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Orthogonality catastrophe in Coulomb systems
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The orthogonality catastrophe (OC) problem is considered solved for 50 years. It has important consequences
for numerous dynamic phenomena in fermionic systems, including Kondo effect, x-ray spectroscopy, and
quantum diffusion of impurities, and is often used in the context of metals. However, the key assumptions on
which the known solution is based—impurity potentials with finite cross section and noninteracting fermions—
are both highly inaccurate for problems involving charged particles in metals. As far as we know, the OC problem
for the “all Coulomb” case has never been addressed systematically, leaving it unsolved for the most relevant
practical applications. In this paper we include effects of dynamic screening in a consistent way and demonstrate
that for short-range impurity potentials the noninteracting Fermi-sea approximation radically overestimates the
power-law decay exponent of the overlap integral. We also find that the dynamically screened Coulomb potential
leads to a larger exponent than the often used static Yukawa potential. Finally, by employing the diagrammatic
Monte Carlo technique, we quantify effects of a finite impurity mass and reveal how OC physics leads to small,
but finite, impurity residues.

DOI: 10.1103/PhysRevB.99.245122

I. INTRODUCTION

A prototypical process leading to the Anderson orthogo-
nality catastrophe (OC) problem is a sudden (at time t = 0)
excitation of a core electron in an atom, as in x-ray absorption
(XAS; see, for instance, Ref. [1]), leaving a hole in a deep
core level. In the so-called hard-x-ray limit the electron leaves
the sample—this case is very convenient for studying the OC
problem [2]. The localized (i.e., of infinite mass M) core hole
acts in the same way as a heavy impurity in Anderson’s formu-
lation: its potential polarizes the surrounding vacuum by cre-
ating electron-hole pairs around the Fermi level. The decay of
the overlap integral modulus squared, I (t ) = |〈�(0)|�(t )〉|2,
between the initial system’s state and the state at time t > 0, is
directly related to singular properties of the x-ray spectra near
the threshold [2–6].

In the standard approach to the OC problem [4–6] the
impurity potential, VS , is assumed to have a finite scattering
cross section. (In what follows we will keep using the notion
of “impurity” regardless of its physical origin.) Indeed, the
exponent controlling the power-law decay of I (t ) is given
by γ = 2

∑
l (2l + 1)(δl/π )2, where δl is the scattering phase

shift in the orbital channel � at the Fermi energy. It is finite if,
and only if, the scattering cross section is finite. The other sim-
plifying assumption is that particles and holes near the Fermi
level are noninteracting; it is justified by the quasiparticle
picture of the Fermi-liquid state emerging at low temperature.

Scattering of electrons and holes off the impurity po-
tential VS can be visualized in terms of Feynman diagrams
(see Fig. 1). For the localized impurity, any diagram can
be decomposed into the product of independent one-loop
contributions because for all intermediate states G0(τ ) =
exp (−E0τ ), where E0 is the bare impurity “energy” [E0

absorbs the Hartree term, not shown in Fig. 1(a), and in what

follows we set E0 to zero]. (Note that this decomposition
is no longer valid for impurity with finite mass M because
the bare Green’s functions in intermediates states depend on
the momentum transfer to the bath.) One-loop diagrams are
based on the Taylor series expansion in powers of VS , and
account for an arbitrary number of intermediate scattering
events on the time interval (τ1, τ2) for both the electron and
the hole [see Fig. 1(a)]. It is convenient to represent one-loop
contributions with an equivalent bosonic propagator �(q, τ ).
Summation over independent one-loop contributions to the
impurity Green’s function [see Fig. 1(b)] immediately leads
to the exponential form (see Ref. [6])

G(τ ) = exp

{
−

∫ τ

0

∫ τ2

0
dτ1dτ2 �(τ2 − τ1)

}
, (1)

�(τ2 − τ1) =
∫

dq
(2π )3

�(q, τ2 − τ1). (2)

In the long-time limit τ � 1/εF , where εF is the Fermi
energy, an exact solution for the � function in the standard
approach [6] features a power-law decay, �(τ ) → −γ τ−2.
This result immediately implies that if we express the impurity
Green’s function at long times in terms of impurity energy, E ,
and Z factor as

G(τ ) = Z (τ )e−Eτ , (τ → ∞) (3)

then Z (τ ) = I (τ ) ∝ τ−γ .
Assumptions on which the standard approach is based are

well suited for experimental setups with weakly interacting
ultracold fermions [7,8]. However, they are invalid for XAS
(as well as for resonant inelastic/soft-x-ray spectroscopy
[9–11]) in metals or, more generally, for any problem involv-
ing charged Fermi liquids and impurities. To begin with, for
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FIG. 1. (a) One-loop diagrammatic contributions to the impu-
rity self-energy �(q, τ2 − τ1) in the imaginary time representation.
The summation/integration over all possible intermediate scattering
events on the time interval (τ1, τ2 ) is assumed. VS is the impurity
potential with finite scattering cross section, and ge,σ is the Green’s
function of electrons with spin σ in the Fermi sea. (b) The impurity
Green’s function, G(τ ), is obtained by expanding in the number of
one-loop contributions and integrating over their parameters. G0(τ )
is the bare impurity Green’s function.

charged impurities the Coulomb potential, VC (q) = 4πe2/q2,
has an infinite cross section, and if one were to formally
replace VS with VC in Fig. 1 the � function would feature
a divergent integral over momentum transfer—this would
literally constitute an orthogonality “disaster” invalidating the
solution in terms of the Fermi-surface phase shifts [4–6].
Thus, one cannot avoid considering electrons in the Fermi sea
as interacting via the Coulomb potential because otherwise
the impurity potential cannot be screened. Finally, even for
short-range impurity potentials effects of dynamic screening
in metals remain nonperturbative (high-order bubble-type di-
agrams diverge, and the entire geometrical series needs to
be summed up), and any treatment ignoring them is highly
inaccurate.

As we illustrate in Fig. 2, replacing the Coulomb potential
with the static screened potential, VY (q) = VC (q)/ε(q, ω =
0), where ε is the dielectric function, or a simpler Yukawa

q
CV

CV
a

b

q
YV YV

Y CV q V q d q

FIG. 2. (a) Diagrams leading to dynamic screening of the
Coulomb potential. For perturbative values of rs they provide the
dominant contribution to the � function. (b) Substituting Coulomb
potential with the static screened potential, VY , leads to inconsistent
treatment and multiple counting of bubble insertions.

form, VY (q) = 4πe2/(q2 + κ2), where κ is the Thomas-Fermi
momentum (see, for instance, [4,12]), is mathematically in-
consistent and leads to multiple counting of bubble insertions.
Indeed, static properties may not appear in the dynamic for-
mulation of the problem where the system is allowed to evolve
only for a finite amount of time. Moreover, the � function
in Fig. 2(a) is based on a single geometric series; an attempt
to replace it with the diagram shown in Fig. 2(b) introduces
two geometric series of identically the same nature connected
by an element on which these series are built. Therefore, to
properly account for dynamic screening effects one has to deal
with the � function

�(q, ω) = VC (q)[ε−1(q, ω) − 1], (4)

based on the dynamic dielectric response ε.
It is clear that dynamic screening will remove the spuri-

ous divergence of the momentum integral in �. Since OC
originates from response of gapless particle-hole excitations
near the Fermi surface, and these are present in the metallic
Fermi-liquid state, it is also expected that the power-law OC
scenario does take place [4,12]). However, to what extent
the collective plasmon excitations, also existing in Coulomb
systems, modify the OC exponent is far from obvious.

In this paper, we first consider the response of plasmon
modes alone, and show that within the plasmon-pole approx-
imation (PPA) to ε (for original formulation see, for instance,
Refs. [13–15]) the OC is eliminated and the impurity Z factor
saturates to a constant in the limit of τ → ∞. Next, we
address the OC problem within the random-phase approxima-
tion (RPA) [see Fig. 2(a)], which becomes exact in the limit
of small Coulomb parameter rs and, correspondingly, takes
into account both gapped and gapless Fermi-liquid modes. In
RPA, the OC in its canonical power-law form is restored, but
screening effects dramatically alter the value of the exponent
γ . Even for short-range impurity potentials, the noninteracting
Fermi-sea approximation fails to produce reasonable results
for metals. By comparing the power-law decay obtained for
the dynamically screened Coulomb potential with that for
the often used, but formally inconsistent, scheme combining
the static Yukawa impurity potential with the noninteracting
Fermi-sea approximation, we find that the latter is charac-
terized by a smaller exponent. Finally, we employ the dia-
grammatic Monte Carlo (DiagMC) technique for polarons,
introduced earlier in Refs. [16,17], to compute the Green’s
function of mobile impurities (i.e., with finite mass) and reveal
how the OC is truncated by recoil effects.

II. FORMALISM

To calculate the impurity Green’s function, G(τ ), and
obtain its Z factor in the limit of infinite mass M, we use
expressions (1)–(4), which provide an exact solution to the
problem in the limit of small rs. For the � function, Eq. (4),
unless stated differently, we either use the PPA or the RPA ex-
pressions, derived for the jellium model. Since the � function
is based on the geometric series, it can be obtained numeri-
cally very efficiently with the use of fast Fourier transforms.

For finite M we employ the DiagMC technique for po-
larons in the Matsubara momentum–imaginary time repre-
sentation. This technique allows one to obtain the impurity
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Green’s function by unbiased sampling of the configuration
space of Feynman’s diagrams illustrated in Fig. 1(b) (for
details see Refs. [16,17]). More specifically, for bare impurity
and free-electron Green’s functions we consider

G0(p, τ ) = e−τ p2/2M (5)

and

ge,σ (p, τ > 0) = −(1 − np)e−τ (p2/2m−μ), (6)

respectively, where np is the Fermi distribution function with
the chemical potential μ and electron mass m. The only
difference with the standard electron-phonon polaron problem
is that now the role of the phonon propagator is played by the
� function. For jellium, the electron density and rs parameters
are defined by standard expressions, n = k3

F /3π2 and rs =
(9π/4)1/3me2/kF . In this paper we use units such that the
chemical potential (Fermi energy) and Fermi momentum are
set to unity μ = εF = 1, kF = 1 (i.e., m = 1/2).

III. PLASMON EFFECT

Screening of the Coulomb potential leads to collective
plasmon excitations at small momenta and, correspondingly,
the bosonic propagator � features a plasmon pole. Before
proceeding with the rigorous calculation for the full dielectric
function, we consider first the so-called plasmon-pole approx-
imation for ε that neglects gapless particle-hole excitations.
The idea behind PPA is to write a simple functional form that
satisfies exactly two limiting cases.

(1) At ω = 0 the static screened interaction at small mo-
menta should have the Yukawa form, or

ε−1 − 1 = − κ2

q2 + κ2
, (ω = 0) , (7)

with κ2 = 6πne2/εF .
(2) At q → 0 and small, but finite, frequency ω �

qkF /m the dielectric function features a zero at the plasmon
frequency

ε−1 − 1 = ω2
p

ω2 − ω2
p

, (q = 0) , (8)

with ω2
p = 4πne2/m.

These considerations lead to the following simplified PPA
expression:

�(q, ω) = 4πe2

q2

ω2
p

ω2 − ω2
p(1 + q2/κ2)

. (9)

In the imaginary time representation it reads

�(q, τ ) = − 2πe2ωp

q2
√

1 + q2/κ2
e−ωp

√
1+q2/κ2 τ . (10)

By substituting (10) into Eqs. (1) and (2) we find that the
impurity energy

E =
∫ ∞

0
dτ

∫
d3q

(2π )3
�(q, τ ) (11)

and the Z factor are given by

E = −e2κ/2, Z = e−e2κ/πωp . (12)

G
eE

FIG. 3. Impurity Green’s function G (with the exponential de-
pendence subtracted for clarity) in the plasmon-pole (dashed red line)
and random phase (solid blue line) approximations for the dielectric
function ε. Results are shown for rs = 1 and M → ∞.

The complete dependence on τ at rs = 1 is presented in Fig. 3
by the dashed line.

As one can see from Fig. 3, in contrast with the result based
on the RPA approximation to ε, accounting for both gapped
and gapless modes in the metal, the plasmon-pole approxima-
tion eliminates the OC. This happens because for all momenta
the decay of the � function is exponential and controlled by
the spectrum with the energy gap ωp. For the OC to take place,
one needs excitations with linear density of states in the limit
of vanishing excitation energy; these excitations are neglected
within the PPA treatment. Nevertheless, the PPA provides a
reasonable description of G(τ ) at short times.

IV. SCREENING EFFECT

Even for short-range impurity potentials, VS , one may
wonder to what degree the OC is modified by screening
effects in the metallic system. To this end, we compare the
OC for two versions of the � function—with and without
screening—when the impurity potential can be treated per-
turbatively. Without screening, the � function is based on
the first diagram in Fig. 1(a). To account for screening, we
consider the entire series shown in Fig. 2(a) where we replace
the first and the last potentials (at τ1 and τ2) with VS . For this
comparison, we take VS = 4πe2/(q2 + κ2); the exact form of
the short-range potential VS is of little relevance here.

The result of calculations based on Eqs. (1) and (2) is
presented in Fig. 4. To reveal the OC more clearly, we add the
Eτ dependence to ln(G), which is the dominant contribution
to the exponent at long times [see Eq. (11)]. The plot for
ln(G) + Eτ without screening reproduces the standard power-
law answer for OC (note the logarithmic scale for τ in Fig. 4).
When screening effects are accounted for, the power-law
decay at long time scales has an exponent that is strongly
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ln
(G
)+
E

No screening
With screening

FIG. 4. ln(G) (with the exponential dependence subtracted for
clarity from both curves) for two scenarios, with (blue solid line) and
without (red dashed line) screening (see text). Results are shown for
rs = 1 and M → ∞.

reduced (by more than a factor of 3 for rs = 1) relative to the
noninteracting Fermi-sea result. This clearly invalidates the
perception that residual interactions between quasiparticles in
the metallic Fermi-liquid regime can be neglected.

V. ORTHOGONALITY CATASTROPHE FOR CHARGED
IMPURITIES IN METALS AND THE FINITE MASS EFFECT

Consider now the most interesting case when all potentials
entering the � function are of the Coulomb type, as in
Fig. 2(a). For finite M we can no longer rely on Eqs. (1) and
(2) and need to employ the DiagMC technique instead. At the
formal level, the entire setup is identical to that for Frohlich
polarons [see Fig. 2(b) and Refs. [16,17]], with the proper
replacement of the phonon propagator with the � function.

In Fig. 5 we show ln(G) + Eτ as a function of τ for
different impurity masses. For localized impurity, as expected,
we observe that Z (τ ) decays to zero according to the power
law, ∝ τ−γ . Screening eliminates the q → 0 divergence and
ensures that the integral over momentum transfer in Eq. (2)
is finite for finite τ . However, the dielectric function retains
the contribution from gapless electron-hole excitations near
the Fermi surface, and these modes ultimately result in the
standard power-law OC scenario for the overlap integral. By
comparing Figs. 4 and 5 one can see that the power-law
decay exponent γ in the case of the dynamically screened
Coulomb potential is significantly larger than that for the
Yukawa potential in the noninteracting Fermi gas.

For finite M, the overlap integral is expected to saturate to
a constant because the logarithmic divergence of the double
integral over time in Eq. (1) is truncated at the inverse im-
purity recoil energy. As the impurity mass is getting lighter,
the domain of the power-law decay in Z (τ ) shrinks and
ultimately reaches short time scales ∼ ε−1

F , eliminating all

ln
(G
)+
E

FIG. 5. ln(G) + Eτ for localized (red circles) and mobile (M =
100, blue diamonds; M = 10, green triangles; M = 1, black crosses)
impurities. Error bars are smaller than symbol sizes. M → ∞ data
were benchmarked against the prediction of Eqs. (1)–(4) shown by
the red dashed line. The Coulomb parameter was set to rs = 1.

signatures of the Fermi-edge singularity. This behavior has
been demonstrated for the case of short-range potentials in
three dimensions (see, for instance, Refs. [18,19]). In Fig. 5
we show how this physics plays out for the dynamically
screened Coulomb potential.

VI. CONCLUSIONS

We addressed the fundamental problem of the orthogonal-
ity catastrophe in Coulomb systems. For short-range poten-
tials in noninteracting Fermi gases it was solved half a century
ago, but the key assumptions of the standard theory (impurity
potential with finite cross section and noninteracting fermions
[2–6,12]) do not apply to problems involving charged particles
in metals.

We systematically investigated the OC for dynamically
screened Coulomb interactions and quantified effects of
gapped plasmon excitations, dynamic screening, and finite
impurity mass. While the OC retains its universal power-law
decay character thanks to the gapless particle-hole excitations
across the Fermi surface, the exponent γ is sensitive to
screening effects and is subject to the nonperturbative renor-
malization in metals. For the dynamically screened Coulomb
potential, we found that γ is larger than the prediction of
the phenomenological treatment based on the static Yukawa
potential in the noninteracting Fermi gas. For short-range
potentials, screening effects dramatically decrease the value
of γ . We also found that recoil effects for finite impurity mass
eliminate the OC for light particles, and convert it to small,
but finite, impurity Z factors for heavy particles.

The semianalytical approach based on Eqs. (1)–(4) allows
one to study the OC phenomenon for a variety of localized im-
purity problems. For mobile impurity, one has to employ the
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diagrammatic Monte Carlo technique, and the most promising
general algorithm for fermionic environments would be the
determinant approach. However, for small values of rs the
problem is reduced to the standard “Bose-polaron” formula-
tion where particle-hole excitations in the Fermi liquid play
the role of an effective bosonic medium. Future work should
address finite-temperature properties of such polarons.
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