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Topological phases of Hermitian systems are known to exhibit intriguing properties such as the presence of
robust boundary states and the famed bulk-boundary correspondence. These features can change drastically for
their non-Hermitian generalizations, as exemplified by a general breakdown of bulk-boundary correspondence
and a localization of all states at the boundary, termed the non-Hermitian skin effect. In this paper, we present
a completely analytical unifying framework for studying these systems using generalized transfer matrices, a
real-space approach suitable for systems with periodic as well as open boundary conditions. We show that
various qualitative properties of these systems can be easily deduced from the transfer matrix. For instance,
the connection between the breakdown of the conventional bulk-boundary correspondence and the existence
of a non-Hermitian skin effect, previously observed numerically, is traced back to the transfer matrix having
a determinant not equal to unity. The vanishing of this determinant signals real-space exceptional points,
whose order scales with the system size. We also derive previously proposed topological invariants such as the
biorthogonal polarization and the Chern number computed on a complexified Brillouin zone. Finally, we define
an invariant for and thereby clarify the meaning of topologically protected boundary modes for non-Hermitian
systems.
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I. INTRODUCTION

A fundamental tenant of quantum mechanics is the reality
of the spectra of operators that describe observables, which is
typically achieved by demanding these operators to be Her-
mitian. Abandoning Hermiticity, however, has proved useful
in constructing effective descriptions of dissipative systems
[1,2], where non-Hermitian operators encode the interactions
with the environment, so that the imaginary part of their
spectra can be assigned physical meaning. For instance, the
imaginary part of the “energy” can be interpreted as the
inverse lifetime of a (quasi)particle [3,4].

The study of non-Hermitian systems has primarily been
driven by experiments in photonics [5–19], where non-
Hermiticity can be realized by judiciously incorporating gain
and loss [20–22]. These setups thus provide concrete realiza-
tions of non-Hermitian lattice models, such as a photonic ana-
log of the Su-Schrieffer-Heeger model with topologically pro-
tected mid-gap states [16–18]. Furthermore, non-Hermitian
photonic systems can be engineered to operate at “exceptional
points” at which they exhibit intriguing phenomena such
as unidirectional transmission [6,7], one-sided invisibility
[8,9], single-mode lasing [10,11], and enhanced sensitivity to
perturbations [12,13]. Similar realizations of non-Hermitian
models are also possible in other experimental setups, such
as mechanical [23], acoustic [24,25], electronic [26], and
ultracold atomic [27] systems.
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Theoretically, non-Hermitian Hamiltonians have been used
to describe condensed matter systems such as Majorana
fermions in topological superconductors [28,29], finite life-
time quasiparticles in heavy-fermion systems [30,31], and
bosonic superconductors [32], as well as to simulate the out-
of-equilibrium systems described by a Lindblad master equa-
tion [33,34]. In addition, certain symmetries of non-Hermitian
Hamiltonians, such as a parity-time (PT) symmetry [35–37]
or a more general pseudo-Hermiticity [38], ensure the reality
of its spectrum. These Hamiltonians have garnered significant
interest in mathematical physics as an analytic continuation
of quantum mechanics to the complex plane [39]. Recently, a
new direction of research has been established by investigat-
ing these systems from the perspective of topological phases
[40–59].

Noninteracting topological phases of matter have been of
much theoretical [60–66] and experimental [67–69] interest
over the last decade. Lacking a local order parameter, these
phases are characterized by features that stay unchanged
under continuous deformations, such as a quantized bulk
topological invariant and the appearance of robust states on
their boundaries. A particularly profound result is the bulk-
boundary correspondence, which establishes a direct link be-
tween the bulk invariants and the presence of robust boundary
modes. Mathematically, this correspondence can be thought
of as a relation between the continuous spectrum and the point
spectrum of the system with open boundary conditions.

Non-Hermitian analogs of topological phases often exhibit
drastically different physics from their Hermitian counter-
parts. An example is the existence of the aforementioned ex-
ceptional points (EPs) or more general exceptional structures
[47–49], where a spectral degeneracy is accompanied by a
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coalescence of the corresponding eigenstates [70,71]. Another
remarkable feature is the possibility of a marked difference
between the spectra of systems for periodic and open bound-
ary conditions (hereafter PBC and OBC, respectively), in stark
contrast to the Hermitian systems. This is accompanied by
a piling up of “bulk” states at the boundaries for a finite
system, a phenomenon termed the non-Hermitian skin effect
[45,46,50]. For gapped systems with robust boundary modes,
this difference in spectra as well as nature of states for
PBC and OBC signify a breakdown of the bulk-boundary
correspondence.

The problem of restoring the bulk-boundary correspon-
dence by defining a bulk invariant that can predict the exis-
tence of topologically protected boundary modes is rather sub-
tle [51,52]. Various topological invariants have been defined
using a generalization of the conventional Berry connection
by replacing the standard inner product with a biorthogonal
one [52–56], but they often fail to predict the existence of
robust boundary modes [50,56–58]. This failure can be traced
back to the computation of the topological invariant using
the continuous spectrum for a periodic system as opposed
to that for a system with open boundaries, a distinction that
does not exist for Hermitian systems. Indeed, bulk invariants
computed taking this into account for certain specific models
[50,57,72] have been shown to correctly predict the existence
of the topological boundary modes. A correct understanding
of the bulk-boundary correspondence for non-Hermitian sys-
tems thus necessitates an understanding of the eigenstates of
a finite system with OBC.

In this paper, we present just such an approach by con-
structing generalized transfer matrices [73–76] for quasi-one-
dimensional non-Hermitian tight-binding models. We show
that various qualitative features of these models can be read-
ily gleaned off from the determinant of the transfer matrix
without any numerical exact diagonalizations. For a given
tight-binding model, we can thus directly answer questions
such as:

(i) Is there a difference between the PBC and OBC spec-
tra? If yes, is it always accompanied by the non-Hermitian
skin effect?

(ii) Where do the EPs occur in a finite system? Are they at
the same parameter values as those in a periodic system?

(iii) How does one define a bulk topological invariant that
predicts the existence of robust boundary modes?

The transfer-matrix approach also facilitates analytic com-
putation of the full spectrum and wave functions for arbitrary
finite non-Hermitian systems with OBC, quantities which so
far have only been accessible by numerical computations. The
implementation of the symmetries of the tight-binding model
on the transfer matrix provides a new lens to view systems
with additional symmetry, which can be used to explain sim-
ilarities between, for instance, Hermitian and PT-symmetric
systems.

More concretely, for the transfer matrix T , we show that
a necessary and sufficient condition for the equality of the
bulk spectra for PBC and OBC is | det T | = 1. We prove that
this condition is always satisfied for Hermitian Hamiltonians
as well as PT-symmetric Hamiltonians in the PT-unbroken
phase, thereby explaining the observed qualitative similarities
in their behavior. The “bulk” states for OBC are shown to vary

FIG. 1. Schematic depiction on the complex ε plane of the level
sets |ρ(ε)| = 1 (dashed black curve) and |ρ(ε)| = √| det T | (solid
blue curve). These curves correspond to the PBC and OBC bulk
bands, respectively.

as |�n| ∼ | det T |n/2, so that they are localized at the left/right
boundary of the system for | det T | ≶ 1. Thus, the difference
between the PBC and OBC spectra is always accompanied by
the non-Hermitian skin effect. Finally, for det T → 0,∞, the
propagation using the transfer matrix becomes unidirectional,
which corresponds to a “real-space EP” whose order scales
with the system size, as previously observed in numerical
computations [77].

The correct bulk topological invariant can then be com-
puted by using these decaying states for OBC, which corre-
spond to deforming the Brillouin zone by adding a complex
part to the momentum, as derived for particular cases from
ad hoc methods in Refs. [50,57]. A more geometric picture
follows from the algebraic nature of the construction, which
is used to construct a Riemann surface associated with the
complex energy [73]. We show that the deformed Brillouin
zone used to compute the bulk invariant is then associated
with one set of noncontractible loops, while the other set
of noncontractible loops are associated with the boundary
modes. We thus get a winding number associated with the
boundary modes and thereby clarify the meaning of a “topo-
logically protected” boundary mode for a non-Hermitian sys-
tem, where the notion of a gap may be ill defined. Finally, our
formalism extends the real-space biorthogonal polarization
[46] to more general lattice topologies than those considered
in Refs. [46,78,79].

Interestingly, the distinction between the PBC and OBC
bulk spectra turns out to be quite transparent for cases where
the transfer matrix T (ε) is 2 × 2 with eigenvalues ρ±(ε).
We show that the PBC bulk bands contain energies ε ∈ C
for which |ρa(ε)| = 1 for one of a = ±, the other naturally
satisfying |ρa(ε)| = | det T |. On the other hand, the OBC bulk
bands contain energies where |ρa(ε)| = √| det T | for both
a = ±. The curves in the complex ε plane for these two con-
ditions are generically different for | det T | �= 1, as we depict
schematically in Fig. 1. This explains the difference between
the bulk spectra for PBC and OBC for generic non-Hermitian
Hamiltonians. On the other hand, we have | det T | = 1 for
Hermitian as well as PT-symmetric systems, so that the two
curves merge in this case, leading to identical bulk spectra for
PBC and OBC.

The rest of this paper is organized as follows: In Sec. II, we
construct the generalized transfer matrix for non-Hermitian
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tight-binding models and obtain several general results for
the spectra. These results are further specialized to a partic-
ularly analytically tractable case of 2 × 2 transfer matrices in
Sec. III, and an associated energy Riemann surface is con-
structed. A set of explicit examples illustrating the previously
derived general results are presented in Sec. IV. We finally
conclude and place this work in a broader context in Sec. V.
Various nonessential details of the calculations are relegated
to the appendices.

Notation: We denote the set of n × n real or complex
matrices as Mat(n,R) and Mat(n,C), respectively. We denote
the spectrum of a matrix M by Spec [M].

II. TRANSFER MATRICES

Transfer matrices arise naturally in discrete calculus as
a representation of recursion relations. Since tight-binding
models are essentially composed of hopping, i.e., shift, opera-
tors acting on the wave functions, the Schrödinger equation
for a one-dimensional system can be reduced to a set of
recursion relations, which can then be recast into a transfer-
matrix equation [73,76]. Thus, starting with a d-dimensional
system, we impose PBC along (d − 1) directions and OBC
along the remaining direction, along which the transfer ma-
trix is computed. Choosing the direction of OBC, we can
analytically explore the boundary states for various possible
boundaries.

A. General setup

Consider a system in d spatial dimensions with OBC
along x and PBC along the remaining (d − 1) directions,
which are parametrized by the transverse quasimomentum
k⊥ ∈ Td−1. This system can also be interpreted as a family
of one-dimensional chains parametrized by k⊥. Explicitly,
we consider a system described by a general tight-binding
non-Hermitian Hamiltonian

H =
N0−1∑
n=0

q∑
α,β=1

[
R∑

�=1

(c†
n,α[tL,�]αβcn+�,β

+ c†
n+�,α[t†

R,�]αβcn,β ) + c†
n,α[t0]αβcn,β

]
. (1)

Here, the matrices tL,� (tR,�) denote the hopping to the
left (right) and t0 is the intra-unit-cell term. For Hermitian
systems, these matrices satisfy tL,� = tR,� and t†

0 = t0. The
hopping depends only on the distance owing to translation
invariance and R < ∞ is the range of hopping. We have q
internal degrees of freedom, e.g., spin, orbital, or sublattice,
per unit cell. The explicit dependence on k⊥ is suppressed
to avoid notational clutter, however, all parameters should be
assumed to depend on k⊥, unless stated otherwise.

We reduce this Hamiltonian to a nearest-neighbor form
[74] by bundling together n � qR degrees of freedoms into a
supercell, whose creation (annihilation) operators are denoted
by c† (c). This definition is not unique, and one may in-
deed choose arbitrarily large supercells with nearest-neighbor

hopping. The Hamiltonian reduces to

H(k⊥) =
N∑

n=0

[c†
nJLcn+1 + c†

nMcn + c†
n+1J†

Rcn] (2)

with the hopping matrices JL,R and the onsite matrix M, where
the latter encodes the hopping between degrees of freedom
within the supercell as well as the onsite energies. An arbitrary
single-particle state is given by

|�〉 =
N∑

n=0

�nc†
n |�〉 , (3)

with |�〉 the fermionic vacuum state and �n ∈ Cn the wave
function for each supercell. The single-particle Schrödinger
equation H |�〉 = ε |�〉 thus reduces to the recursion relation

JL�n+1 + M�n + J†
R�n−1 = ε�n. (4)

We seek to express this as a transfer-matrix equation for cases
where JL,R may be singular.

In this paper, we take M to be arbitrary, possibly non-
Hermitian, while we demand that the hopping matrices satisfy

JR = JL = J, J2 = 0. (5)

For a Hermitian system, M† = M and JR = JL, so that we
have lifted the Hermiticity condition on the onsite matrix
M but not the hopping matrix J . The nilpotence of J im-
plies that no sublattice site within the supercell has hoppings
to both left and right adjacent supercells. This can always
be ensured by choosing a large enough supercell (also see
Ref. [76, Appendix B]). Mathematically, we need this con-
dition to ensure that the singular vectors of J [Eq. (10)] form
an orthonormal set. Under these assumptions, the recursion
relation becomes

J�n+1 + M�n + J†�n−1 = ε�n, (6)

which corresponds to the (full) Bloch Hamiltonian

HB(k) = J (k⊥) eikx + M(k⊥) + J†(k⊥) e−ikx . (7)

In practice, we simply use this equation to identify M and J
as the coefficients of eikx and 1, respectively, to compute the
transfer matrix for propagation along x.

B. Constructing the transfer matrix

We construct the generalized transfer-matrix representation
of the recursion relation in Eq. (6) following Ref. [76, Sec. II],
which we briefly describe here. The recursion relation can be
rewritten as

�n = GJ�n+1 + GJ†�n−1, (8)

where G = (ε1 − M )−1 is the onsite Green’s function, which
is nonsingular except when ε is an eigenvalue of M. Next, we
compute a reduced singular value decomposition (SVD) [80,
Sec. 6.3]

J = V 	W †, (9)

where 	 = diag{ξ1, . . . , ξr} with r = rank J and the singular
values ξi are real and positive. Physically, this signifies that
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a suitable unitary transform of the Hamiltonian reduces it
to a form where the consecutive supercells have exactly r
hoppings, with the magnitude of the corresponding hopping
strengths given by the singular values ξi’s. The r correspond-
ing left and right singular vectors are assembled in the n × r
matrices V and W , which satisfy

V †V = W †W = 1r, V †W = 0, (10)

where the orthogonality of V and W follows from J2 = 0,
which also ensures that r � n/2.

As the vectors in V and W form an orthonormal set, they
can be extended1 to an orthonormal basis of Cn 
 �n. We
then define the coefficients of �n in this basis as

αn = V †�n, βn = W †�n, (11)

in terms of which Eq. (8) becomes

�n = GV 	 βn+1 + GW 	 αn−1. (12)

Multiplying to the left by V † and W †, we find

αn = Gvv 	 βn+1 + Gwv 	 αn−1,

βn = Gvw 	 βn+1 + Gww 	 αn−1, (13)

where we have defined GAB = B† G A ∈ Mat(r,C) with A, B ∈
{V,W }. This system of equations can be rewritten as

�n+1 = T �n, �n ≡
(

βn
αn−1

)
, (14)

where the 2r-dimensional transfer matrix is given by

T =
(

	−1 · G−1
vw −	−1 · G−1

vw · Gww · 	

Gvv · G−1
vw

(
Gwv − Gvv · G−1

vw · Gww

) · 	

)
. (15)

The rank of J , and hence the size of the transfer matrix is
independent of the choice of a supercell [76, Appendix B].

Given �0, we can propagate it with the transfer matrix T
as

�n = T n�0, ∀ n ∈ Z (16)

provided T is invertible, i.e., det T �= 0. We explicitly com-
pute

det T = det
(
G−1

vwGwv

) = det Gwv

det Gvw

. (17)

A distinct possibility for non-Hermitian systems is | det T | →
0,∞ when | det Gwv| → 0 and | det Gvw| → 0, respectively.
Note that these two cases are dual to each other since if
| det T | → ∞ for some parameters, we can compute the trans-
fer matrix for translation in the opposite direction, whose
determinant would then tend to zero. Physically, this corre-
sponds to unidirectionality in the system since it means that
the states can be propagated only in one direction.

The construction above computes the transfer matrix for
a right eigenstate. We can perform a similar construction
of a transfer matrix for the left eigenstates by considering
the action of H on an arbitrary single-particle bra state 〈�|,

1We refer to Ref. [76, Sec. II B] for details. Also note that this
breaks down if JL �= JR.

instead of the ket in Eq. (3). Alternatively, we note that the left
eigenvectors of H are related to the right eigenvectors of H†

by a conjugate transpose. Thus, we can repeat the computation
above with a new Bloch Hamiltonian

H̃ = H† ⇒ G̃(ε) = G†(ε∗) (18)

to get the transfer matrix for the left eigenstates of H.

C. Special cases

The transfer matrix possesses additional structure if the
original Hamiltonian is Hermitian or PT symmetric, as we
now show.

1. Hermitian systems

For Hermitian systems, the Bloch Hamiltonian satis-
fies H†

B(k) = HB(k). For the Bloch Hamiltonian defined in
Eq. (7), this implies that M† = M with no additional condition
on J . We compute G†(ε) ≡ [G(ε∗)]† as

G†(ε) = [(ε∗1 − M )−1]† = (ε1 − M†)−1 = G(ε),

so that G†
AB(ε∗) = GBA(ε) and Eq. (17) reduces to

det T = det Gwv (ε)

det G†
wv (ε∗)

= det Gwv (ε)

[det Gwv (ε∗)]∗
. (19)

Thus, for ε ∈ R, i.e., the regime of physically relevant en-
ergies for Hermitian systems, det T = exp[2i argGwv (ε)] lies
on the unit circle. As expected, this reproduces Ref. [76,
Eq. (26)].

2. PT-symmetric systems

PT symmetry is implemented as PT = UK with U ∈
U(n) and K the complex conjugation, so that a PT-symmetric
system satisfies U H∗

B(k)U† = HB(k). Imposing this on the
Bloch Hamiltonian in Eq. (7), we find

J = U JT U†, M = U M∗ U†. (20)

Using the condition on the onsite matrix, we can compute
G∗(ε) ≡ [G(ε∗)]∗ as

G∗(ε) = (ε1 − U†MU )−1 = U† G(ε)U .

We next derive a condition on the singular vectors V and W
that satisfy the condition on J . We here need to distinguish the
two cases corresponding to (PT)2 = ±1, which are discussed
in Appendix A.

(a) (PT)2 = +1. In this case, U = UT and in Appendix B,
we show that V,W must satisfy

V = UW ∗, W = UV ∗,

which is consistent, since UU∗ = UU† = 1. Furthermore,

J = V 	W † = UW ∗	V TU† = UJTU†

as desired. We can now compute

G∗
vw(ε) = W TG∗(ε)V ∗

= V †UTU†G(ε)UU∗W = Gwv (ε),
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so that Eq. (17) reduces to

det T = det Gwv (ε)

det G∗
wv (ε)

= det Gwv (ε)

[det Gwv (ε∗)]∗
, (21)

which, as in the Hermitian case, lies on the unit circle for ε ∈
R, i.e., in the PT-unbroken phase.

(b) (PT)2 = −1. In this case, UT = −U is even dimen-
sional, as shown in Appendix A. Alternatively, this must be
the case since U ∈ U (n) ⇒ | det U | = 1, while the determi-
nant vanishes for any odd-dimensional antisymmetric matrix.
As we show in Appendix B, the singular values of J must
also come in doubly degenerate pairs, so that rank J , i.e., the
number of nonzero singular values of J , is even, and we can
write

	 = diag{ξ112, ξ212, . . . , ξr/212}. (22)

We now define

� ≡ diag{J , . . . ,J }, J =
(

0 1
−1 0

)
. (23)

Here, � is antisymmetric and satisfies �2 = −1 and [�,	] =
0, the latter being the case because 	 is proportional to the
identity matrix in each 2 × 2 block. In Appendix B, we show
that V,W satisfy

V = UW ∗�, W = UV ∗�,

which is consistent since

V = U (UV ∗�)∗� = −V �2 = V,

J = V 	W † = −UW ∗�2	V TU† = UJTU†.

Finally, we can compute

G∗
vw(ε) = W TG∗(ε)V ∗

= �T V †UT · U†G(ε)U · U∗W �

= −� Gwv (ε) �.

Thus,

det T = det Gwv (ε)

det[−� G∗
wv (ε) �]

= det Gwv (ε)

[det Gwv (ε∗)]∗
(24)

since det [−�2] = det 1 = 1. As in the Hermitian case, det T
lies on the unit circle for ε ∈ R.

In conclusion, the presence of either Hermiticity or a PT
symmetry implies the unimodularity of the transfer matrix.
This is the precise sense in which the two systems behave
in a similar fashion. Other symmetries of non-Hermitian
Hamiltonians may also lead to this similarity with Hermitian
systems, e.g., for parity-particle-hole (CP) symmetry which
takes HB(k) → −U H∗

B(k)U†, we find

det T = det Gwv (ε)

[det Gwv (−ε∗)]∗
,

so that T is unimodular if ε ∈ iR.

D. Spectra and states

The spectrum of the transfer matrix for a given (ε, k⊥)
contains information about the possible states for that spe-
cific energy ε. This can also be thought of as a discrete

scattering problem, where for an incoming “plane wave” of
a given energy, the spectrum of the transfer matrix contains
information about the fate of that plane wave as it propagates
through the system. The eigenstates of the systems can then be
thought of as the stationary or standing-wave solutions. Given
a boundary condition, the task then is to find the values (ε, k⊥)
that are compatible with such stationary solutions.

For condensed-matter systems, the most common bound-
ary conditions to consider are periodic (PBC) and open (OBC)
ones. In the following, we start with a ring with N supercells
realizing PBC and consider an interpolation between these
two cases by tuning the strength of one of the bonds continu-
ously to zero.

1. Periodic boundary condition

For a periodic system with N supercells, �n = �n+N , so
that using Eq. (14), we must have

�n = �n+N ⇒ �n = T N (ε, k⊥)�n. (25)

Thus, the system with PBC has a state for a given (ε, k⊥) iff
1 ∈ Spec [T N (ε, k⊥)], which reduces to

e2π i�/N ∈ Spec [T (ε, k⊥)] (26)

for some � ∈ {0, . . . , N − 1}. As N → ∞, the set of these
points is dense on the unit circle. Thus, the bulk band for
a given k⊥ is the closed, compact set of C 
 ε for which
at least one eigenvalue ρ of T (ε, k⊥) lies on the unit circle.
Setting ρ = eikx and �0 = ϕ as the corresponding eigenvector
(or one of the eigenvectors, if the corresponding eigenspace is
degenerate), we write

T ϕ = eikx ϕ ⇒ �n = eikxnϕ, (27)

which is simply Bloch’s theorem for periodic systems.
We next set the hopping matrix connecting �1 and �N ≡

�0 as κJ for some κ ∈ R. Then, we may interpolate continu-
ously between PBC and OBC by tuning κ from one to zero.
Following the approach of Ref. [81, Sec. III C 2], we write the
modified recursion relation in Eq. (6) for n = 0, 1 as

�N = κ GJ�1 + GJ†�N−1,

�1 = GJ�2 + κ GJ†�N . (28)

Multiplying to the left with V † and W † as earlier, these reduce
for κ �= 0 to

�1 = KRT �N , �2 = T KL�1, (29)

respectively, where KL = diag{1r, κ1r} and KR =
diag{ 1

κ
1r, 1r}. Using �N = T N−2�2, we get

�1 = KRT N KL�1. (30)

We finally set ϕ = KL�1 to obtain

ϕ = KT Nϕ, K = diag

{
1

κ
1r, κ1r

}
. (31)

Thus, we have a state iff 1 ∈ Spec [KT N (ε, k⊥)]. For κ = 1,
i.e., K = 12r , we recover Eq. (26), which can be reduced to a
condition on the spectrum of T as opposed to that of T N , and
can thus be readily generalized to N → ∞. This is convenient
since T N is generally difficult to compute analytically. For
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arbitrary κ , we have been able to obtain the N → ∞ limit
only when r = 1 using an explicit form of T N, as described in
Sec. III A.

2. Open boundary condition

For OBC, we need to take the limit κ → 0, for which
Eq. (30) is singular. To remedy this, we multiply to the left
by K−1

R to get(
κ1r 0
0 1r

)
�1 = T N

(
1r 0
0 κ1r

)
�1, (32)

which is well behaved as κ → 0. Setting κ = 0, we find(
0
αN

)
= T N

(
β1
0

)
, (33)

where αN and β1 are arbitrary. This is equivalent
to the Dirichlet boundary condition used in Ref. [76,
Sec. II D 3], where one starts with an infinite chain and sets
�0 = �N+1 = 0.

To solve this condition for (ε, k⊥), the general strategy is
to find solutions to the eigenvalue problem

T (ε, k⊥)ϕ� = ρ�ϕ�, (34)

and to then expand �1 and �N+1 in terms of these eigenvec-
tors. We first consider the case where T is diagonalizable, so
that ϕ� form a (generically nonorthogonal) basis of C2r . The
condition in Eq. (33) then becomes(

β1
0

)
=

2r∑
�=1

a�ϕ�,

(
0
αN

)
=

2r∑
�=1

a�ρ
N
� ϕ�. (35)

This can be further reduced by projecting down to the sec-
tors where the left-hand side of these equations vanishes.
Explicitly,

2r∑
�=1

a� Pαϕ� =
2r∑

�=1

a�ρ
N
� Pβϕ� = 0, (36)

where the projectors Pα,β : C2r → Cr are defined as Pα =
(0, 1r ) and Pβ = (1r, 0). This is a set of 2r complex homo-
geneous linear equations in 2r variables a = {a1, a2, . . . , a2r},
which can be recast into a matrix equation of the form R · a =
0, which, by Cramer’s rule, has a nontrivial solution iff

det R = 0; R = (
RN

1 ϕ1 . . . RN
2rϕ2r

)
, (37)

where we have defined

R� =
(

ρ�Pβ

Pα

)
=

(
ρ�1r 0

0 1r

)
.

Since R is defined only in terms of the eigenvalues and
eigenvectors of T , we obtain a condition for states that satisfy
OBC purely in terms of (ε, k⊥), which can be solved to get
the set of energies for which the system with OBC has an
eigenstate.

On the other hand, if T is nondiagonalizable or defective,
we need to augment the set of eigenvectors with the general-
ized eigenvectors to form a basis of C2r , which can then be
used to expand �0. However, the action of the transfer matrix

on these eigenvalues is more complicated than in the previous
case, so that the associated conditions take the general form(

β1
0

)
=

2r∑
�=1

a�ϕ�,

(
0
αN

)
=

2r∑
�,�′=1

a� f��′ϕ�′,

where f��′ (N ) are products of polynomials and exponentials
in N . In the case of T diagonalizable, these reduce to f��′ =
ρN

� δ��′ .
In the following, we elucidate this idea for a simple case.

Recall that if ρ ∈ Spec [T ] is a doubly degenerate eigenvalue
with a single eigenvector ϕ1, then the corresponding general-
ized eigenvector ϕ2 is defined by the relations [80]

(T − ρ1)ϕ1 = 0, (T − ρ1)ϕ2 = ϕ1.

Given �1 = a1ϕ1 + a2ϕ2 for some a1,2 ∈ C, the transfer ma-
trix acts as

T N�1 = (a1ρ + a2N )ρN−1ϕ1 + a2ρ
Nϕ2.

Thus, we identify

f =
(

ρN 0
NρN−1 ρN

)
=

(
ρ 0
1 ρ

)N

,

so that f is the N th power of the Jordan normal form of
T in the eigenspace of ρ. Note that f21 has picked up an
additional term linear in N . In general, we may get terms that
grow or decay as NkρN−k , where k is the difference between
the algebraic and geometric multiplicity of an eigenvalue
of T . Thus, for OBC, the nondiagonalizability of T gives
rise to a family of states whose localization is not purely
exponential, but has a polynomial decay. This would clearly
be most apparent if the repeated eigenvalue lies on the unit
circle. Another interesting case is when ρ = 0, where we get
a state that decays to zero within a finite number of steps,
independent of the system size.

III. RESTRICTING TO RANK 1

In this section, we restrict the formal discussions of
Sec. II to systems with r = 1, which encompasses many
tight-binding models of interest and has the advantage that the
relevant computations are analytically tractable. Note that this
condition is not directly related to either the range of hoppings
or the number of degrees of freedom in a supercell; instead
r = 1 signifies that there exists a local unitary transform
under which the Hamiltonian reduces to a form where the
consecutive supercells are connected by a single bond.

For r = 1, the transfer matrix T ∈ Mat(2,C) can be writ-
ten as

T = 1

ξGvw

(
1 −ξGww

ξGvv ξ 2(GvwGwv − GvvGww )

)
, (38)

where Gab ∈ C and ξ ∈ R+ is the (only) singular value of J .
The eigenvalues of T are

ρ± = 1
2 [� ±

√
�2 − 4�], (39)

where

� ≡ tr T = 1

ξGvw

[1 + ξ 2(GvwGwv − GvvGww )],

� ≡ det T = Gwv

Gvw

. (40)
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In Appendix C, we show that Gab’s are rational functions
of ε, with the numerator a polynomial in ε of order n for
Gvv,Gww and order n − 1 for Gvw,Gwv . We next specialize
the results of Sec. II D to the present case and use them to
explain various interesting aspects of non-Hermitian systems
such as the skin effect and real-space EPs. We also construct
a Riemann surface associated with ε, which can be used to
define topological invariants for the boundary states.

A. Boundary conditions and spectra

We split this discussion between bulk and boundary spec-
tra. For a given transverse momentum, the bulk spectrum is
generically a set of closed curves in the complex plane, which
can generically be written as ε = F (φ) with φ ∈ [0, 2π ] and
F periodic in φ. The boundary spectrum, on the other hand, is
a discrete set of points on the complex plane.

1. Bulk spectra

For a system of N supercells and PBC, we use Eq. (26) to
write the condition for the existence of a Bloch state as

� = eiφ + �e−iφ, (41)

where φ = 2π�/N, � ∈ {0, . . . N − 1}, and the N → ∞ limit
is taken by setting φ ∈ [0, 2π ). Since the numerator of � is
a polynomial in ε of order n, we obtain n complex solutions
for ε for each φ and k⊥. Scanning over φ, we get the PBC
bulk spectrum. We reiterate that if ϕ is the eigenvector of
T associated with eiφ , then the corresponding bulk states are
given by �n = einφϕ, which are precisely the Bloch states.

We next turn to the condition for OBC [cf. Eq. (33)], which
can be rewritten in the present case as

T N

(
1
0

)
= r

(
0
1

)
(42)

for some r ∈ C. This can be used to derive a Cramer’s
condition, as was done in Sec. II D. However, for r = 1, we
can explicitly compute T N [82] and use it to derive conditions
involving only the transfer matrix in the N → ∞ limit. As
shown in Appendix D, for � �= 0,

T n = �n/2

[
1√
�

Un−1(z)T − Un−2(z)1

]
, (43)

where z = �/2
√

� and Un(z)’s are the Chebyshev polyno-
mials of the second kind, explicitly defined in Eq. (D5).
Combining this with Eq. (42), we derive the condition for
OBC as

ξ
√
GvwGwv = UN−1(z)

UN−2(z)
. (44)

The behavior of the right-hand side as N → ∞ strongly
depends on z. If z is real and z ∈ [−1, 1], we set z = cos φ

for some φ ∈ [0, π ] and use Eq. (D5) to rewrite Eq. (44) as

ξ
√
GvwGwv = sin (Nφ)

sin [(N − 1)φ]
. (45)

The right-hand side has poles at φ = �π/(N − 1) and ze-
ros at φ = �π/N with � = 0, 1, . . . , N − 1. Thus, Eq. (45),
solved for φ, has N solutions, one lying in each open set

(�π/N, �π/(N − 1)). As N → ∞, we get a dense set of so-
lutions, which is our bulk band for OBC. Thus, the condition
for the bulk band in terms of (ε, k⊥) can be written as

� = 2
√

� cos φ (46)

for some φ ∈ [0, π ]. Since � is a polynomial in ε of order n,
this equation has n complex solutions for ε for each φ. Scan-
ning over φ, we thus get the OBC bulk bands generically as a
set of n closed curves on C. Furthermore, the corresponding
eigenvectors can be computed analytically as

�n = �n/2

sin(Nφ)

(
sin ((N − n)φ)√

Gvv

Gww
sin(nφ)

)
, (47)

which yield the correct boundary vectors for n = 0, N .
To obtain further insight into the meaning of this condition,

we substitute Eq. (46) in Eq. (39) to conclude that the eigen-
values of the transfer matrix are ρ± = √

�e±iφ . The equality
of magnitude of the eigenvalues can be alternatively inferred
as follows: if |ρ+| �= |ρ−|, then for any initial vector �0 which
is a linear combination of the corresponding eigenvectors,
the eigenvector corresponding to the larger magnitude of the
eigenvalue will dominate as N → ∞. Thus, a matching con-
dition like Eq. (42) can be satisfied only if the two eigenvalues
are equal in magnitude, thereby leading to Eq. (46). This
argument is essentially identical to that of Ref. [50] with
their decay exponents β being equal to the eigenvalues of the
transfer matrix.

For transfer matrices with � = 0, excluded in the above
derivation, we find T n = �n−1T . Substituting this in Eq. (42)
results in � = 0, which is equivalent to � → 0 limit of
Eq. (46). Thus, we get a bulk state for OBC iff

� = � = 0 ⇒ Gwv = 0, GvvGww = ξGvw. (48)

Since this is independent of φ unlike Eq. (45), we get a
discrete set of n points instead of n bands, i.e., each bulk band
collapses to a single energy eigenvalue. Furthermore,

�1 =
(

1
0

)
, �2 = 1

ξ
√
GvwGwv

(
1

ξGvv

)
, (49)

and �n = 0 ∀ n > 2. Thus, we have a single state for each
band, which is localized at the left boundary and has a finite
support.

The condition for the bulk states for PBC and OBC can be
written concisely as

� = 2
√

� cos(φ + iζ ), (50)

with the cosine of a complex angle with φ ∈ [0, 2π ) and
ζ ∈ R. For κ = 0 (OBC) and κ = 1 (PBC), we get ζ = 0
and 1

2 log �, respectively. We can extend these further by
continuously tuning between these two values of ζ as dis-
cussed in Sec. II D. In this setup, for 0 < κ < 1, we find some
intermediate ζ = ζκ that interpolates between 0 and 1

2 log |�|.
We derive an approximate expression for ζκ in Appendix D.

2. Boundary spectra

The boundary states are obtained as additional discrete
solutions to Eq. (44). For z /∈ [−1, 1], the N → ∞ limit of the
right-hand side of Eq. (44) is finite, so that Eq. (44) reduces to
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the condition

GvvGww = 0. (51)

The solutions to these equations give us the boundary spec-
trum, but more care is needed to physically interpret them.
The problem stems from the fact that for N → ∞, we have
essentially ignored the boundary condition at the other end,
thereby effectively treating the system as semi-infinite. We
need to additionally ensure that the state so obtained decays
into the bulk. Thus, only those solutions of Eq. (51) describe
a physical left boundary mode for which the corresponding
eigenvalue of the transfer matrix satisfies |ρL| < 1, and a
similar condition for the right boundary mode.

The boundary states can alternatively be obtained in a more
straightforward manner by starting with a semi-infinite system
and demanding that the boundary vector is an eigenvector of
the transfer matrix, as in Ref. [76, Sec. III A]. More explicitly,
a left boundary state is obtained when

T

(
1
0

)
= ρL

(
1
0

)
⇒

{
Gvv = 0,

ρL = (ξGvw )−1.

A similar calculation for the right boundary results in Gww =
0 and ρR = ξGwv , in agreement with Eq. (51). We can alterna-
tively write the expressions for boundary spectra as a special
case of the equation

ϕT J T (ε, k⊥) ϕ0 = 0; J =
(

0 1
−1 0

)
, (52)

since ϕTJ ϕ = 0, ∀ ϕ ∈ C2. Setting ϕ = (1, 0)T or (0, 1)T ,
we recover the boundary-state conditions computed above. In
writing this equation, we have ignored the decay condition,
so that we obtain physical states (in ED, for instance) only
for a subset of the solutions of Eq. (52). On the other hand, a
solution to this equation exists for all k⊥. For two-dimensional
systems where k⊥ ∈ S1, this fact can be used to define closed
curves corresponding to the boundary states on a Riemann
surface, as we show in Sec III C.

B. Aspects of non-Hermiticity

We now discuss several intriguing aspects of non-
Hermitian systems that can be readily deduced from the
knowledge of its transfer matrix.

1. PBC vs OBC bulk spectra

The difference between the PBC and OBC bulk spectra
can be easily visualized by plotting the magnitudes of the
eigenvalues of the transfer matrix, as shown in Fig. 2. The
bulk bands for PBC are then given by the intersection of the
plane |ρ| = 1 with the eigenvalues (black lines in Fig. 2),
while those for OBC are given by the intersection with the
plane where the two eigenvalues are equal in magnitude, i.e.,
|ρ| = √|�| (blue lines). For |�| �= 1, these two planes do
not coincide, so that their intercepts, i.e., the curves on the
complex ε plane corresponding to the bulk bands, can be
different in the two cases.

On the other hand, these two curves become identical if
|�| = 1. We can also see this analytically since setting � =
e−2iχ for some χ ∈ [0, 2π ), the conditions for PBC and OBC

FIG. 2. log |ρ(ε)| as a function of complex ε, with positive
(negative) values indicated by yellow (blue). The dark blue lines are
the locii where |ρ+| = |ρ−| = √|�|, along which we get the OBC
bulk band, while the black lines correspond to |ρ| = 1, along which
we get the PBC bulk band. These plots are computed for the model in
Sec. IV A 1 with the parameters corresponding to those in the right
column of Fig. 5 with ky = 0.26π (top) and 0.18π (bottom).

bulk modes in Eqs. (41) and (46) both reduce to2

� = 2 e−iχ cos(φ), (53)

with φ ∈ [0, 2π ). Thus, in the large system limit, the bulk
spectra for a system with PBC and OBC are identical iff the
transfer matrix is unimodular. In Sec. II C, we showed that
Hermiticity or PT symmetry implies unimodularity of the
transfer matrices for physically relevant energies. This may,
however, also be true in more general settings.

This difference between the PBC and OBC bulk spectra
can lead to an interesting situation, where as one tunes a
parameter (or ky), the PBC bulk gap closes while the OBC
bulk bands remain gapped. This scenario is depicted in Fig. 2.
In this case, any topologically nontrivial boundary states, if
present, will also remain qualitatively unchanged since they
cannot be removed without closing the gap between the two
bands connected by them, i.e., the OBC bulk bands. Thus,
this presents an instance of a dramatic breakdown of the
conventional bulk-boundary correspondence.

2Here, we have replaced (φ − χ ) with φ in the condition for PBC
[cf. Eq. (41)] since we are scanning over φ.
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2. Non-Hermitian skin effect

To study the skin effect, we need to look at the asymptotic
behavior of the states for systems with PBC and OBC. For
systems with PBC,

‖�n‖ = ‖einφϕ1‖ = ‖ϕ1‖
independent of n, as one would expect for Bloch waves. On
the other hand, for OBC, we have

‖�n‖ = ‖�n/2(a1einφϕ1 + a2e−inφϕ2)‖ ∼ |�|n/2.

If |�| �= 1, the “bulk states” or, more precisely, the states
associated with the continuum spectrum for the system with
PBC, decay into the bulk. These states are localized on the left
boundary for |�| < 1 and on the right boundary for |�| > 1.
Thus, the existence of the non-Hermitian skin effect can be
deduced simply from the value of | det T |.

Combining this with the result from the previous sub-
section, we note that the phenomena of the skin effect and
the difference between the PBC and OBC bulk spectra are
intimately linked since they are both governed by the same
condition. More explicitly, a non-Hermitian system exhibits
the skin effect iff the PBC and OBC bulk spectra are different.

3. Exceptional points

The Bloch and real-space EPs can also be understood in
the transfer-matrix formalism. We have a Bloch EP if the
condition for the bulk states, i.e., Eq. (41), solved for ε,
has a repeated root. The multiplicity of the roots sets the
order of the EP. On the other hand, the real-space EPs are
obtained when |�| → 0,∞. We remark that the order of the
real-space EP is (N − 1), where N is the system size, so that
we can get EPs with arbitrarily high order for a given Bloch
Hamiltonian. On the other hand, the order of the Bloch EPs
is limited by the dimensionality of the Bloch Hamiltonian.
Thus, if |�| �= 0,∞, then the maximum order of an EP in the
real-space spectrum is restricted by the dimensionality of the
Bloch Hamiltonian, where we make use of the fact that when
� �= 0,∞ the a nonunitary similarity transform of the original
Hamiltonian yields a Hamiltonian for which � = 1 [50].

4. Bulk topological invariants

A bulk-boundary correspondence for non-Hermitian
gapped systems can be defined if one computes the “bulk
invariant” using the eigenvectors for a system with boundaries
as opposed to that for a periodic system. In the present setup,
the eigenvectors for PBC vary with position as einφ where φ

can be identified with kx while those for OBC go as
√

�einφ .
This suggests the topological invariants should be computed
using a modified Bloch Hamiltonian with the replacement

eikx →
√

�eiφ ⇐⇒ kx → φ − i

2
log �. (54)

For instance, for gapped two-dimensional systems, a modified
Chern number can be computed by integrating the biorthog-
onal Berry curvature on the modified “Brillouin zone” with
coordinates (φ, ky).

This approach was indeed shown to predict the existence
of edge modes correctly in Refs. [50,57], albeit only for
specific tight-binding models. Our setup thus provides a direct

way of analytically generalizing the topological invariants for
Hermitian Hamiltonians to non-Hermitian Hamiltonians to
arbitrary lattice models without resorting to continuum limits
or numerical computations.

5. Biorthogonality condition

The case of rank-1 systems subsumes the non-Hermitian
models discussed in Ref. [46], whose boundary modes can
be obtained analytically by construction. As an indicator of
the existence of boundary modes, a biorthogonal polarization
was proposed, defined in terms of p ≡ |̃ρ∗

LρL|, i.e., the product
of decay exponents of the left and right eigenstates of the
Hamiltonian, localized at the left boundary. It was shown that
the boundary states merge into the bulk band when |p| = 1.

We now derive this quantity using the transfer-matrix for-
malism by considering a semi-infinite non-Hermitian system
on Z+. Let � be the right eigenstate of the Hamiltonian
for a left boundary mode, with the decay exponent ρL =
−[ξGvw(εL)]−1, where εL satisfies Gvv (εL) = 0. For the cor-
responding left eigenstate, we need the transfer matrix T̃ for
H̃ = H† in terms of which the decay exponent is given by
ρ̃L = −[ξ G̃vw(εL)]−1. Using Eq. (18) to relate G to G̃, we find

ρ̃L = − 1

ξG∗
wv (ε∗

L)
⇒ p = 1

ξ 2|GvwGwv| . (55)

Next, we note that the bulk and boundary bands merge for
a given (ε, k⊥) if the conditions for both bulk and boundary
states for OBC are simultaneously satisfied. Thus, we seek
to solve Gvv = 0 = � − 2

√
� cos φ for some φ. We combine

these to get

1 + ξ 2GvwGwv

ξGvw

= 2

√
Gwv

Gvw

cos φ, (56)

which can be rearranged as

p − 2
√
p cos φ + 1 = 0.

This is solved by
√
p = e±iφ , which is equivalent to demand-

ing that |p| = 1, precisely what was obtained in Ref. [46].
Note that the exact same condition is obtained by alternatively
considering |̃ρ∗

RρR| for the right boundary.

C. ε-Riemann surface

The algebraic structure of the transfer matrix naturally
lends itself to the construction of a Riemann surface associ-
ated with the complex energy. Explicitly, the map ε �→ ρ of
in Eq. (39) is not analytic for ε ∈ C, since there are square-
root singularities at the zeros of Q(ε) ≡ �2(ε) − 4�(ε). Since
� and � are rational functions in ε, so is Q(ε), with the
numerator being a polynomial of order 2n (see Appendix C
for details). Thus, Q(ε) has exactly 2n complex roots, which
must be connected in pairs by n branch cuts. Since these zeros
are points where the two eigenvalues of the transfer matrix are
degenerate, i.e., where

ρ+ = ρ− = �/2 = ±
√

�,

we define the branch cuts to lie along the bulk spectrum for
OBC. More explicitly, we define the branch cuts as the curves
in the ε plane for which ρ± = √

�e±iφ . For example, in Fig. 2,
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we have n = 2, and the four zeros of Q(ε) are denoted by dark
blue dots, with the branch cuts lying along the blue solid lines.

Two copies of C are glued along these branch cuts and
a compact Riemann surface R is then obtained by one-point
compactifying these sheets into Riemann spheres and gluing
them. By the Riemann-Hurwitz lemma, we deduce that R has
genus (n − 1), i.e., one less than the number of Bloch bands.
Thus, in the case of Fig. 2, the Riemann surface is a 2-torus.
An explicit mapping from the ε plane with two branch cuts to
a torus can be implemented via the elliptic integrals, as shown
in Ref. [76, Sec. IV.A].

This construction particularly caters to a system with
OBC. For each k⊥, the continuum states run precisely along
the branch cuts. Furthermore, for a two-dimensional system
where k⊥ = ky ∈ S1, the boundary modes are a map S1 → R,
which can be classified by a winding number. This is the
topological invariant associated with the boundary states. This
approach can be used to define a “topologically protected
boundary mode” for non-Hermitian systems as modes with
nonzero winding numbers, in absence of the conventional
definition for Hermitian systems in terms of directed zero
crossings.

D. A generic two-band model

We now illustrate the ideas discussed in this section by
explicit computations on a generic two-band model. We con-
sider a d-dimensional system described by an arbitrary Bloch
Hamiltonian of the form

HB(kx, k⊥) = H0(kx ) + η(k⊥) · σ, (57)

where η : Td−1 → C3 depends on k⊥, σ = (σ x, σ y, σ z ) is the
vector of Pauli matrices, and

H0(kx ) = cos kx σ x − sin kx σ y =
(

0 eikx

e−ikx 0

)
. (58)

The eigenvalues of the Bloch Hamiltonian are

ε = ±[1 + η2 + 2(ηx cos kx − ηy sin kx )]1/2, (59)

where

η2 ≡ η · η = ηR · ηR − ηI · ηI + 2i ηR · ηI ,

with ηR and ηI the real and imaginary parts of η, respectively.
Note that η here is not the usual norm of η ∈ C3, i.e., η2 �=
η · η∗.

To compute the transfer matrix, we identify the hopping
and onsite matrices as coefficients of eikx and 1 in the Bloch
Hamiltonian, so that

J =
(

0 1
0 0

)
, M = η · σ. (60)

The SVD results in J = ξ v · w†, with

v =
(

1
0

)
, w =

(
0
1

)
, ξ = 1. (61)

The onsite Green’s function is

G = (ε1 − η · σ)−1 = ε1 + η · σ

ε2 − η2
. (62)

Writing G as a matrix for the given definitions of v and w, we
identify(

Gvv Gwv

Gvw Gww

)
= 1

ε2 − η2

(
ε + ηz ηx − iηy

ηx + iηy ε − ηz

)
. (63)

Using Eq. (38), the transfer matrix is

T (ε, k⊥) = 1

ηx + iηy

(
ε2 − η2 −ε − ηz

ε − ηz −1

)
. (64)

We compute

� = ε2 − η2 − 1

ηx + iηy
, � = ηx − iηy

ηx + iηy
(65)

in terms of which the eigenvalues of T are given by Eq. (39).
For PBC, the energies of Bloch states are given by Eq. (41),

which can be simplified to get

ε2 = 1 + η2 + 2 [ηx cos φ − ηy sin φ]. (66)

We note that this expression is identical to Eq. (59) with the
identification φ → kx, as expected. For OBC, the bulk states
are given by Eq. (42), which simplifies to

ε2 = 1 + η2 + 2 cos φ

√
η2

x + η2
y . (67)

These states are localized near the left boundary if |�| < 1,
i.e., if

|ηx − iηy|2 < |ηx + iηy|2 ⇒ Im[η∗
xηy] < 0. (68)

Similarly, they are localized near the right boundary if |�| >

1, i.e, if Im[η∗
xηy] > 0.

When � = 0,∞, i.e., ηx = ±iηy, we get the real-space EP,
where the bulk bands collapse to two points with energies ε =
±√

1 + η2
z . The corresponding states are all localized on the

leftmost/rightmost supercell for ηx = ±iηy. Since ηx ± iηy is
the intracell hopping, these real-space EPs occur when the
system has a completely unidirectional hopping, so that all
states are piled up at one end of the system. Finally, we note
that Eqs. (66) and (67) become identical if the transfer matrix
is unimodular, as follows from Eq. (53).

The boundary states are given by Eq. (52), so that the
boundary spectra and the corresponding decay exponents
become

εL = −ηz, ρL = −(ηx + iηy)−1,

εR = ηz, ρR = −(ηx − iηy). (69)

The left boundary state exists for k⊥ where |ηx + iηy| > 1,
while the right one exists if |ηx − iηy| > 1. Using this bound-
ary spectrum, we can also compute

p =
∣∣∣∣∣η2

z − η2

η2
x + η2

y

∣∣∣∣∣ = η2
x + η2

y , (70)

which signals that the boundary states merge into the bulk
bands for |p| = 1, i.e., for |η2

x + η2
y | = 1. This is identical to

the result obtained from the decay exponents.
To illustrate these transfer-matrix calculations, we briefly

discuss a well-known example of the one-dimensional Su-
Schrieffer-Heeger (SSH) model [83], whose various non-
Hermitian variations have been studied in the literature
[22,45,46,50,54,55,58,72]. We consider a non-Hermitian SSH
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model with an asymmetry between the left and right intracell
hoppings [46,55]. Thus, explicitly we consider the Bloch
Hamiltonian

HBloch = (cos kx + t )σ x + (sin kx + iγ )σ y. (71)

As shown in Ref. [46], conventional bulk-boundary corre-
spondence is broken for this model, and the bulk states pile
up at the ends. We now show how the same result is derived
using the transfer matrix.

Since the Bloch Hamiltonian takes the same form as
Eq. (57), we readily identify η = (t, iγ , 0). Using Eq. (64),
we get the transfer matrix

T (ε) = 1

t − γ

(
ε2 − t2 + γ 2 −ε

ε −1

)
,

so that

� = ε2 − t2 + γ 2 − 1

t − γ
, � = t + γ

t − γ
.

Thus, the bulk spectra are given by

ε2
PBC = t2 − γ 2 + 1 + 2t cos φ − 2iγ sin φ,

ε2
OBC = t2 − γ 2 + 1 + 2 cos φ

√
t2 − γ 2.

The two bulk spectra are different, i.e., εPBC �= εOBC for γ �=
0. The system exhibits the non-Hermitian skin effect since the
bulk states for OBC are localized at the left/right end when
tγ ≶ 0, as follows from Eq. (68). The transition between these
two cases occurs at γ = 0, where the system is Hermitian and
hence bulk states extend across the system. Finally, we get
real-space EPs for t = ±γ , where the bulk bands collapse to
ε = ±1.

Moreover, from Eq. (69), we find that the system exhibits
boundary modes in the gap with energies εL = εR = 0 and
decay exponents ρL = −1/(t − γ ) and ρR = −(t + γ ). The
biorthogonal polarization in p in Eq. (70) then reads as
p = t2 − γ 2 such that the boundary states attach to the bulk
bands when t = ±

√
γ 2 + 1,±

√
γ 2 − 1, in accordance with

the results in Ref. [46, Eq. (9)]. Finally, we note that the
associated bulk invariant can be computed as the Berry phase
computed around a modified Brillouin zone, which is obtained
by the replacement

kx → φ − i

2
log � = φ − i

2
log

(
t + γ

t − γ

)
.

This expression corresponds exactly to the result derived in
Ref. [50].

IV. TWO-DIMENSIONAL EXAMPLES

We now apply the ideas discussed above to a variety of lat-
tice models for two-dimensional topological phases. The PBC
and OBC spectra are computed analytically and compared to
those computed using numerical exact diagonalization (ED).
We also discuss the topology associated with the boundary
states in terms of the energy Riemann surface.

A. A non-Hermitian Chern insulator

We consider a non-Hermitian generalization of the
two-dimensional Chern insulator [50,56,57], for which

FIG. 3. The spectrum of the Hermitian Chern insulator computed
using numerical ED with N = 40 and m = 1.4 with the band edges
(blue, solid), and the left (green, dashed) and right edge states (red,
dashed) computed analytically using the transfer matrix.

we take

η(ky) = (cos ky − m, 0, sin ky) + ih, (72)

where h = (hx, hy, hz ) ∈ R3. Physically, hx and hy represent
an anisotropy in the phase and amplitude of the intracell left
and right hoppings, respectively, while hz represents an onsite
gain and loss on alternative sublattices.

For h = 0, i.e., the Hermitian limit, the system is gapless
for m = 0,±2, a trivial insulator for |m| > 2, and a topolog-
ical insulator with Chern number ±1 for |m| < 2. For OBC
along x, the topological phase exhibits modes localized on the
edge. Using the transfer-matrix method, we can compute the
edge spectra as εL,R = ∓ sin ky, with the corresponding decay
exponents being ρL = cos ky − m and ρR = 1/(cos ky − m),
respectively [76, Sec. III.D.3]. Demanding that the edge
modes decay into the bulk, we deduce that they exist near
ky = 0 for 0 < m < 2 and near ky = π for −2 < m < 0. In
the following analysis, we set m = 1.4, for which we get the
celebrated Chern insulator spectrum, as shown in Fig. 3.

For the non-Hermitian generalization, we find

� = ε2 − (cos ky − m + ihx )2 + h2
y − (sin ky + ihz )2 − 1

cos ky − m + ihx − hy
,

� = cos ky − m + ihx + hy

cos ky − m + ihx − hy
. (73)

Thus, the transfer matrix is unimodular if hy = 0 and nonuni-
modular otherwise. Since these two cases exhibit qualitatively
different behaviors, we shall distinguish between them in the
following analysis. with the OBC bulk states localized on the
left/right edge when

(cos ky − m)hy ≶ 0, (74)

as follows from Eq. (68). Thus, the system exhibits the non-
Hermitian skin effect only when the non-Hermiticity is along
σ y, corresponding to asymmetric hopping within the unit cell.
Furthermore, for a fixed hy and |m| < 1, there are OBC bulk
states localized at both ends of the system, corresponding to
different ranges of ky.

The bulk states can be computed explicitly from Eqs. (41)
and (46). The edge states occur at energies εL,R = ∓(sin ky +
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FIG. 4. Bulk bands for the non-Hermitian Chern insulator with PBC for N = 80, m = 1.4, and hy = 0.5 (left) and 0.75 (middle) for PBC.
The topology of the surface traced out by the bulk bands as a function of ky changes as a function of γ . The right panel shows the ε-Riemann
surface with the left edge states for these two cases (plotted in green and blue, respectively). Both of these wind around the same noncontractible
loop and they are clearly unaffected by the PBC bulk band topology.

ihz ), with the associated decay exponents ρL = ηx + iηy and
ρR = 1/(ηx − iηy), respectively. We now set the terms in h
to γ ∈ R+ one by one and apply the results of Sec. III D to
deduce the behavior of the OBC spectrum.

1. Nonunimodular transfer matrix

We begin with the most interesting case, viz., that with
a nonunimodular transfer matrix, by setting hy = γ . In this
case, the system exhibits the non-Hermitian skin effect as well
as a difference in the PBC and OBC spectra. Interestingly,
in certain parameter ranges, the PBC spectrum is actually
gapless, while the OBC spectrum remains gapped with a
robust edge mode in the gap (as also pointed out in Ref. [56]
from ED). The robustness of the edge mode is clear from
its winding on the energy Riemann surface, which remains
unchanged throughout this transition, as shown in Fig. 4. We
also visualize the transition in the PBC spectrum by plotting
the complex PBC bulk spectrum as a function of ky, which
forms a surface whose topology changes from two cylinders
to a “pair of pants.”

The bulk spectra for PBC and OBC are given by

ε2
PBC = A + 2[(cos ky − m) cos φ − iγ sin φ],

ε2
OBC = A + 2 cos φ

√
(cos ky − m)2 − γ 2,

where A = 2 + m2 − γ 2 − 2m cos ky. We note that εOBC’s are
either real or come in complex-conjugate pairs, which can
also be traced back to the pseudo-Hermiticity of the real-
space Hamiltonian [50,57]. The edge spectra given by εL,R =
∓ sin ky with purely real decay exponents. Next, the Bloch
Hamiltonian [cf. Eq. (59)] exhibits second-order Bloch EPs
at

kx = 0, ky = ± cos−1

(
(m − 1)2 + 1 − γ 2

2(m − 1)

)
, (75)

kx = π, ky = ± cos−1

(
(m + 1)2 + 1 − γ 2

2(m + 1)

)
. (76)

Finally, this system also exhibits a pair of real-space EPs at
ky,EP = cos−1(m ∓ γ ) by setting |�| to 0,∞, whose order is
N − 1, where N is the system size. At these points, each bulk
band collapses to a single point with energy

ε = ±
√

1 + sin2 ky,EP = ±
√

2 − (m ± γ )2.

As expected, aside from the qualitative difference, the Bloch
and real-space EPs occur at different values of ky for a given
m and γ .

We can now analytically deduce the behavior of this system
as the non-Hermitian term is turned on. In the following, take
1 < m < 2, so that we start in a topological phase for γ =
0. Tuning γ up, we nucleate a real-space EP at ky = 0 when
γ = m − 1, for which all the states are localized at the left
edge. Further increase in γ splits this EP into two real-space
EPs at ± cos−1(m − γ ), which move out and merge again at
ky = π when γ = m + 1. On the other hand, we nucleate a
Bloch EP at ky = 0 for γ = 2 − m, which splits into two EPs
that merge at ky = π when γ = m. For a full phase diagram
obtained numerically, see Ref. [56].

In Fig. 5, we plot the PBC and OBC spectrum for the
non-Hermitian Chern insulator for a fixed m, and we choose
two values of γ in two different phases: one with only real-
space EPs and one with both real-space and Bloch EPs. The
spectrum was computed numerically using ED for a finite
system with PBC/OBC. We also plot the curves obtained by
solving the equations for the bulk spectra for φ = 0, π (blue
solid lines) and φ = ±π/2 (blue dashed lines), which follow
various contours of the numerically computed bulk bands. We
also plot the analytically computed edge spectrum εL,R(ky),
only a part of which (corresponding to the decay condition on
the eigenvalues) are seen for the particular termination used
for the OBC calculation. The spectra in Fig. 5 for PBC and
OBC show vastly different qualitative behavior. For PBC, the
system goes from gapped to gapless. This effect can be seen
more clearly in a 3D plot of the complex bulk band energies
as a function of ky, as shown in the left and middle panels
in Fig. 4. The bulk band topology clearly changes from two
cylinders, which can be “flattened” into two bands, to the
pair of pants, which cannot be flattened. The OBC spectrum
is qualitatively unaffected by this transition. Indeed, we note
that the edge states run along a noncontractible loop on the
ε-Riemann surface in both cases, as shown in the right panel
of Fig. 4. We point out that this behavior was previously
observed in Ref. [56].

The difference between PBC and OBC spectra here can
be intuitively understood as the manifestation of a preferred
hopping direction, which leads to a pileup of the continuum
states at the edges and thereby to an extreme sensitivity to
boundary conditions [46]. Moreover, when γ is chosen such
that the hopping in one direction is completely turned off,
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FIG. 5. Analytically and numerically computed real and imaginary band structures for the Chern insulator with N = 40, m = 1.4, and
hy = 0.5 (left column) and 0.75 (right column) for PBC (top) and OBC (bottom). We note the qualitative difference between the PBC and
OBC bulk spectra in both cases. Furthermore, the former case exhibits only real-space EPs, while the latter exhibits both real-space and Bloch
EPs, but for different values of ky.

we get real-space EPs, where the bulk bands indeed collapse
to single points, as shown in Fig. 5. The corresponding
eigenstates have a finite support, independent of the system
size. These EPs are thus associated with an extreme form of
unidirectionality.

2. Unimodular transfer matrix

We recall that unimodularity of the transfer matrix implies
identical qualitative behavior for the spectrum for PBC and
OBC (cf. Sec. III B 1), and thus we only plot band spectra for
the latter in this section without loss of information. Moreover,
as in this case no real-space EPs may appear, we may make
use of the eigenvalues of the Bloch Hamiltonian in Eq. (59) to
determine the location of EPs in the spectrum of OBC.

We first set hz = γ . With a rotation of σ, the corresponding
Bloch Hamiltonian is equivalent to the Bloch Hamiltonian in
the case of hy = γ with kx and ky interchanged. These two
models are thus equivalent up to a π/2 rotation from a Bloch
Hamiltonian perspective, and the EPs are given by expressions
identical to the case of hy = γ [cf. Eqs. (75) and (76)] with
the roles of kx and ky interchanged. In particular, we find the
same behavior for the EPs as we tune γ , while the systems
look completely different from a real-space perspective. The

FIG. 6. Analytically and numerically computed real and imagi-
nary band structures for the Chern insulator with N = 40, m = 1.4,
and hz = 0.75 for OBC. The spectrum for PBC is identical to that for
OBC, except for the edge states. We also get a Bloch EP for ky = 0
with both PBC and OBC.

edge spectra are εL,R = ∓(sin ky + iγ ), and have now picked
up an imaginary part, so that the edge modes now have a
finite lifetime. The opposite sign of the imaginary part in
the energy of these states is explained by the fact that they
are primarily localized on alternate sublattices. Their decay
exponents, however, stay real. In Fig. 6, we plot the spectra
for OBC with the same parameters as for the previous case,
i.e., m = 1.4 and hz = 0.75. We note that the EPs appear at
ky = 0, which is indeed suggested by Eqs. (75) and (76), once
the roles of kx and ky are interchanged.

We finally set hx = γ , so that our model is the usual lattice
Dirac equation with a complex mass. The Bloch Hamiltonian,
and hence the bulk spectra for both PBC and OBC, exhibit
second-order EPs when

kx = 0, ky = ± cos−1

(
2 + (m − iγ )2 − 2(m − iγ )

2(m − iγ − 1)

)
,

kx = π, ky = ± cos−1

(
2 + (m − iγ )2 + 2(m − iγ )

2(m − iγ + 1)

)
.

The edge spectra εL,R = ∓ sin ky is real, but the corresponding
decay exponents now pick up an imaginary part. We find
Bloch EPs when the imaginary part of the above equations
disappears and the real part is confined to [−1, 1]. In Fig. 7,

FIG. 7. Analytically and numerically computed real and imagi-
nary band structures for the Chern insulator with N = 40, m = 1.4,
and hx = √

0.84 for OBC. The spectrum for PBC is identical to that
for OBC, except for the edge states.
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FIG. 8. Analytically and numerically computed band structures
for the Dirac semimetal with N = 40, m = 1.4, and γ = 0 (top left)
and γ = 0.5 (bottom). For the latter, the bulk spectrum for PBC is
identical to that for OBC. In the top right panel, we show the phase
diagram for this model computed from the Bloch spectrum, where
the system is in the PT-(un)broken phase in the (gray) white region.
The red dots denote the Dirac points for the Hermitian case, which
broaden into the exceptional lines denoted by the black solid line as
the non-Hermitian term is turned on.

we plot the spectra for OBC with appropriate parameter values
and we indeed find Bloch EPs at these values of ky.

B. A non-Hermitian 2D Dirac semimetal

In this section, we consider a non-Hermitian lattice
model with PT symmetry, viz., a two-dimensional Dirac
semimetal. This is essentially a two-dimensional stacking
of the PT-symmetric Su-Schrieffer-Heeger chains studied in
Refs. [18,84]. Explicitly, we consider the model of Sec. III D
with

η(ky) = (cos ky − m, 0, iγ )

with m, γ ∈ R. The PT operation is implemented by PT =
σ xK . Physically, the non-Hermitian term iγ σz in the Bloch
Hamiltonian can be understood as a gain on one of the site
types and a loss on the other type.

For γ = 0, we recover the Hermitian limit. In this
case, the model is gapped and trivial if |m| > 2, while
for |m| < 2 we get two Dirac points in the 2D Brillouin
zone at k = (0,± cos−1(m − 1)) for 0 < m < 2 and k =
(π,± cos−1(m + 1)) for −2 < m < 0, which is indeed shown
in the top left panel of Fig. 8. Turning on the non-Hermitian
term γ �= 0, these Dirac points broaden into curves of EPs
(or exceptional lines). Using the eigenvalues of the Bloch

Hamiltonian in Eq. (59), we compute that these lie along

(cos kx + cos ky − m)2 + sin2 kx − γ 2 = 0.

These lines separate the PT-unbroken and PT-broken phases
as is shown in the phase diagram in the top right panel of Fig. 8
for m = 1.4 and γ = 0.5. Explicitly, we have a PT-unbroken
phase, i.e., real energies, if the left-hand side is positive, and
PT is broken otherwise.

From the transfer-matrix perspective, we find

�(ky) = ε2(ky) − (cos ky − m)2 + γ 2 − 1

and � = 1. The latter implies that the bulk spectra for PBC
and OBC are identical in both PT-unbroken and PT-broken
phases.3 The bulk spectrum for both PBC and OBC is given
by � = 2 cos φ, i.e., the Bloch spectrum. The edge states
satisfy εL,R = ∓iγ , so that we get a gain for the left edge
state and loss for the right one. This is expected since each of
the edge states obtained above is primarily localized on one
of these two types of sites. We plot the spectra for OBC in
the bottom row of Fig. 8 with m = 1.4 and γ = 0.5. We find
Bloch EPs for four different values of ky as predicted by the
phase diagram (cf. top right panel of Fig. 8).

C. A non-Hermitian Hofstadter model

We finally consider a non-Hermitian generalization of the
Hofstadter model [73], variations of which have also been
studied in Refs. [85,86]. Recall that the Hofstadter model is
essentially a hopping model on a square lattice with hopping
of equal magnitude across each link and phases correspond-
ing to a rational flux of 2πφ with φ = p/q threading each
plaquette. We introduce non-Hermiticity in this model either
by adding onsite terms iγn corresponding to absorption/decay
and by staggering the magnitude of left hopping vs right
hopping by δn. Explicitly, assuming translation invariance and
PBC along y, we consider the Hamiltonian

H = −
∑

n

[(1 + δn)c†
ncn+1 + (1 − δn)c†

n+1cn

+ [2 cos(ky − 2πnφ) + iγn ]c†
ncn], (77)

where γn, δn ∈ R. The original Hofstadter model is periodic
with period q. To recover this periodicity as well as JL =
JR required for our transfer-matrix construction, we choose
γn = γn (mod q), δn = δn (mod q), and δq = 0, while the remaining
(2q − 1) parameters are arbitrary. We can now write the hop-
ping and onsite matrices explicitly. The hopping matrix J has
all entries equal to zero except J1,q = 1 and satisfies J2 = 0
for all q > 1. On the other hand, M has 2tn cos(ky − 2πnφ) +
iγn as its diagonal entries and (1 ± δn)’s on the first diagonal,
with γn, δn ∈ R. Explicitly, for the simplest nontrivial case of
φ = 1

3 , we set

J =
⎛⎝0 0 1

0 0 0
0 0 0

⎞⎠, M =

⎛⎜⎝2 cos
(
ky − 2π

3

) + iγ1 1 + δ1 0

1 − δ1 2 cos
(
ky + 2π

3

) + iγ2 1 + δ2

0 1 − δ2 2 cos(ky) + iγ3

⎞⎟⎠, (78)

3Note that, in general, this is ensured by the PT symmetry only in the PT-unbroken phase.
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FIG. 9. The real and imaginary parts of the spectrum for the φ =
1
3 non-Hermitian Hofstadter model on N = 25 unit cells with PBC
(top) and OBC (bottom) for parameters γ1 = γ2 = 0.5, γ3 = 0, δ1 =
0.6, and δ2 = −0.25.

and we find

� = (1 + δ1)(1 + δ2)

(1 − δ1)(1 − δ2)
.

We plot the spectrum with OBC and PBC in Fig. 9. When
we choose δ1 = ±1 (or δ2 = ±1), we find � = 0 or ∞ and
the continuum bands in the spectrum for the OBC shrink to
exceptional lines of order (N − 1).

V. DISCUSSION

In this paper, we construct a generalized transfer matrix for
non-Hermitian noninteracting tight-binding models and show
that various peculiarities of non-Hermitian models are related
to simple and readily computable features of the transfer
matrix. For instance, the unimodularity of the transfer matrix,
a property of Hermitian systems as well as PT-symmetric
systems in the PT-unbroken phase, is shown to be related
to a bulk-boundary correspondence, while a departure from
unimodularity is related to a difference between the PBC and
OBC spectra as well as the non-Hermitian skin effect, thereby
establishing a formal connection between these two phenom-
ena. These results are illustrated through various examples,
which are analytically tractable and highlight the power of
this method. For a particular class of systems where the
transfer matrix is two dimensional, we find that the singularity
of the transfer matrix is accompanied by the appearance of
real-space EPs in the OBC spectrum at which all states are
confined to the boundary.

We further find that the topological invariants proposed
in Refs. [50,57], which make use of a deformation of the
Brillouin zone to complex quasimomentum, can be naturally
understood and generalized in the language of transfer matri-
ces. Explicitly, for 2 × 2 transfer matrices, they are obtained
straightforwardly by replacing eik in the Bloch Hamiltonian
with

√
det T eik , i.e., by replacing the eigenvalue of the transfer

matrix for PBC with that for OBC. Moreover, the real-space
invariant proposed in Ref. [46] in the form of the biorthog-

onal polarization can also be readily obtained making use of
transfer matrices. Additionally, we show that, at least for two-
dimensional systems, we can assign a topological invariant
to the edge states by identifying the edge spectra εL,R(ky) as
closed loops on the energy Riemann surface. If these loops
are noncontractible, the edge modes can only be removed if
the bulk gap for OBC collapses, which may be independent
of the bulk gap for PBC for non-Hermitian systems. This
is indeed the case for the non-Hermitian Chern insulator
model studied in Sec. IV A 1, where a gap closing in the
PBC spectrum leaves the edge state unaffected. Therefore,
the transfer matrices, which give access to the eigensystem of
the model with open boundary conditions, provide a crucial
insight to establish the topology of these models.

Interestingly, the extension to non-Hermitian Hamiltoni-
ans of many of the results previously obtained in Ref. [76]
for Hermitian models involves several aspects that were not
needed or not quite visible in the Hermitian case. For in-
stance, the bulk spectra for PBC and OBC correspond to very
different mathematical conditions, which happen to coincide
when the transfer matrix is unimodular. A further attraction
of this generalization is the possibility of complex energies,
which lends a physical significance to the construction of an
energy Riemann surface, which was introduced for Hermitian
systems purely for mathematical convenience.

The explicit computations for the rank-1 case discussed
in Sec. III do not readily generalize to higher ranks. In
certain cases, however, additional structure in the model can
be leveraged. For instance, if the transfer matrix happens to
be symplectic, then the spectra can be obtained by using
the restriction on the eigenvalue problem that it imposes
[76, Appendix C]. In absence of such additional structure,
the spectra can be computed directly using the results of
Sec. II D, in particular, Eqs. (26) and (37). Both of these
require the diagonalization of the transfer matrix and hence
should be numerically, if not analytically, tractable. A more
algebraic approach to these cases, especially the construction
of associated Riemann surfaces and definition of boundary
invariants, requires further study.

We emphasize that the transfer-matrix approach is also
useful for systems not described by tight-binding models. For
instance, transfer matrices have been extensively used to study
localization in the phenomenological Chalker-Coddington
network models [87]. A non-Hermitian version thereof was
also studied in Ref. [88] for a one-dimensional periodic
chain with an imaginary vector potential. We believe that
the insights gleaned from our extension of transfer-matrix
formalism to non-Hermitian systems would prove useful in
diverse contexts.

One particularly interesting direction for further investiga-
tion is the implications of symmetries on the transfer matrix.
Indeed, one of the central parts of the study of Hermitian topo-
logical phases has focused on their classification, e.g, gapped
noninteracting fermionic Hamiltonians belong to one of the
10 equivalence (Altland-Zirnbauer) classes based on their
antiunitary symmetries [89,90]. The non-Hermitian analogs of
this “tenfold way” are described by Bernard and LeClair [91],
and allow for many more symmetries. Indeed, recent investi-
gations of non-Hermitian Bloch Hamiltonians have resulted
in their classification in terms of genuinely non-Hermitian
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symmetry classes [51,92], while in previous studies explicit
non-Hermitian topological phases with a trivial Hermitian
limit have already been constructed [47], and the role of
time-reversal symmetry was also investigated in Ref. [93].
The transfer-matrix approach can shed further light on the
general classification of non-Hermitian Hamiltonians since as
we show in this paper for PT symmetry, the symmetries of the
Hamiltonian may be implemented in a nontrivial manner on
the transfer matrix. Moreover, the possible difference between
spectra obtained for PBC and OBC makes a classification of
systems based on a real-space approach highly relevant.

The discrepancy between periodic and open spectra neces-
sitates the access to exact solutions of the real-space Hamil-
tonian in order to probe the topological aspects of a system.
The transfer-matrix approach, being a purely real-space con-
struction, is the ideal platform for such an endeavor. We thus
believe that transfer matrices provide a natural framework for
a general understanding of non-Hermitian systems.
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APPENDIX A: NON-HERMITIAN HAMILTONIANS
AND PT SYMMETRY

Non-Hermitian systems are described by Hamiltonians
with H �= H†, with the adjoint taken under the usual inner
product on the Hilbert space. Consequently, the left and right
eigenstates, defined by

H |ψn〉 = εn |ψn〉 , 〈φn|H = εn 〈φn| ,

are not related by conjugation and 〈ψm|ψn〉 �= δmn, i.e., the
eigenbasis is no longer orthonormal. However, 〈φm|ψn〉 =
δmn, so that one defines a biorthogonal basis and uses it to
compute the so-called biorthogonal expectation value [94]
of an observable O as 〈φ|O|ψ〉. The nonorthogonality of
eigenvectors may also lead to two or more eigenvectors be-
coming linearly dependent, so that the eigenstates do not span
the Hilbert space. Such Hamiltonians are termed defective.
For the Hamiltonian dependent on a set of parameters, their
value for which the Hamiltonian is defective is termed an
exceptional point (EP) [70,71], whose order is defined as the
number of eigenvectors that coalesce at that EP.

Systems with a parity-time-reversal (PT) symmetry [37]
form a particularly well-studied subset of non-Hermitian sys-
tems. PT is implemented as an antilinear and antiunitary
operator PT = UK with U a unitary matrix and K denoting
complex conjugation. Furthermore, (PT )2 = ±1, which cor-
responds to UT = ±U . Owing to its antilinearity, PT cannot
have eigenvectors. Explicitly, this is because if ψ were an
eigenvector, so would aψ for any a ∈ C, but

PT ψ = UKψ = ρψ ⇒ PT aψ = a∗ρψ.

However, a state may be left invariant up to a phase under PT.
A further constraint is imposed by

(PT )2ψ = PT ρψ = |ρ|2ψ,

so that (PT )2 = −1, there are no states left invariant under
PT , while for (PT )2 = 1, one might have such states.

Under the PT operation, the Bloch Hamiltonian transforms
as

PT : HB(k) �→ U H∗
B(k)U†. (A1)

If HB is PT symmetric, the states must satisfy

HBψ = εψ ⇐⇒ HB PT ψ = ε∗ PT ψ, (A2)

where ε ∈ C in general. For (PT )2 = 1, a state may be in-
variant under PT. In this case, the two eigenvalue equations in
Eq. (A2) contain the same eigenvector, so that ε = ε∗. When
this is true for all eigenstates, the system is termed to be in a
PT-unbroken phase. On the other hand, if there are eigenstates
that are not invariant under PT, i.e., the PT symmetry is
spontaneously broken, then we are in a PT-broken phase.
For (PT )2 = −1, no state is left invariant by PT, so that the
system is always in a PT-broken phase. The states satisfy an
analog of Kramers’ theorem [37], viz., all eigenstates come
in orthogonal pairs whose energies are related by complex
conjugation. A trivial consequence of this case is that the
Bloch Hamiltonian must be even dimensional.

APPENDIX B: PT SYMMETRY AND SVD

We derive the constraints imposed by the PT symmetry on
the singular values and vectors of the hopping matrix. Recall
that the reduced SVD of a matrix J ∈ Mat(n,C) is defined as
[80, Sec. 6.3]

J = V 	W † =
r∑

n=1

ξnvnw†
n, (B1)

where r = rank J , ξn > 0 are the singular values, and vi, wi

the corresponding left/right singular vectors. A pair of singu-
lar vectors v, w is defined by the relations

Jw = ξv, J†v = ξw. (B2)

Note that these expressions are manifestly invariant under a
simultaneous phase rotation v → eiθ v, w → eiθ w.

In presence of a PT symmetry, the hopping matrix satisfies
JT = U†JU with U ∈ U(n), so that Eq. (B2) becomes

J∗U†v = U†J†v = ξU†w,

JTU†w = U†Jw = ξU†v.

A complex conjugation leads to

Jw̃ = ξ ṽ, J†ṽ = ξ w̃,

where w̃ = UT v∗ and ṽ = UT w∗. We thus find two sets of
vectors satisfying the equation for a singular value ξ , so that
either the two vectors are proportional, i.e.,

∃ ρ ∈ C such that v = λ̃v ⇐⇒ w = λw̃,

or ξ is degenerate as a singular value with two sets of left and
right singular vectors. When the two vectors are proportional,
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we find

v = λUT w∗ = |λ|2UTU†v. (B3)

Here, we consider the two possible cases: If UT = U , then
Eq. (B3) holds iff |λ| = 1. Setting λ = e2iχ , we get v =
e2iχUT w∗, and we can use the invariance of Eq. (B2) under
the phase rotation v → veiχ , w → weiχ to fix the phase of
v, w such that v = Uw∗ and w = Uv∗. Continuing this for all
singular vectors of J , we find

V = U W ∗, W = U V ∗,

which are the requisite conditions on the singular vectors of J .
On the other hand, if UT = −U , then � λ ∈ C for which

Eq. (B3) holds. Therefore, the singular value ξ must be de-
generate with the corresponding right and left singular vectors
reading w, w̃ and v, ṽ, respectively. In this degenerate sector,
we set v = (v, ṽ) and w = (w, w̃) to write the SVD of J in
this subspace as v 12 w. Using the definition of ṽ and w̃, this
leads to

v = (Uw̃∗,−Uw∗) = Uw∗J , J =
(

0 −1
1 0

)
.

J thus falls apart into these 2 × 2 v 12 w blocks with degener-
ate singular values, so that r = rank J must be even. Defining
� = J ⊗ 1r/2, we find

V = U W ∗ �, W = U V ∗ �,

which are the requisite conditions on the singular vectors of J .

APPENDIX C: SCHUR COMPLEMENT AND INVERSION

Here, we explore some of the algebraic properties of
the rank-1 transfer matrix. Given the onsite matrix M ∈
Mat(n,C) and energy ε ∈ C, the onsite Green’s function can
be written as

G ≡ (ε1 − M )−1 = 1

Q(ε)
G(ε), (C1)

where Q(ε) ≡ det(ε1 − M ) is by definition a polynomial in
ε of order n, and G(ε) ≡ adj(ε1 − M ) ∈ Mat(n,C) is the
adjugate (i.e., the matrix of minors) [80, Sec. 4.4.1] of M,
whose elements are polynomials in ε of order � n − 1. The
transfer matrix can be written as

T = 1

ξGvw

(
Q −Gwwξ

Gvvξ
ξ 2

Q (GvwGwv − GvvGww )

)
, (C2)

where Gab(ε) ≡ Q(ε)Gab(ε), a, b ∈ {v, w} are polynomials
(instead of rational functions) in ε. The discriminant becomes

�2 − 4� = 1

ξ 2G2
vw

[(
Q + ξ 2

Q
(GvwGwv − GvvGww )

)2

− 4ξ 2 GvwGwv

]
, (C3)

and we are interested in its zeros. Naively, owing to the
G2

vvG2
ww term, the numerator is a polynomial of order �

ε4(n−1) in ε. However, in the following we show that

f (ε) ≡ 1

Q(ε)
(GvwGwv − GvvGww ) (C4)

is a polynomial in ε of order � n − 1, so that the leading-order
term in the numerator of �2 − 4� arises from Q2, rendering
it a polynomial in ε of order 2n.

We begin by using the basis independence of the transfer-
matrix computation to choose a basis of Cn in which v =
(1, 0, 0, . . . ) and w = (0, 1, 0, . . . ), so that

G(ε) = Q(ε)G(ε) =
(

A B
C D

)
, (C5)

where A ∈ Mat(2,C) and the numerator of f (ε) is simply
det A. Using the fact that for block matrices

det G = det A det S, S ≡ D − CA−1B, (C6)

we can rewrite f (ε) as

f (ε) = det A(ε)

Q(ε)
= det G(ε)

Q(ε) det G(ε)
= Qn−2(ε)

det S(ε)
, (C7)

where we have used the fact that det G = Qn−1. Using the
inversion formula for block matrices [76, Eq. (A8)], Eq. (C5)
becomes

G−1 =
(

A−1 + A−1BS−1CA−1 −A−1BS−1

S−1CA−1 S−1

)
. (C8)

But, we also have

G−1(ε) = 1

Q(ε)
(ε1 − M ). (C9)

We thus identify S−1 as the (n − 2) × (n − 2) lower right term
in the block structure of (ε1 − M ). Finally,

f (ε) = Q(n−2)(ε) det S−1(ε) = det (ε1 − M )X , (C10)

where (. . .)X denotes the restriction to the subspace spanned
by the orthogonal complement of v and w. Thus, f (ε) is a
polynomial in ε of order n − 2, which proves our desired
result.

APPENDIX D: EXPLICIT COMPUTATIONS FOR r = 1

We compute T n(ε) explicitly for T ∈ Mat(2,C) and arbi-
trary n ∈ Z and use it to derive explicit conditions on ε for
obtaining an eigenstate of a system with OBC.

1. Computing T n

We start off with Cayley’s theorem, which states that a ma-
trix satisfies its characteristic equation. Thus, T ∈ Mat(2,C)
satisfies

T 2 − � T + �1 = 0, (D1)

where � = tr T and � = det T . For � = 0, we simply get
T n = �n−1T . On the other hand, for � �= 0, using Eq. (D1)
repeatedly, one can reduce T n = AnT + Bn1. Using T n+1 =
T T n, i.e.,

An+1T + Bn+11 = (An� + Bn)T − An�1,

we obtain a recursion relation for the coefficients

An+1 = An� + Bn, Bn+1 = −An�.

These reduce to a three-term recursion for An as

An+1 = An� − An−1�, (D2)
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with the initial condition A1 = 1 and A2 = �. For � �= 0,
setting An = �(n−1)/2an, this reduces to

an+1 = 2z an − an−1; z = �

2
√

�
(D3)

with the initial conditions a1 = 1 and a2 = 2z. This is the
defining relation for the Chebyshev polynomials of the second
kind Un(z) [95, Sec. 10.11], so that we identify an = Un−1(z).
This leads to our final result

T n = �n/2

[
Un−1(z)√

�
T − Un−2(z)1

]
, (D4)

which can be easily evaluated using the closed-form expres-
sions for the Chebyshev polynomials [95, Sec. 10.11, Eq. (2)]

Un(z) = λn+1 − λ−(n+1)

2(λ − λ−1)
= sin ((n + 1)φ)

sin φ
, (D5)

where

z = λ + λ−1

2
= cos φ.

The former expression for Un(z) in Eq. (D5) is useful for
arbitrary z ∈ C, while the latter is naturally more useful when
z ∈ R and |z| < 1.

2. Open boundary conditions

For � = 0, using T n = �n−1T , we trivially get

�N−1

ξ Gvw

(
1

ξGvv

)
= r

(
0
1

)
.

Thus, the bulk spectrum collapses to a single point given
by � = � = 0. For � �= 0, using the explicit form of T [cf.
Eq. (38)], the condition for OBC in Eq. (42) becomes

�N/2

q

(
UN−1(z) − q UN−2(z)

ξGvvUN−1(z)

)
= r

(
0
1

)
, (D6)

where r is arbitrary and we have defined

q = ξ
√
GvwGwv, z = �

2
√

�
= 1 + q2 − ξ 2GvvGww

2q
.

The condition on ε can now be written as

q = UN−1(z)

UN−2(z)
. (D7)

This can be recast in another useful form by substituting
Eq. (D7) in Eq. (D2). We get

ξ
√
GvvGww =

√
q2 − 2qz + 1

=
√

U 2
N−2(z) − UN−1(z)UN−3(z)

UN−2(z)

=
√∑N−2

k=0 U2k (z) − ∑N−3
k=0 U2k+2(z)

UN−2(z)

= 1

UN−2(z)
, (D8)

where we have used the recursion relation for the Chebyshev
polynomial in Eq. (D3) as well as the product formula

Um(z)Un(z) =
n∑

k=0

Um−n+2k (z), m � n.

In the last step, we have used the fact that U0(z) = 1.
The conditions for OBC can be further reduced in the large-

N limit. Using the first definition of Chebyshev polynomials
from Eq. (D5), we have

q = λN − λ−N

λN−1 − λ−(N−1)
. (D9)

For N → ∞, we need to consider three cases. For |λ| > 1, we
can compute

q = lim
N→∞

λ
1 − λ−2N

1 − λ−2(N−1)
= λ = z +

√
z2 − 1,

while for |λ| < 1, we get

q = lim
N→∞

1

λ

λ2N − 1

λ2(N−1) − 1
= 1

λ
= z −

√
z2 − 1.

Finally, for |λ| = 1, setting λ = eiφ , we get

q = eiNφ − e−iNφ

ei(N−1)φ − e−i(N−1)φ
= sin (Nφ)

sin ((N − 1)φ)
,

which does not have a well-defined limit as N → ∞; instead,
the right-hand side oscillates wildly since it has zeros at φ =
kπ/N and poles at kπ/(N − 1). Thus, for any q(φ), we get
N solutions in φ ∈ [0, π ), which become dense in [0, 2π ) as
N → ∞. This is our bulk band for OBC. In terms of z, this
also corresponds to setting z = cos φ.

We can also derive a condition for a boundary condition
interpolating between PBC and OBC (cf. Sec II D), for we
demand that 1 ∈ Spec[KT N ]. Since KT N is a 2 × 2 matrix, its
two eigenvalues must be 1 and det(KT N ) = det K (det T )N =
�N , so that

tr(KT N ) = 1 + �N = 2 �N/2 cosh(Nζ0), (D10)

where ζ0 = 1
2 log �. We next compute the left-hand side using

Eq. (D4) as

tr(KT N ) = �N/2

[
UN−1(z)√

�
tr(KT ) − UN−2(z)tr(K )

]
= �N/2

[
UN−1(z)

(
1

qκ
+ κ

q
(2qz − 1)

)
−UN−2(z)

(
1

κ
+ κ

)]
,

where we have used

ξ 2(GvwGwv − GvvGvw ) = q �√
�

− 1 = 2qz − 1.

Using the recursion relation for the Chebyshev polynomials to
replace

2z UN−1(z) = UN (z) + UN−2(z),

Eq. (D10) can be reduced to

cosh(Nζ0) = κ UN (z) − 1

q

(
κ − 1

κ

)
UN−1(z) − 1

κ
UN−2(z).
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Setting z = cos χ for some χ = φ + iζ ; φ, ζ ∈ R and using
the definition of Un(cscχ ), this can be rearranged to get(

κ − 1

κ

)(
cot χ − cscχ

q

)
= 2

cosh(Nζ0)

sin(Nχ )
−

(
κ + 1

κ

)
cot(Nχ ). (D11)

The left-hand side is now independent of N . For the bulk
states, we shall require that the right-hand side does not have

a limit as N → ∞ (as in the OBC case above). Thus, the
condition for an eigenstate becomes � = 2

√
� cos(φ + iζ )

for some φ ∈ [0, π ], with

ζ ≈ ζ0 − 2

N
log

(
κ + κ−1

2

)
(D12)

for κ close to 1. Therefore, the spectrum for κ �= 0, 1, unlike
for the PBC and OBC cases, is in general quite sensitive to the
system size.
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