ′)δi j

∑
l

(
f αε

atil,εδ + 2δil f bα
δVba

)
gli

δ
γ (τ, τ+) f aγ

β

−
∑
k,l

∫ β

0
dτ ′′( f αε

atil,εδ + 2δil f bα
δVba

)
glk

δ
γ (τ, τ ′′)∇a

i (τ )�k j
γ

β (τ ′′, τ ′). (31)
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In this way, we obtain an exact representation of G through
Eqs. (26), (27), (29)–(31) via an exact rewriting of the equa-
tion of motion for G. While at first sight these expressions
may appear complicated, conceptually they are quite simple.
Schematically the Green’s function of the q is cast in the form
G ∼ g� ∼ �

g−1
0 −�

, where g−1
0 is known exactly and both �

and � obey exact closed functional equations. The appearance
of a nontrivial numerator here is intuitively understood as
capturing the correlations resulting from the noncanonical
nature of the degree of freedom.

In general we cannot solve these equations exactly, i.e.,
we cannot gain complete control of all correlations in the
system. Instead we use them to organize the correlations: �

and � can be computed through a perturbative expansion in
λ

2S+1 and JK , under the principle that the leading contributions
capture the crucial correlations governing the behavior in the
regime governed by these noncanonical degrees of freedom.
In the following section we focus on the simplest nontrivial
approximation, which is to suppress the terms containing
functional derivatives in Eqs. (27) and (31). This is the static
approximation, the analog of Hartree-Fock for a canonical
degree of freedom, where both � and � are frequency inde-
pendent.

We conclude by highlighting a subtlety arising in the local
moment setting which is absent in the purely electronic case,
i.e., for S = 0. This concerns computing terms of the form
〈φ〉 and ∇ 〈φ〉. In the electronic case the φ are quadratic in ψ,
and so 〈φ〉 is directly obtained from G. For S �= 0, however,
it is not quite this simple. The spin generators are �� = �s + �S,
and while �s is quadratic in q, it is necessary to understand
how to handle the contributions of the form 〈S〉 and ∇ 〈S〉.
In the following we focus on the normal state within an
approximation for which this subtlety does not affect the
analysis.

IV. STATIC APPROXIMATION

We proceed to study the static approximation to the
Green’s function resulting from an organization of the corre-
lations around the split-electron su(2|2) degrees of freedom.
This amounts to neglecting the functional derivative terms in
Eqs. (27) and (31), which are suppressed in λ

2S+1 and JK . We
focus on the normal state, and so the only possible nonzero
〈φi(τ )〉 is 〈ηz

i (τ )〉 = ϕα
βGii

β
α (τ, τ+), with ϕ given explicitly in

the Appendix.
We thus set the sources to zero and switch to Fourier space

according to

Gpσ (iωn) = 1

V
∑
i, j

∫ β

0
dτ eiωnτ−ip(i− j)Gi jσ (τ ), (32)

with Matsubara frequencies ωn = (2n + 1)π
β

, n ∈ Z, and V is
the total number of lattice sites. Then Eqs. (26), (27), (29)–
(31) take the closed form

Gp
α
β (iωn) = gp

α
γ (iωn)�p

γ

β ,

�p
α
β = (

f αγ
I + f αγ

a 〈φa〉 )
Kγ β,

g−1
p

α
β (iωn) = g−1

0,p
α
β (iωn) − �p

α
β,

g−1
0,p

α
β (iωn) = iωnδ

α
β − μa f aα

β + V� f �α
β + f αδ

I tp,δβ ,

�p
α
β = f aα

γVab f bγ
β − (

f αγ
atp,γ β + 2 f bα

βVba
) 〈φa〉

− 1

V
∑

q

(
f αε

atq,εδ + 2 f bα
δVba

)
ḡq

δ
γ f aγ

β, (33)

where here the nontrivial 〈φa〉 is given by 〈ηz〉 =
1

βV
∑

q,m eiωm0+
ϕα

βGq
β
α (iωm) and ḡq

α
β = 1

β

∑
m eiωm0+

gq
α
β (iωm).

The corresponding approximate electronic Green’s function
follows through Eq. (21).

To illustrate the formalism we consider the Kondo lat-
tice model on a two-dimensional square lattice with nearest-
neighbor hopping. We solve Eqs. (33) self-consistently,
and focus on JK = 0.3, S = 1/2, and zero temperature. In
Fig. 1(a) we plot the electronic spectral function Ael

pσ =
− 1

π
Im Gel

pσ (ω + i0+), which reveals the formation of heavy
bands with large effective masses in the vicinity of half-filling.
Unlike large-N theories, the hybridization does not follow
the chemical potential as one moves away from half-filling,
though this may be a limitation of the static approximation.
Our band structure also does not display any noteworthy
temperature dependence. Figure 1(b) displays both the direct
�d and the indirect �ind gaps as a function of JK for μ = 0.
Similar to large-N calculations [4], we find the two gaps
are related as �ind = �2

d/W , where W is the bandwidth.
Generically we find that the enlargement of the Fermi surface
violates Luttinger’s sum rule and this is illustrated in Fig. 1(c).
While for low electron density nc the Fermi surface volume
closely obeys VFS ∝ nc, as half-filling is approached the vol-
ume grows rapidly to VFS ∝ nc + 1.

These results are independent of the value of λ chosen,
which reflects an independence of the model parameters of
Eq. (19) on λ. Specifically, this owes to a subtle cancellation
between the λ dependence of � and � with the λ dependence
of the uncorrelated g−1

0 through the structure constants f �α
β

and f αβ
I . Thus it seems reasonable to adopt arbitrarily small

λ, supporting the noncanonical formalism we employ. It will
be interesting to examine this in more detail when going
beyond the static approximation. We anticipate that nontrivial
λ dependence will arise if the kinetic term of the Hamiltonian
takes a correlated hopping form [36].

V. SUMMARY AND DISCUSSION

In this article we have adapted a recently developed frame-
work for characterizing strong correlations to the Kondo
lattice. We have shown how the local degree of freedom can
be recast through the generators of the Lie algebra su(2|2) for
general representations Eq. (3), corresponding to a splitting
of the electron Eq. (4), and we have related the Kondo inter-
action to the local emergent generator θ, Eq. (14). To handle
the noncanonical nature of the algebra we utilized Shastry’s
Green’s function factorization technique, which leads to an
exact representation of the q Green’s function, with correla-
tions encoded through two functional equations (27) and (31),
which provides systematic access to the electronic Green’s
function through Eq. (21).

To examine the behavior governed by these degrees of
freedom we have focused on the “static” approximation. This
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FIG. 1. Results from the static approximation within the split-electron formalism for a square lattice and S = 1/2: (a) intensity plot of the
electronic spectral function for JK/t = 0.3 and μ = 0 (with Lorentzian broadening) showing the formation of heavy bands around half-filling.
(b) The direct and indirect gaps as a function of JK , which are related by �ind = �2

d/W as in the large-N mean-field approximation [4].
(c) Violation of Luttinger’s sum rule. In contrast to standard theories where the Fermi surface volume is either VFS ∝ nc or VFS ∝ nc + nf , we
find nc � 2 VFS

VBZ
� nc + 1, where VBZ is the volume of the Brillouin zone.

is a first order approximation, the analog of Hartree-Fock for
a canonical degree of freedom, in which the quasiparticles
are sharply defined as shown in Fig. 1(a). As a function
of parameters, it is possible to have a Kondo insulator at
half filling or a heavy Fermi liquid with large Fermi surface
and heavy quasiparticles away from half-filling. We thus
see that this captures the basic phenomenology of heavy
fermions.

In contrast with prominent theories of heavy fermion for-
mation, our analysis does not invoke a “delocalization” of
the local moment spin. We find this an attractive aspect of
our formalism, as the effective Kondo lattice setting has the
charge of the local moment frozen out to begin with. Instead
the moment’s spin is entwined with the conduction electrons
into the qσν as in Eq. (3). The Kondo splitting of the electronic
band arises from a hybridization between the two flavors
qσ◦ and qσ•. The enlargement of the Fermi surface emerges
naturally, and can be attributed to violation of Luttinger’s sum
rule due to the noncanonical nature of the degrees of freedom.

Indeed, violation of the Luttinger sum rule is another
attractive feature of our formalism, unambiguously distin-
guishing it from existing theoretical approaches. It accounts
for recent ARPES studies which find that the enlargement of
the Fermi surface in CeCoIn5 [13], CeIrIn5 [14], and CeRhIn5

[15] is significantly smaller than the volume VFS ∝ nc + n f

corresponding to delocalized spin moments. Within the large-
N framework, a possible explanation would be that some
of the f electrons remain localized in a spin liquid. There
is, however, no direct evidence for such behavior in these
compounds. For instance, a putative U (1) spin liquid would
lead to a spinon continuum in neutron scattering experiments,
and this has not been observed. In contrast, the split-electron
degrees of freedom form a sharp Fermi surface and therefore
recover Fermi liquid phenomenology including ρ ∼ T 2 resis-
tivity at low temperatures.

There are many directions for future research. Of par-
ticular importance is going beyond the static approximation
considered here. For the single impurity case, we do not
expect to capture Kondo resonance formation within the static
approximation, in line with the conventional perspective [44].
This motivates the development of improved approximative
schemes along the lines of T -matrix or RPA methods. In-
deed, it is remarkable that the static approximation captures

the hybridization gap. Recent ARPES experiments [13,45]
show that the temperature at which the hybridization gap
starts to open can be much higher than the Kondo coherence
temperature, and we anticipate that improved approximations
can recover the Kondo resonance and shed light on this
dichotomy.

Another direction is to address magnetism. Within the
large-N framework this is a significant challenge, and attempts
in this direction have been to extend the theory to supersym-
metic versions [46–50]. On the other hand, although there
are subtleties to be addressed within our formalism regarding
magnetism, we do not expect an inherent bottleneck. It would
be interesting to examine magnetism in an underscreened
Kondo model, where S > 1/2, for instance, in the context of
uranium based ferromagnets [51–53].

We conclude with a general comment, mirroring a similar
analysis in the purely electronic setting [36]. We have identi-
fied two distinct ways to characterize the local degree of free-
dom on the Kondo lattice, either in the traditional way through
the canonical fermion and local spin algebras or through
the su(2|2) algebra as developed here. Neither provides an
exact solution of the model away from JK = 0. Instead they
offer two distinct quasiparticle frameworks for organizing the
correlations induced by interactions. It would be interesting to
explore to what extent the competition between the two sets
of degrees of freedom is responsible for the non-Fermi liquid
behavior associated with Kondo destruction.
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APPENDIX: COMPACT NOTATIONS

The structure constants for the representation of the u(2|2)
algebra in Eq. (18) are conveniently expressed through tensor
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products of Pauli matrices σ0 = (1 0
0 1), σ1 = (0 1

1 0), σ2 =
(0 −i

i 0 ), and σ3 = (1 0
0 −1). First, f αβ

I and f �α
β depend on

λ as follows:

f αβ
I = 1 + λ2

4
σ1 ⊗ σ0 ⊗ σ0 + 1 − λ2

4
σ1 ⊗ σ3 ⊗ σ1,

f �α
β = 1 ± λ2

4λ
σ3 ⊗ σ0 ⊗ σ3 + 1 ± λ2

4iλ
σ3 ⊗ σ3 ⊗ σ2.

(A1)

The structure constants f αβ
a are proportional to λ

2S+1 as
follows:

f αβ
1 = − λ

2S + 1
σ1 ⊗ σ3 ⊗ σ3,

f αβ
2 = λ

2S + 1

σ1 ⊗ σ1 + σ2 ⊗ σ2

2
⊗ σ0,

f αβ
3 = λ

2S + 1

σ1 ⊗ σ1 − σ2 ⊗ σ2

2
⊗ σ0,

f αβ
4 = − λ

2S + 1
σ1 ⊗ σ0 ⊗ σ3,

f αβ
5 = λ

2S + 1

σ0 + σ3

2
⊗ σ1 ⊗ σ1,

f αβ
6 = λ

2S + 1

σ0 − σ3

2
⊗ σ1 ⊗ σ1. (A2)

The structure constants f aα
β are independent of λ as follows:

f 1α
β = 1

2
σ3 ⊗ σ3 ⊗ σ0,

f 2α
β = −σ3 ⊗ σ1 + iσ0 ⊗ σ2

2
⊗ σ3,

f 3α
β = −σ3 ⊗ σ1 − iσ0 ⊗ σ2

2
⊗ σ3,

f 4α
β = −1

2
σ3 ⊗ σ0 ⊗ σ0,

f 5α
β = −σ2 + iσ1

2
⊗ σ1 ⊗ σ2,

f 6α
β = −σ2 − iσ1

2
⊗ σ1 ⊗ σ2. (A3)

Also Kα
β = σ1 ⊗ σ0 ⊗ σ0 and ϕα

β = σ3⊗σ3−σ0⊗σ0
4 ⊗ σ1 +

σ3⊗σ0−σ0⊗σ3
4 ⊗ σ0.
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