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Understanding strongly correlated systems driven out of equilibrium is a challenging task necessitating the
simultaneous treatment of quantum mechanics, dynamical constraints, and strong interactions. A Mott insulator
subjected to a uniform and static electric field is prototypical, raising key questions such as the fate of Bloch
oscillations with increasing correlation strength, the approach to a steady-state DC transport regime and the role
of dissipation in it, and electric-field-driven phase transitions. Despite tremendous efforts over the past decade
employing various numerical and analytical approaches, the manner in which a nonequilibrium steady state gets
established has remained an unresolved problem. We develop here an effective large-N Keldysh field theory
for studying nonequilibrium transport in a regular one-dimensional dissipative Mott insulator system subjected
to a uniform electric field. Upon abruptly turning on the electric field (a quench), a transient oscillatory current
response reminiscent of Bloch oscillations is found. In the regime of small tunneling conductance the amplitude
of these oscillations, over a large time window, decreases as an inverse square power law in time, ultimately
going over to an exponential decay beyond a large characteristic time τd that increases with N . Such a relaxation
to a steady-state DC response is absent in the dissipation-free Hubbard chain at half filling. The steady-state
current at small fields is governed by large-distance cotunneling, a process absent in the equilibrium counterpart.
The low-field DC current has a Landau-Zener-Schwinger form but qualitatively differs from the expression for
pair-production probability for the dissipation-free counterpart. The breakdown of perturbation theory in the
Mott phase possibly signals a nonequilibrium phase transition to a metallic phase. Our study sheds light on the
approach of a driven, dissipative strongly correlated system to a nonequilibrium steady state and also provides a
general analytic microscopic framework for understanding other nonequilibrium phenomena in these systems.
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I. INTRODUCTION

A central challenge in the area of dissipative quantum
systems driven far from equilibrium relates to understand-
ing the relaxation of initial conditions and the approach
to nonequilibrium steady states. The temporal evolution is
governed by the distribution of the initial disturbance over
the many-body eigenmodes of the system, the nature of
the bath and its coupling to the system, and the driv-
ing protocol. Mott insulator systems driven out of equilib-
rium are particularly interesting as they provide a meeting
ground for quantum mechanics, strong interactions, dynam-
ical processes, and constraints. Many recent studies have
attacked the problem of the nonequilibrium response of
Fermionic [1–23] or Bosonic [24–28] Mott insulator sys-
tems subjected to a uniform and static electric field. One
of the key questions concerns the fate of Bloch oscillations
with increasing correlation strength [5,8,10,12,13,22,24,26].
Another important question is regarding the role played
by dissipation in the attenuation of the Bloch oscillations
and the eventual approach to a nonequilibrium steady state
(DC transport in particular) [6,7,11,14,15,22]. A third cru-
cial issue is related to the nature of nonequilibrium phase
transitions in Mott insulator systems [2–4,6,7,16,19–24].
Different techniques have been employed in the literature
that address some of these issues—these include numeri-
cal approaches such as solving time-dependent Schrödinger

equations [2], nonequilibrium dynamical mean-field theory
(NDMFT) [5,6,8,9,11–15,22,23,29], time-dependent density
matrix renormalization group (TDMRG) [3,18–20], as well as
analytic ones based on the Bethe ansatz [4,21], including the
phenomenological generalizations to PT -symmetric models
[1,7]. In this paper, we develop a new analytic field theoretical
approach based on the Keldysh technique and address the
above three questions. Our method also provides a general
analytic framework to investigate novel and wide variety of
nonequilibrium phenomena in strongly correlated systems.

It is long known that a noninteracting particle hopping
on a periodic lattice subjected to a uniform electric field ex-
hibits Bloch oscillations—the spectrum is discrete (Wannier-
Stark ladder [30,31]), and the particle motion is bounded.
Correlations, dissipation, and disorder can all suppress the
Bloch oscillations by providing relaxation or breaking lattice
translation symmetry. For field strengths such that the po-
tential energy change between neighboring sites far exceeds
correlation and other energy scales in the problem, Bloch
oscillations have been found to persist [5,8,25,26]. Physically,
this can be understood from the fact that the noninteracting
Wannier-Stark states are highly localized at the lattice sites at
strong fields, and the correlations remain local in the Wanner-
Stark basis. At fields where the potential energy drop in a bond
is comparable to the interaction strength, study of the Bose-
Hubbard model at integer filling establishes that the motion
remains finite [24]. Recent numerical studies of fermionic
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Mott insulators show that at large fields, the electrons execute
Bloch oscillations whose frequency approaches the noninter-
acting counterpart [5]. At smaller fields, the understanding
for a long time was that interactions, through mixing of
different momentum modes, attenuate the Bloch oscillations
ultimately giving way to a steady-state DC response [5,8].
However, recent work suggests that the apparent steady-state
DC behavior is only transient and ultimately gives way to
finite (oscillatory) motion with a period different from that
of the noninteracting Wannier-Stark states [22]. The current
understanding is that dissipation is a necessary ingredient for
establishing steady-state DC response.

Bloch oscillations can be suppressed by dissipation
through coupling the system to a bath. Earlier literature shows
that even at a single-particle level, coupling the system to a
phonon bath [32] or a fermionic bath [33] results in a finite
DC response at any value of the coupling strength; however,
for the case of coupling to a phonon bath, signatures of the
Wannier-Stark ladder are still evident in the spectral func-
tion, which are found to diminish with increasing electron-
phonon coupling [34]. Recent works have also considered
the effect of correlations in dissipative models. The dissipa-
tion is introduced either by coupling the system to a bath
[6,11,14,15] or by phenomenological means, for example, by
introducing non-Hermitian terms in Hamiltonians preserving
PT symmetry [1,7] or using Lindblad formulations [35]. The
former (heat bath) case has been studied using a numerical
Keldysh DMFT approach [6], while the Bethe ansatz method
is usually employed in the latter for one-dimensional systems
[7]. Both these approaches yield a steady-state nonequilib-
rium response and nonequilibrium transitions from the Mott
insulator state to a metallic state. In addition, an important
observation was made in Ref. [6] that weak dissipation does
not completely suppress quantum coherent oscillations—the
numerically calculated single-particle spectral function shows
“Bloch islands” at beating frequencies involving the non-
interacting Bloch oscillations and the Coulomb interaction
strength. These features get suppressed as dissipation is in-
creased. Despite these advances in the numerical studies of
the microscopic model, many important issues have not yet
been addressed; for instance, it is not known how the transient
Bloch oscillations decay in time eventually establishing a DC
current state and how they get suppressed in the presence
of dissipation. Phenomenological models such as the PT
symmetric Hubbard models are analytically tractable and
give valuable insights such as the critical behavior near the
nonequilibrium Mott insulator to metal transition; however,
relating the model parameters directly to experimentally rele-
vant quantities has proved to be a challenge. Moreover, these
models are designed to study the nonequilibrium steady state
but not the transient response.

In band insulators, the linear response conductivity van-
ishes at zero temperature but electronic transport at finite
electric fields is possible through the generation of low-energy
particle-hole pairs by the Landau-Zener-Schwinger (LZS)
mechanism [36–38], with the probability P of this process
related to the electric field measured in terms of the potential
energy drop, D, across a link, and the band-gap � as P ∼
exp[−�2/cD], where c is a constant with the dimension
of energy. For the fermionic Hubbard chain subjected to

an electric field, a similar expression has been proposed in
Ref. [3], with band-gap � being replaced by the Mott gap.
Turning on a finite dissipation (coupling to a fermionic bath)
under such nonequilibrium conditions, DMFT calculations of
Ref. [6] show that the Hubbard bands leak into the Mott
gap, and beyond some value of the dissipation strength, a
quasiparticle feature, signaling a bad metallic phase appears,
in the spectral function. The crucial question here is whether
and under what circumstances this dielectric breakdown be-
comes a true nonequilibrium phase transition. Analysis of the
phenomenological PT symmetric fermionic Hubbard chain
[7] suggests that this is a true nonequilibrium quantum phase
transition and is associated with breaking of PT symmetry in
the metallic phase.

In this paper we develop an effective Keldysh field theory
of a dissipative one-dimensional Mott insulator subjected to
a uniform electric field and study it analytically to address
the broad questions outlined above. Our microscopic model
consists of a one-dimensional array of mesoscopic metallic
quantum dots - each of these quantum dots contains a large
number of electrons occupying the dot energy levels. The
large number of degrees of freedom (DoF) in each mesoscopic
dot effectively constitute a fermionic bath and provide a
source of dissipation through the Landau damping mecha-
nism. In addition, as we discuss below, the large DoF acts
as a large-N parameter (see also Ref. [39]) and facilitates
a tractable analytic treatment of our model. The analytic
tractability that our large-N formulation provides is analo-
gous to that of large dimensionality in the DMFT approach to
the Hubbard model. Under equilibrium conditions, the model
is described by the following Hubbard-like Hamiltonian with
multiple flavors (representing dot energy levels) of electrons
at each site (we set electron charge e = 1, lattice spacing a =
1, h̄ = 1, kB = 1):

Ĥ = Ĥ0 + ĤC + ĤT , where (1)

Ĥ0 =
∑
k,α

ξαc†
j,αc j,α, (2)

ĤC =
∑

k

EC

[(∑
α

c†
k,α

ck,α

)
− N0

]2

, (3)

ĤT =
∑

k

∑
α,β

(
t̃ k,k+1
αβ c†

k,α
ck+1,β + H.c.

)
. (4)

Here k labels the site index, α represents the different energy
levels (Eα) within a dot, ξα = Eα − μ (μ being the Fermi level
in the dot), t̃ k,k+1

αβ is the interdot tunneling matrix element
connecting levels α and β on dots labeled k and k + 1,
respectively, EC is the Coulomb energy of single-electron
charging, and N0 is the equilibrium charge on a dot. The
tunneling between the dots could be through an insulating
barrier (as is the case in granular metals) or through ballistic
point contacts (as may be the case in artificial quantum dot
arrays). The Fermi energy in each dot is assumed to be
the largest energy scale. In addition, we also have a small
energy scale, δ, which is the mean level spacing in the dot
and is approximately related to the volume of the dot, V,

and the density of states at the Fermi level, ν(μ) through
δ ≈ 1/(ν(μ)V ). Elementary excitations in each isolated dot
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are of the low-energy particle-hole kind, which in the limit
of large dot size, tend to become gapless. Interestingly, other
models such as the Sachdev-Ye-Kitaev (SYK) [40,41] model
on a one-dimensional lattice [42,43] interaction share a similar
structure, and are also characterized by gapless excitations
locally.

We study the model in Eq. (1) in the Mott insulator regime
where EC � δ, T and g � 1, where T is the temperature, and
g is the dimensionless interdot tunneling conductance. For
granular metals, the intergrain tunneling conductance is of
the form g ≈ π2|t̃α,β |2[V ν(μ)]2 = π2|t̃α,β |2/δ2. For ballistic
point contacts separating the quantum dots, the transverse
(waveguide) momentum k⊥ is conserved during tunneling
(i.e., t̃α,β ≡ t̃k⊥), but the longitudinal momentum k‖ is not, and
g has the form, g ≈ π2∑

k⊥ |t̃k⊥|2(ν1DL)2, where ν1D is the
one-dimensional density of states associated with the different
subbands labeled by k⊥ and L is the dot size. In this Mott
insulator regime, a conventional perturbation expansion in the
interaction is not possible. We therefore adopt a bosonization
scheme well known in the literature as the Ambegaokar-
Eckern-Schön (AES) [44,45] model of granular metals—a
class of Mott insulators. The AES model is, in effect, a rotor
model with the difference that now the phases at each site in
the AES model are dual to the total charge in the dot at that
site. The AES model consists of a charging part that represents
Coulomb blockade effects, and a dissipative tunneling part
that describes interdot hopping of electrons. Unlike other dis-
sipative models such as Caldeira-Leggett [46], the tunneling
part of the AES model is periodic in the phase fields reflecting
charge quantization. The large number of degrees of freedom
on each dot makes the model analytically tractable, allowing
one to discard terms in the effective action that are higher
order than two in the interdot tunneling conductance. The
model is tailor-made for studying transport, and consequently,
information about the internal low-energy excitations at a site
appears only at the level of the tunneling term.

In equilibrium or linear response situations, the AES
model appears in diverse contexts including unusual transport
phenomena in granular Mott insulators such as cotunneling
dominated variable-range hopping [45,47] and breakdown of
the Wiedemann-Franz law by emergent Bosonic modes [48]
and the Kondo effect in quantum critical metals [49,50]. A
Bosonic channel for thermal transport analogous to that in
the AES model [48] has recently been reported for the SYK
model [43]. It is also well-known that even in the regime
of metal-like conduction (g � 1, T � gδ), the low-energy
excitations of the AES model are not quasiparticle-like, i.e.,
are not characterized by their momenta and spin, a property
shared with the SYK model [43].

We generalize the AES model to the nonequilibrium
case using the Keldysh formalism. For the case of a single
mesoscopic quantum dot connected to noninteracting leads,
a similar Keldysh generalization has been studied in the
literature (see, e.g., Ref. [51]). The granular chain, as we
shall see, has significantly different physics from the single
dot problem arising from the periodicity of the lattice and
also the relevance of long-range tunneling processes since
potential energy gain from cotunneling over multiple dots
can offset the Coulomb blockade effects. In the equilibrium
(Matsubara) treatment of the AES model, to properly treat

charge quantization effects, essential in Coulomb blockade,
finite winding numbers of the phase fields must be taken
into account. In the real time Keldysh case, this is achieved
by going to a mixed phase-charge representation (instead
of a pure phase-only representation) and restricting the path
integral over the classical component of the charge field to
integer values.

We calculate the current response of our Keldysh AES
model for the granular Mott insulator subjected to a uniform
electric field at temperatures much smaller than D and EC,

and we further assume the mesoscopic dots are sufficiently
large so that the temperature greatly exceeds the mean level
spacing δ. After the electric field is switched on, the leading-
order (in g) current response shows an oscillatory transient
response whose primary components are the two beat frequen-
cies, ω± = |D ± 2Ec|,

Jtr ≈ − 4g�(τ )

(2π )2EC

1

τ 2

{(
D − 2EC

D + 2EC

)
sin[(D + 2EC )τ ]

+
(

D + 2EC

D − 2EC

)
sin[(D − 2EC )τ ]

}
. (5)

These oscillations arise, as we shall show in the paper, from a
combination of the periodicity of the lattice, Coulomb corre-
lations, and charge quantization. These beat frequencies have
also been observed [6] in DMFT calculations of the dissipative
Hubbard model in the form of “island” features in the spectral
function, and in the dissipationless Bose-Hubbard model [25].
In the absence of correlations (EC = 0), these oscillations
would correspond to the Bloch oscillation frequency ωB =
|D|. However, the 1/τ 2 decay of the amplitude of the current
oscillations does not persisit indefinitely, and we show that it
crosses over to an exponential decay to the steady state beyond
a characteristic time τd ∼ 1/TD, where TD is the effective
electron temperature in the dots in the nonequilibrium steady
state. We find that the temperature TD decreases with N , and
vanishes as N → ∞.

Apart from these oscillations, the current also has a finite
DC component for |D| > 2EC,

Jdc = g�(τ )

π
[(D − 2EC )�(D − 2EC ) + (D + 2EC )

×�(−2EC − D)], (6)

and is a direct consequence of the presence of dissipation.
Next, to understand the nature of the DC response at

small fields, |D| < 2EC, we consider the long time limit of
the current response. For this purpose, we take into account
higher-order cotunneling processes over multiple dots such
that the Coulomb blockade is offset by the extra potential
energy gain. We provide analytic expressions for the field
dependence of current up to O(g2). The analysis of higher-
order terms at arbitrary field strengths rapidly becomes very
complicated; however we infer some general features. In the
zero temperature limit, there is a hierarchy of thresholds,
D(n)

th = 2EC/n, with the nth-order current corresponding to the
matching of the Coulomb scale with the electrostatic potential
energy gain from cotunneling over n successive dots. The
leading order in g contributions to the current near these
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thresholds has the form

j (n)(D) ∼ nDgn(1 − 2EC/nD)2n−1�(nD − 2EC ), (7)

where � is the Heaviside step function. Based on this
expression, we show that at low fields and small g, the
field dependence of the current has the LZS form, j(D) ∼
D[g/ ln2(1/g)]2EC/D, but with qualitative differences from the
LZS particle-hole pair production probability P ∼ e−E2

C/cD for
the nondissipative Hubbard chain at half filling [4] deep in the
Mott insulator phases.

An important question relates to the nature of the transition
from the Mott insulating state to a conducting state as a func-
tion of the field. In the dissipation-free case, it is evident from
the expression for the LZS pair production probability that it is
a crossover, howsoever sharp, and not a true phase transition.
A true phase transition to a metallic state is indicated if
the perturbation expansion for the current made from within
the Mott insulator phase diverges as a function of g(�1) or
D(<2EC ). If the form of the current is assumed to have the
form shown in Eq. (7) for a finite but small field strength away
from the thresholds, then the criterion for divergence of the
perturbation expansion for the current is

gexp[D/EC] ∼ 1. (8)

However, as we have already mentioned above, the field
dependence of high-nth-order terms is complicated for fields
away from the respective thresholds D(n) = 2EC/n, and it
is not currently clear to us how the above criterion would
change.

The rest of the paper is organized as follows. In Sec. II,
beginning with the microscopic model of Eq. (1), we out-
line the derivation of our effective Keldysh-AES action. The
electric field is introduced through a time-dependent vector
potential. We also present the functional representation of
the charge current in terms of the correlation functions of
the phase fields. In Sec. III, we analyze the leading-order
contribution to the current from the time the electric field
is turned on. We show that there are Bloch-like oscillations
whose amplitudes decay as a power-law in time upto a large
time τd . Further, the existence of a finite DC response at long
times is also established. Section IV is devoted to the analysis
of the long-time DC behavior for small field strengths. For this
purpose, the higher-order cotunneling processes over multiple
dots are considered in a perturbative expansion in small g,
around the “atomic limit” of isolated dots. We discuss the LZS
form of the current response at small fields, and the possible
nonequilibrium phase transition to a metallic state. Finally, in
Sec. V we conclude with a discussion of our results and open
questions.

II. KELDYSH-AES ACTION

In this section, we obtain the effective Keldysh-AES action
from the microscopic Hamiltonian introduced in Eq. (1) and
also provide functional representation of the charge current
that will be used throughout. Our derivation of the effective
Keldysh-AES action parallels the one in Ref. [51] for the case
of a single quantum dot connected to noninteracting leads.

The first step consists of Hubbard-Stratonovich decoupling
of the part of the action corresponding to Eq. (1) that contains
the Coulomb interaction term:

e−i
∫

t HC = exp

[
−ι
∑

k

∫
t
EC

(∑
α

ψ̄k,αψk,α − N0

)(∑
α

ψ̄k,αψk,α − N0

)]

∝
∫

DV exp

⎧⎨
⎩ι
∑

k

∫
t

1

4EC

[
V − 2EC

(∑
α

ψ̄k,αψk,α − N0

)]2
⎫⎬
⎭e−i

∫
t HC . (9)

To study nonequilibrium transport, we put our action on the Keldysh contour and we label the fields with superscripts + and
− corresponding, respectively, to the forward and backward time parts of the Keldysh contour. For incorporating the initial
condition information (i.e., the initial density matrix) it is customary to work with a rotated classical-quantum basis in the
Keldysh space:

V c = 1

2
(V + + V −), Vq = V + − V −, (10)

ψc = 1√
2

(ψ+ + ψ−), ψq = 1√
2

(ψ+ − ψ−), (11)

ψ̄c = 1√
2

(ψ̄+ − ψ̄−), ψ̄q = 1√
2

(ψ̄+ + ψ̄−), (12)

� =
(

ψc

ψq

)
, �̄ = (ψ̄c ψ̄q). (13)

We call the superscripts c and q the “classical” and “quantum” components, respectively. The action S now assumes the form

S = S0 + SC + ST , where

S0 =
∑
k,α

∫
t
�̄k,α

[
ι∂t + ιη + μ − Eα − V c

k −V q
k
2 + 2ιηFk

−V q
k
2 ι∂t − ιη + μ − Eα − V c

k

]
�k,α,
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SC =
∑

k

∫
t

(
1

2Ec
V c

k V q
k + N0V

q
k

)
,

ST =
∑
k,α,β

∫
t
�̄kα

[
t̃ k,k+1
α,β 0

0 t̃ k,k+1
α,β

]
�k+1,β + c.c. (14)

Here Fk is related to the distribution function for noninter-
acting electrons in the kth dot and is, in general, a function
of two time arguments, i.e., Fk (t, t ′). For the case of thermal
equilibrium, Fk depends only on the difference t − t ′, and
in frequency space, it has the form F (ω) ≡ 1 − 2 f (ω) =
tanh(ω/2T ), where f (ω) is the Fermi-Dirac distribution
function and T is the temperature. The infinitesimally small
positive constant, η, ensures the theory has the proper causal
structure. At this stage, it would seem natural to integrate out
the noninteracting fermions, and expand the resulting deter-
minant to obtain an effective field theory for the Hubbard-
Stratonovich fields. However, the Hubbard-Stratonovich fields
effectively shift the entire band of electrons and, in fact, the
shifts are large (∼EC) whenever tunneling events occur. We
therefore perform a gauge transformation to eliminate the
fluctuating Hubbard-Stratanovich fields that appear in S0,

�k,α → e−ιφ̂k �k,α,�̄k,α → �̄k,αeιφ̂k , (15)

where

φ̂k = φc
k + φ

q
k

σ1

2
, (16)

and the phase fields φ̂k are chosen such that their classical and
quantum components obey

∂tφ
c,q
k = V c,q

k . (17)

After the above gauge transformation, we have

S0 =
∑
k,α

∫
t
�̄k,α

[
ι∂t + ιη + μ − Eα 2ιηFk

0 ι∂t − ιη + μ − Eα

]

×�k,α, (18)

SC =
∑

k

∫
t

(
1

2Ec
∂tφ

c
k∂tφ

q
k + N0∂tφ

q
k

)
, (19)

ST =
∑
k,α,β

∫
t

(
t̃ k,k+1
α,β �̄kα exp(−ιφ̂k,1)�k+1,β + c.c.

)
,

φ̂k,1 = φ̂k+1 − φ̂k. (20)

The term in Eq. (19) proportional to N0 is a Berry phase
term. Our next step is to integrate out the fermions to obtain
an effective action in terms of the phase fields. We denote
the fermion-bilinear part of the action as SF = S0 + ST =
ˆ̄�Ĝ−1�̂, with

Ĝ−1 = Ĝ−1
0 + T̂ , (21)

where

(Ĝ0)−1
k,α;k,α =

[(
gR

k,α

)−1
2ιηFk

0
(
gA

k,α

)−1

]
, (22)

T̂ k,α;k+1,β = t̃ k,k+1
α,β exp(−ιφ̂k,1). (23)

In Eq. (22), the diagonal elements are the usual inverse
retarded and advanced Green functions,(

gR,A
k,α

)−1 = ι∂t ± ιδ + εF − Eα. (24)

The interdot hopping matrix T̂ is diagonal in Keldysh space as
well as in the time indices. Integrating out the fermions gives
us Z = ∫

Dφ exp[ιSC[φ] + tr ln(ιĜ−1)], and we use Eq. (21)
to re-express the fermionic determinant as

ln(Ĝ−1) = ln(1 + Ĝ0T̂ ) + ln(Ĝ−1
0 ). (25)

To obtain the effective action in terms of the phase fields,
we discard the φ-independent ln(Ĝ−1

0 ) make a Taylor ex-
pansion of ln(1 + Ĝ0T̂ ). The first-order term vanishes since
tr(Ĝ0T̂) = 0 as Ĝ0 is diagonal in k and Tk;k = 0. Then, up to
second order in T̂ we have

Z =
∫

Dφ exp(ιSC[φ] + ιStun[φ]),

Stun[φ] = ι

2
tr(Ĝ0T̂ Ĝ0T̂ ). (26)

Here Ĝ0 has the following structure in Keldysh space:

(Ĝ0)k,α;k,α (t, t
′
) =

[
gR

k,α Fk
(
gR

k,α − gA
k,α

)
0 gA

k,α

]
(t, t

′
), (27)

where

gR,A
kα

(t, t
′
) = 1

2π

∫
ω

gR,A
k,α

(ω) exp[−ιω(t − t
′
)]

=
∫

ω

exp[−ιω(t − t
′
)]

ω ± ιδ + μ − Eα

. (28)

We assume that the matrix elements of T̂ are independent of
the energy indices and also replace summation over the dis-
crete states by corresponding integrals,

∑
α ↔ V

∫
ε

dε ν(ε),
with ν(ε) = 1

V

∑
α δ(ε − Eα ) the density of states in a dot.

The summations over the energy indices gives quantities
of the form

∑
α gR,A

k,α
(ω) = V

∫
ε
ν(ε)gR,A

k,α
(ω) ≈ ∓(πι)V ν(ω +

μ) ≈ ∓(πι)V ν(μ). With these approximations, we arrive at

tr(Ĝ0T̂ Ĝ0T̂ ) ≈ −2π2|t̃ |2(V ν(μ))2
∫

t,t ′

∑
k

tr{�k(t − t
′
) exp[−ιφ̂k,1(t

′
)]�k+1(t

′ − t) exp[ιφ̂k,1(t)]}, (29)
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where

�k (ω) = (2ι)

[
GR(ω) Fk (ω)[GR − GA]

0 GA(ω)

]
, GR,A(ω) = 1

2π

∫
ε

gR,A
k,ε (ω). (30)

Thus,

Stun ≈ −ιg
∫

t,t ′

∑
k

tr{�k(t − t
′
) exp[−ιφ̂k,1(t

′
)]�k+1(t

′ − t) exp[ιφ̂k,1(t)]}. (31)

For a granular metal, we assume that the tunneling matrix
connects any pair of levels in the neighboring grains with char-
acteristic magnitude |t̃ |, in which case, g = π2[V ν(μ)]2|t̃ |2 ∼
|t̃ |2(N /μ)2. Here g is the dimensionless interdot tunneling
conductance and N the total number of electrons in a dot. To
give an estimate of the largeness of N , for a 10-nm metallic
dot with conduction electron density of ∼1028 m−3, we have
N ∼ 104. Our regime of interest is g � 1, independent of the
number of electrons in the dot. Thus, for the granular metal we
require the tunneling amplitudes to scale as |t̃ | ∼ 1/N . Phys-
ically, this means that as the number of transmission channels
increases, the individual tunneling amplitudes should scale
inversely so as to keep g unchanged.

For the case of ballistic point contacts, we label the energy
levels by transverse and longitudinal momenta, k⊥ and k‖,
respectively. The transverse momentum is conserved during
tunneling but the longitudinal momentum is not. The tun-
neling matrix element thus connects any pair of longitudi-
nal momenta, and we assume they all have a characteristic
magnitude |t̃ |. In this case, the dimensionless conductance
g = π2∑

k⊥ |t̃ |2(ν1DL)2 ∼ |t̃ |2Nch(N1D/μ)2, where Nch is the
total number of transverse channels and N1D is the typical
number of electrons having the same transverse momentum.
To keep g � 1, we require the tunneling amplitude to scale
as |t̃ | ∼ 1/(

√
NchN1D), and we show below that the large-N

parameter in this case is N = Nch.

We will present below a large-N justification for dropping
higher-order terms in the tunneling action.

A. Consequences of large-N
Let us now discuss a couple of crucial consequences of

having a large number of electrons in each dot. Consider
first the O(t̃4) term in the tunneling action for the granular
metal. The basic argument for disregarding such contributions
has been presented in Ref. [45] . Here we show that this is
essentially a large-N argument. The fourth-order tunneling
terms are of the form tr(Ĝ0T̂ Ĝ0T̂ Ĝ0T̂ Ĝ0T̂ ). These processes
involves two or three dots. Consider for example the three dot
term (with consecutive dots labeled i, j, k),

tr(Ĝ0T̂ Ĝ0T̂ Ĝ0T̂ Ĝ0T̂ )

=
∑

i jk
α1,...,α4

(Ĝ0)i,α1 T̂ i j
α1α2

(Ĝ0) j,α2 T̂ jk
α2α3

(Ĝ0)k,α3 T̂ k j
α3α4

(Ĝ0) j,α4 T̂ ji
α4α1

.

Now the tunneling amplitudes t̃ are of the form t̃ i j
αβ = |t̃ |eiχ i j

αβ ,

where χ
i j
αβ is a phase associated with the link i j and energy

levels α, β. The key point is that for irregular dots, the phases
χ

i j
αβ are random. For the case of a large number of levels, the

random phases cause the vanishing of all terms except for the
case α4 = α2, where the random phases cancel exactly. Thus,
there are only three independent energy indices to be summed
over resulting in a factor of N 3. However, since the t̃ scale
as 1/N , it is evident that the overall scaling of this term is
1/N . In general, the number of independent energy indices in
the perturbative expansion of the tunneling action equals the
number of dots involved in that term.

We now discuss the case of ballistic point contacts. The
fourth-order three-dot term can be written as

tr(Ĝ0T̂ Ĝ0T̂ Ĝ0T̂ Ĝ0T̂ )

=
∑
i jl,k⊥

k1,...,k4

(Ĝ0)i,k1 T̂ i j
k1k2

(Ĝ0) j,k2 T̂ jl
k2k3

(Ĝ0)l,k3 T̂ l j
k3k4

(Ĝ0) j,k4 T̂ ji
k4k1

,

where k1, . . . , k4 are longitudinal momenta and we have sup-
pressed the transverse momentum label k⊥ for brevity. Since
the tunneling elements scale as |t̃ | ∼ 1/(

√
NchN1D), each

term in the above sum scales as 1/(N2
chN 4

1D). Now the sum
over the four longitudinal momenta brings a factor of N 4

1D,

and the sum over the transverse momentum gives a factor
Nch. Thus, we find that the above fourth-order contribution
scales as 1/Nch. To be able to neglect this fourth-order term,
we require Nch � 1; i.e., the width of the point contact should
be much larger than the Fermi wavelength.

There is a second very important consequence of large-
N that provides a crucial simplification in nonequilibrium
situations and which has not been appreciated in the lit-
erature. This relates to the temporal variation of the the
Fk under general nonequilibrium conditions. It is conve-
nient to work with the Wigner representation, Fk (t, t ′) ≡∫

(dε)Fk (ε, τ )e−iε(t−t ′ ), where τ = (t + t ′)/2, and the relation
with the time-dependent distribution function is Fk (ε, t ) =
1 − 2 fk (ε, t ). The total number of electrons in the kth dot
is N0 + nc

k (t ) = ∫
dε ν(ε) f (ε, t ), where nc

k (t ) is the classical
component of the number field conjugate to the quantum
component of the phase, φ

q
k . In the rest of the paper, we will

be specifically interested in the case of constant N0. More gen-
eral, time-dependent N0 can if a time-dependent gate voltage
is applied to the quantum dots. Thus, in our case we have

dnc
k

dt
= V

∫
dε ν(ε)

dfk (ε, t )

dt
. (32)

The right-hand side of Eq. (32) is, by using the continuity
equation, simply the net current into the dot, and is given
by the functional derivative 〈δS/δφ

q
k (t )〉φ, which has the

form g
∫

dε h(ε, t ) ≡ jk−1,k (t ) − jk,k+1(t ). Consequently,
the continuity equation leads us to a kinetic equation for the
distribution fk (ε, t ) of the form V ν(μ)dfk/dt + gh(ε, t ) = 0.
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The quantity h is a functional of the distributions { fk} and
also depends on the tunneling conductance and electric field.
Recognizing V ν(μ) = 1/δ, we find that the distribution
function evolves with a large characteristic timescale that
is proportional to 1/gδ and increases linearly with the total
number of electrons in the grain (δ ∼ 1/N ). We now assume
that the grains are coupled to an external thermal bath, whose
effect we model by an additional relaxation term in the kinetic
equation, i.e.,

dfk

dt
= −gδh[ f ] + fk − f eq

k

τeb
, (33)

where f eq
k is the equilibrium Fermi-Dirac distribution function

and τeb is the electron-bath relaxation time. If 1/τeb � gδ,
then the distribution functions fk may be approximated by
their equilibrium values. We will now proceed with this, and
hence Fk (ε) = tanh(ε/2T ). In contrast, in the usual Hubbard
models, the electron distribution function at every site is a
time-dependent quantity under general nonequilibrium condi-
tions since in that case there is no large-N mitigating factor.

B. Keldysh-AES action

We resume our derivation of the effective Keldysh AES
action. Henceforth, we will describe tunneling in both the
granular metal as well as the point contact cases by the action
in Eq. (31) and note that g can have different forms for the two
cases. Now let us manipulate Stun to a more dealable form. We
introduce new fields C and S defined as

C = exp(ιφc) cos

(
φq

2

)
, S = exp(ιφc) sin

(
φq

2

)
. (34)

These are related to the φ̂ fields in Eq. (16) through

exp(ιφ̂) = C + ιSσ1 , exp(−ιφ̂) = C̄ − ιS̄σ1. (35)

The tunneling action under equilibrium conditions then takes
the form

Stun = 4g
∑

k

∫
t,t ′

[C̄k,1 − ιS̄k,1]t

[
0 �A

k,1

�R
k,1 �K

k,1

]
t−t ′

×
[

Ck,1

ιSk,1

]
t ′
, (36)

where

�
R(A)
k,1 (t ) = ι

[
GR(A)(t )GK

k (−t ) + GK
k+1(t )GA(R)(−t )

]
, (37)

�K
k,1(t ) = ι

[
GK

k (−t )GK
k+1(t ) − (GR − GA)t (G

R − GA)−t
]
,

(38)

with GK
k = Fk (GR − GA). It is evident from Eq. (37) that �R(A)

also have a causal structure, i.e., �R(t ) ∝ �(t ), etc. Under
general nonequilibrium conditions, the quantities �R,A,K (t, t ′)
describing particle-hole excitations in the dots depend on both
the time arguments and not just their difference.

Let Fb(ε) = coth(ε/2T ) = 1 + 2 fb, where fb is the equi-
librium Bose distribution function. We make use of the

following identities:

(GR − GA)ε = −ι, (39)∫
ε

1

2π
[F (ε + ω) − F (ε)] = ω

π
, (40)∫

ε

1

2π
[1 − F (ε − ω)F (ε)] = ω

π
Fb(ω), (41)

to obtain

(
�R

k,1 − �A
k,1

)
ω

= ι

∫
ε

1

2π
[Fk+1(ε) − Fk (ε − ω)] = ι

π
ω,

(42)

(
�K

k,1

)
ω

= ι

∫
ε

1

2π
[1 − Fk+1(ε)Fk (ε − ω)] = ι

π
ωFb(ω).

(43)

We will later find it convenient to work in the ± Keldysh
contour. Hence, we re-express our phase action in this contour.
We ignore N0 by assuming that it can be set to zero by some
gate voltage. We have

SC[n, φ] = 1

EC

∑
k

∫
t
[(∂tφ

+
k )2 − (∂tφ

−
k )2], (44)

Stun[φ] = g
∑

k

∫
t .t ′

(exp(−ιφ+
k,1) exp(−ιφ−

k,1))t Lk,1(t − t
′
)

×
(

exp(ιφ+
k,1)

exp(ιφ−
k,1)

)
t ′
, (45)

L = 1

4

(
�R + �A + �K �R − �A − �K

−�R + �A − �K −�R − �A + �K

)
. (46)

Note that the diagonal elements of the matrix L written
in the ± basis contain the combination �R + �A and the
off-diagonal elements contain �R − �A. In the (equilibrium)
Matsubara formalism, finite winding numbers of the phase
fields must be considered to bring out the charge quantization
effects. In our continuous time formalism, the charge quanti-
zation effects are brought out by a procedure discussed, for
example, in Ref. [51] that we briefly describe below.

C. Phase windings and charge quantization

We are interested in the small tunneling regime, g � 1.

In this regime, the phases in each dot fluctuate strongly
and hence we represent the action in terms of the conjugate
variables, i.e., the number fields. For this, we first perform
a Hubbard-Stratanovich decoupling of the charging term,
which leads to the following action in the phase-charge
representation:

S[n, φ] =
∑

k

∫
t

([
nc

k + N0
]
∂tφ

q
k + nq

k∂tφ
c
k − 2ECnc

knq
k

)
+ Stun[φ]. (47)

To properly understand the quantization of the charge degrees
of freedom, we first work in a contour, t ∈ [0, P]. The
requirement that φ−(0) = φ+(0) + 2πW (W is an integer)
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leads us to an unconstrained field, φc, and

φq(t ) = φ̃q(t ) + 2πW

P
(t − P), (48)

with Dirichlet conditions, φ̃q(0) = φ̃q(P) = 0. Consider first
the situation where tunneling is absent. Using Eq. (48) in the
first term of Eq. (47), we see that the partition function has
contributions of the form

∑
W eι2π (nc+N0 )W , which vanishes

unless nc + N0 is an integer. Writing N0 = [N0] + ng,

where [N0] is the integer part of N0 and ng ∈ [0, 1) is the
residual “gate charge” on a dot, the integration over the
Hubbard-Stratonovich field nc is equivalent to a sum over
integers,

∑
[nc]−ng

, where [nc] is the integer part of nc. Making
a change of variables, nc → nc − ng, the sum becomes one
over integer values of nc. Now the part of the action containing
the time derivative of the classical phase field is a function
only of the boundary values of the field. Performing the path
integral over the boundary fields gives us the constraint that
nq = 0 at the boundaries. Let us now imagine turning on the
tunneling at some time. From the structure of the tunneling
action, Eq. (45), it is clear that n+ and n− can change only
in integer steps. This quantization condition is independent
of the time boundary or the length of the time interval.
Translated back in the language of the Keldysh closed-time
contour, the condition that the initial values of nc can only take
integer values together the fact that boundary values of nq are
zero, one concludes that n+(−∞) = n−(−∞) ∈ Z, and both
change in only in integer steps during tunneling events. In this
paper, we are interested in the Mott insulator regime with zero
gate charge, i.e., ng = 0 (or integer N0) and therefore we drop
the N0∂tφ

q term in the action. The point ng = 1/2 is special
due to degeneracy between nc = 0, 1. The gate charge, ng, can
also be made to fluctuate in time by using a time-dependent
gate voltage. These different scenarios can also be studied
using our formalism and will be taken up elsewhere.

D. Functional representation of charge current

Here we obtain the functional representation for the charge
current in the presence of a constant electric field. The electric
field is introduced in the form of a time-dependent vector
potential that is turned on at some instant of time, say t = 0.

In every link, the classical component of the vector potential
has the form

Ac
k,1(t ) = �(t )Dt, (49)

where D is the potential energy change across a link as
already mentioned in Sec. I. This changes the tunneling part
of the action by incorporating the Peierls shifts in the phase
differences, φc,q

k,1 (t ) → φ
c,q
k,1 (t ) + Ac,q

k,1(t ). The tunneling part of
the action now has the form

Stun[φ, Ac, Aq] = g
∑

k

∫
t,t ′

[(e+
k,1(t ))∗ (e−

k,1(t ))∗]L(t − t ′)

×
[

e+
k,1(t ′)

e−
k,1(t ′)

]
, (50)

where, e±
k,1(t ) = exp[ιφ±

k,1(t ) − ιA±
k,1(t )]. The functional rep-

resentation of the classical component of the charge current
in a link, Ĵk,1[Ac(t )], is obtained by taking the functional

derivative with respect to Aq
k,1(t ), and setting this quantum

source term to zero,

Ĵk,1(τ ) = −ιg
∫

t
[(e+

τ )∗L++
τ t e+

t − (e+
t )∗L++

tτ e+
τ + (e+

τ )∗L+−
τ t e−

t

+ (e+
t )∗L+−

tτ e−
τ − (e−

τ )∗L−+
τ t e+

t − (e−
t )∗L−+

tτ e+
τ

− (e−
τ )∗L−−

τ t e−
t + (e−

t )∗L−−
tτ e−

τ ]. (51)

Here we have suppressed the site indices and written the time
arguments as subscripts for brevity.

III. TRANSIENT CURRENT RESPONSE

In this section, we obtain the current response to leading
order (in g) upon turning on the uniform electric field by
performing the average of the current functional in Eq. (51)
over the phase fields. This primarily involves a calculation of
the bond correlators defined as

�σσ ′ (τ, τ ′) = 〈
exp

[− ιφσ
j,1(τ ) + ιφσ ′

j,1(τ ′)
]〉
. (52)

Here 〈...〉 denotes averaging with the full action, S[n, φ].
We calculate the bond correlators as a perturbation series

in the tunneling conductance g, by treating the charging action
as the bare action and expanding the tunneling part in the ex-
ponential to various orders in g. We denote 〈...〉0 to represent
averaging with the bare action. The bare bond correlator, �(0)

σσ ′
factorizes into a product of two single site correlators,

�
(0)
σσ ′ (τ, τ ′) = Cσσ ′ (τ, τ ′)Cσ ′σ (τ ′, τ ), (53)

where

Cσσ ′ (τ, τ ′) = 〈
e−ι(φσ (τ )−φσ ′

(τ ′ ))〉
0. (54)

Let us first consider C+−(τ − τ ′). Performing the functional
integral over the phase fields φ± we get the equations

∂t n
+ = −δ(t − τ ), ∂t n

− = −δ(t − τ
′
). (55)

The solution depends on the boundary conditions at t =
−∞. We assume that in the remote past, the system is in
thermal equilibrium, and hence the probability distribution
for nc is P(nc) = exp(−β(nc)2EC )/

∑∞
n=−∞ exp(−βECn2). In

the zero temperature limit, P(nc) = δnc,0. Furthermore since
nq(−∞) = 0, we have n+(−∞) = n−(−∞) = 0. Thus, the
solution to Eq. (55) is

n+(t ) = −�(t − τ ), n−(t ) = −�(t − τ
′
). (56)

Plugging this back, we get

C+−(τ, τ
′
) = exp[ιEC (τ − τ

′
)]. (57)

Similarly,

C−+(τ, τ
′
) = exp[−ιEC (τ − τ

′
)], (58)

C±±(τ, τ
′
) = exp(∓ιEC |τ − τ

′ |). (59)

Using these site correlators in Eq. (52) for the bond correlators
in Eq. (51), and using the causal structure of �R(A), we obtain
the following expression for the leading-order nonequilibrium
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current:

J (τ ) = g

2π

∫ τ

−∞
dt (eιD(τ�(τ )−t�(t )){2�R(τ − t )

× cos[2EC (τ − t )] − 2ι�R(τ − t ) cos[2EC (τ − t )]}
+ c.c.). (60)

Since the upper limit of the integral is t = τ and �A(t ) has a
�(−t ) structure, we can replace

�R(τ − t ) → �R(τ − t ) − �A(τ − t ) (61)

and use the relation for the Fourier transform, Eq. (42). For
τ < 0, the average current clearly vanishes. Let us split the

integral in Eq. (60) into two parts, J = J< + J>, where J<

involves integration from t = −∞ to 0 and in J>, t = 0
to τ :

J<(τ ) = geιDτ�(τ )

(2π )2

∫ ∞

−∞
dω

∫ 0

−∞
dt [eι(2EC−ω)(τ−t )(ω − |ω|)

+ e−ι(2EC+ω)(τ−t )(ω + |ω|) + c.c.],

J>(τ ) = g�(τ )

(2π )2

∫ ∞

−∞
dω

∫ τ

0
dt [eι(2EC−ω+D)(τ−t )(ω − |ω|)

+ e−ι(2EC+ω−D)(τ−t )(ω + |ω|) + c.c.]. (62)

After performing the time integration and some simple ma-
nipulations, we get

J<(τ ) = −4ιgeιDτ�(τ )

(2π )2

∫ ∞

0
dω

ω cos((ω + 2EC )τ )

ω + 2EC
+ c.c.,

J>(τ ) = 2ιg�(τ )

(2π )2

[∫ ∞

0
dω

ωeι(ω+2EC+D)τ

ω + 2EC + D
+
∫ ∞

0
dω

ωe−ι(ω+2EC−D)τ

ω + 2EC − D
−
∫ ∞

0
dω

ω(4EC + 2ω)

(2EC + ω)2 − D2

]
+ c.c. (63)

Now, using ∫ ∞

0
dω

ωeιωτ

ω + x
= ι

τ
− x

∫ ∞

x
du

eι(u−x)τ

u
,

= ι

τ
− xe−ιxτ [ιπ�(x) − Ei(ιxτ )], (64)

the expression for the current simplifies to

J (τ ) = 2ιg�(τ )

(2π )2
((2EC + D){Ei[ι(2EC + D)τ ] − Ei[−ι(2EC + D)τ ]} − (2EC − D){Ei[ι(2EC − D)τ ] − Ei[−ι(2EC − D)τ ]}

− 2ιEC sin(Dτ )[Ei(ι2ECτ ) + Ei(−ι2ECτ )] − 2πι(2EC + D)�(2EC + D) + 2πι(2EC − D)�(2EC − D)). (65)

The current response at long times τ � τ+ = max[|D +
2EC |−1, |D − 2EC |−1] has two components (J (τ � τ0) =
Jdc + Jtr): a dc part,

Jdc = g�(τ )

π
[(D − 2EC )�(D − 2EC ) + (D + 2EC )

×�(−2EC − D)] (66)

and a transient part,

Jtr ≈ − 4g�(τ )

(2π )2EC

1

τ 2

{(
D − 2EC

D + 2EC

)
sin[(D + 2EC )τ ]

+
(

D + 2EC

D − 2EC

)
sin[(D − 2EC )τ ]

}
, (67)

that oscillates with the two beat frequencies ω± = |D ± 2EC |
and slowly decays in accordance with an inverse square law
in time. Such oscillations are absent in classical RC networks
subjected to a constant electric field, where only exponential
relaxation may occur. The amplitudes of the two oscillation
frequencies are inversely related. Close to a resonance, D =
±2EC, the amplitude of the faster mode tends to vanish and
the slower mode dominates. At high fields, |D| � 2EC, the
beat frequencies are approximately ω± ≈ |D| = ωB, where
ωB is the Bloch oscillation frequency for noninteracting
electrons. It is instructive to compare with the fermionic
Hubbard chain at half-filling—a quantum model that is the

dissipation-free counterpart of ours. At strong electric fields,
the Bloch oscillations in this model also occur [5] at ωB, and
which has a simple physical explanation. Consider a nonin-
teracting model of fermions hopping on a one-dimensional
lattice:

H (0)
el = −t

∑
〈i j〉σ

[c†
iσ c jσ + H.c.] +

∑
iσ

εiniσ , (68)

where ε j = D j is the linearly varying potential energy in the
presence of a constant electric field. As is well-known (see,
e.g., Ref. [32]), the above Hamiltonian is easily diagonalized
by the transformation

fn =
∑

i

Ji−n(2t/D)ci, (69)

which gives us a discrete spectrum, the Wannier-Stark lad-
der, with energies En = nD, with n an integer. The wave
function corresponding to En is localized, centered around
the site n, and with a spatial extent of the order of L =
2t/D. Since there is no matrix element connecting different
Wannier-Stark levels, no net current flows in the system. If
the gain in potential energy across a link, D, greatly exceeds
the tight binding hopping energy, then the Wannier-Stark
states are highly localized. Introducing now a small local
Hubbard repulsion term of strength EC in Eq. (68), we find
that the interaction remains approximately local even in the
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FIG. 1. The current response to leading order in g after an electric field is turned on as described by Eq. (65). The plots to the left show
the initial time response and those to the right show the late time response where the power law decay of the oscillatory behavior is seen. The
effect of correlations in the late time response is seen in the form of beating frequencies. A finite steady-state DC response exists only for
D > 2EC

Wannier-Stark basis. For D � EC, the energy levels are ap-
proximately nD, which leads to Bloch oscillations at fre-
quency ωB.

Consider now the short-time current response. Above the
threshold field, DT > 2EC, a finite dc response exists unlike
the dissipationless Hubbard chain at half filling. However,
the Bloch-like oscillations are present both above and be-
low the threshold field. At short times τ � τ− = min[|D +
2EC |−1, |D − 2EC |−1], the current response is

J (τ ) ≈ g�(τ )
π

D − 8g�(τ )
(2π )2 D(2ECτ )[ln(1/2ECτ ) + 2 − γ ],

(70)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Remark-
ably, the initial current response, J = gD/π is independent of
the charging energy, EC, and appears to be physically related
to the fact that sudden changes in the potential effectively
short-circuit a capacitor. Plots of the current response for
different applied electric field strengths are given in Fig. 1.
The transient current response is a central result of this paper.

Long time response: The effect of dissipation

The 1/τ 2 decay of the amplitude of current oscillations
arises from the ohmic dissipation kernel (�K (ω) ∼ |ω| in
the zero temperature limit which implies �K (t ) ∼ 1/t2).
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Higher-order corrections (in g) will similarly decay as 1/τ 2n,
with n > 1. Thus, for small g, one clearly expects that at long
times, the transient part of the current response will be dom-
inated by the leading-order term and hence a 1/τ 2 decay of
the oscillatory response. The dc part of the current response,
however, is not necessarily dominated by the leading order in
g term. For instance in our case, the leading-order dc response
vanishes for D < 2Ec. However, we will show in the following
section that a finite dc current exists even for small values of
D, and is dominated by higer order in g terms.

We now argue that the Bloch-like oscillations and power-
law decay of the transient response, a manifestation of charge
quantization, are not expected to hold for arbitrary long times.
Physically, the finite dc response is a consequence of dissi-
pation, which in turn should ultimately introduce a timescale
beyond which an exponential decay rather than a power-law
decay should occur. To resolve this, we examine the validity of
approximating the ohmic kernel by its zero temperature limit.

The existence of a finite dc current component in response
to a dc driving field (see Sec. IV below) implies a finite
power dissipation, W ∼ JdcD, where Jdc is the dc current. The
coupling to an external heat bath is necessary for a steady
dc response, for it ensures that the electron distribution in a
dot does not run off to infinite temperature as a result of this
Joule heating. We assumed earlier that the coupling with the
external bath is weak in the sense that the energy relaxation
time with the bath, τeb is much greater than the typical electron
energy relaxation time within a grain, τR ∼ δ/U 2 ∼ O(1/N ),
where U is the matrix element for electron-electron coupling
in the grain. The separation of these time scales makes the
electron distribution thermal even when W is finite. The
excess thermal energy in a grain is W τeb, and this is shared
by the N electrons in the grain, implying a finite temperature
TD ∼ JdcDτeb/N . The electron-bath realization time τeb will
generally decrease with increasing N , and we expect τeb ∼
N−2/3 if we assume the bath degrees of freedom essentially
interact with the surface of the grain. Further, if τeb is due to
electron-phonon coupling, then it may also have a temperature
dependence; i.e.,

τeb ∼ (1/N )2/3(1/TD)n, (71)

where n � 0 and is model dependent. The temperature TD is
then

TD ∼
[

JdcD

N 5/3

]1/(n+1)

. (72)

In the large-N limit the temperature in the nonequilibrium
steady state approaches zero.

The presence of a nonzero TD results in an exponential
decay for the current oscillations at large times, for in that case
the ohmic kernel is �K (τ ) ∼ π2T 2

D / sinh2(πTDτ ). This goes
like 1/τ 2 for τ � 1/TD but decays exponentially as T 2

D e−2πTDτ

for τ � 1/TD. The decay time for the oscillations is large due
to large N , which offers a rather large time window where
the 1/τ 2 decay of the oscillations can be observed. However,
ultimately for τ � 1/TD, the current oscillations will decay
exponentially.

In the following section, we study the effect of higher-order
(in g) processes on the steady-state part of the current. These
higher-order processes govern the dc current response at small
values of D.

IV. DC CURRENT AT LOW FIELDS: HIGHER-ORDER
PROCESSES

Here we are interested in the long-time steady-state re-
sponse here, for which we turn on the electric field at t = −∞
and for all later times, the vector potential is simply Ak,1(t ) =
Dt (i.e., without the theta function in time). In this case, the
expression for current given in Eq. (51) assumes a simpler
form,

J = 2ιg
∫

dτ [e−iDτ�+−(τ )L+−(τ ) − eiDτ�−+(τ )L−+(τ )],

(73)

since the terms involving Eq. (51) involving the bond correla-
tors �++ and �−− cancel out. Furthermore, for a given sign
of D, only one of the two terms in the integrand contributes. In
the rest of the paper, we will assume D > 0 unless otherwise
stated, and in this case, only the first term in the integrand in
Eq. (73) needs to be calculated. The perturbative expansion
of J is now obtained by expanding the bond correlators in
increasing orders in g,

�σ,σ ′ = �
(0)
σ,σ ′ + �

(1)
σ,σ ′ + . . . .

From Sec. III, we have the leading-order contribution
to current as J (1) = (g/π )[(D − 2EC )�(D − 2EC ) − (D +
2EC )�(−D − 2EC )]. We now consider the contribution to the
current in the second order in the tunneling conductance g.

A. Second-order steady-state response

The first-order correction to the bare bond correlator of the
link labeled (k, 1) is

�
(1)
μ,μ′ (τ, τ ′) = ιg

∑
n,σσ ′

∫
t,t ′

W k,n
μμ′σσ ′ (τ, τ ′, t, t ′)Lσσ ′

(t − t ′)e−ιD(t−t ′ ), (74)

where

W k,n
μμ′σσ ′ (τ, τ ′, t, t ′) = 〈

exp
[− ιφ

μ

k,1(τ ) + ιφ
μ

′

k,1(τ
′
) − ιφσ

n,1(t ) + ιφσ
′

n,1(t
′
)
]〉

SC
. (75)

Let us define the four-point site correlators,

Cμμ
′
σσ

′ (τ, τ
′
, t, t

′
) = 〈exp[−ιφμ(τ ) + ιφμ

′
(τ

′
) − ιφσ (t ) + ιφσ ‘

(t
′
)]〉SC . (76)
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We now express the function W k,n
μμ′σσ ′ (τ, τ ′, t, t ′) in terms of the two and four point site correlators. For n = k ± 1,

W k,n
μμ′σσ ′ (τ, τ ′, t, t ′) = Cσ ′σ (t ′ − t )Cμ′μσσ ′ (τ ′, τ, t, t ′)Cμμ′ (τ − τ ′), (77)

while for n = k,

W k,n
μμ′σσ ′ (τ, τ ′, t, t ′) = Cμ′μσ ′σ (τ ′, τ, t ′, t )Cμμ′σσ ′ (τ, τ ′, t, t ′). (78)

The correlator W is nonzero only for n = k ± 1 k. For the calculation of current we only need the Wμμ′σσ ′ with μ,μ′ = {+,−}.
These involve the following four-point site correlators:

C+−++(τ, τ
′
, t, t

′
) = exp[−ιEC (−|t − τ | + |t ′ − τ | + |t − t

′ | − t − τ + t
′ + τ

′
)], (79)

C+−+−(τ, τ
′
, t, t

′
) = exp[−ιEC (−|t − τ | + |t ′ − τ

′ | − 2(t − t
′ + τ − τ

′
))], (80)

C+−−+(τ, τ
′
, t, t

′
) = exp[−ιEC (|t ′ − τ | − |t − τ

′ |)], (81)

C+−−−(τ, τ
′
, t, t

′
) = exp[−ιEC (−|t − τ

′ | + |t ′ − τ
′ | − |t − t

′ | − t − τ + t
′ + τ

′
)], (82)

C−+++(τ, τ
′
, t, t

′
) = exp[−ιEC (|t − τ ‘| − |t ′ − τ

′ | + |t − t
′ | + t + τ − t

′ − τ
′
)], (83)

C−++−(τ, τ
′
, t, t

′
) = exp[−ιEC (|t − τ

′ | − |t ′ − τ |)], (84)

C−+−+(τ, τ
′
, t, t

′
) = exp[−ιEC (|t − τ | − |t ′ − τ

′ | + 2(t − t
′ + τ − τ

′
))], (85)

C−+−−(τ, τ
′
, t, t

′
) = exp[−ιEC (|t − τ | − |t ′ − τ | − |t − t

′ | + t + τ − t
′ − τ

′
)]. (86)

The four-point site correlators clearly satisfy the identities

Cμμ
′
σσ

′ (τ, τ
′
, t, t

′
) = Cσσ ′μμ′ (t, t

′
, τ, τ

′
),

Cμμ
′
σσ

′ (τ, τ
′
, t, t

′
) = Cμ̄μ̄′σ̄ σ̄ ′ (τ, τ ′, t, t ′), (87)

where the bar on the subscripts interchanges the + and - indices.
From the structure of the four-point site correlators, we see that the expression for the bond correlators has nonanalytic terms

of the type eιEC |t1−t2|. To deal with these, we make use of the identity,

e−ιEC |t | = lim
η→0

ιEC

π

∫ ∞

−∞

dω e−ιωt

(ω − EC + ιη)(ω + EC − ιη)
.

We then express Lσσ ′
(t − t ′) in the Fourier basis and then perform the t, t ′ integrals in Eq.(74). After some effort we get the

following expression for �
(1)
+− :

�
(1)
+−(τ ) = 4ιE2

Cg

π
lim
η→0

∫
dω

{
L+−(ω − D)eι2ECτ (e−ιωτ − 1)

(ω2 + η2)((ω − 2EC )2 + η2)
+ H+−(ω − D)ei2ECτ (1 − eι(4EC+ω)τ )

[(ω + 4EC )2 + η2][(ω + 2EC )2 + η2]

+ 2L+−(ω − D)eι2ECτ (e−ι(ω−6EC )τ − 1)

[(ω − 6EC )2 + η2][(ω − 2EC )2 + η2]
+ 2H+−(ω − D)(eι2ECτ − eιωτ )

[(ω − 2EC )2 + η2][(ω + 2EC )2 + η2]

}
, (88)

where H+−(ω) = �+(ω) − �−(ω) + �K (ω). Using Eq. (88) in Eq. (73), we obtain the second-order contribution to the current:

J (2) = −8g2E2
C

π
lim
η→0

∫
dω

{
L+−(ω − D)[L+−(2EC − D − ω) − L+−(2EC − D)]

(ω2 + η2)[(ω − 2EC )2 + η2]

+ H+−(ω − D)[L+−(2EC − D) − L+−(ω + 6EC − D)]

[(ω + 4EC )2 + η2][(ω + 2EC )2 + η2]
+ 2

L+−(ω − D)[L+−(8EC − D − ω) − L+−(2EC − D)]

[(ω − 6EC )2 + η2][(ω − 2EC )2 + η2]

+ 2
H+−(ω − D)[L+−(2EC − D) − L+−(ω − D)]

[(ω − 2EC )2 + η2][(ω + 2EC )2 + η2]

}
. (89)

From the steplike structure of the L+− and H+− functions, we find that J (2) = 0 for D < EC ; thus, J (2) has a smaller threshold
compared to J (1), which vanishes below 2EC . For EC � D < 2EC, the calculation of the current simplifies considerably since
only one term makes a nonzero contribution in Eq. (89), and we have

J (2) = −8g2E2
C

π
lim
η→0

∫
dω

L+−(ω − D)L+−(2EC − D − ω)

(ω2 + η2)[(ω − 2EC )2 + η2]
, EC � D < 2EC, (90)
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and upon performing the integration, we arrive at

J (2) = 2g2

π3EC

[
(D − EC )2 + E2

C

]
log

[
D2

(D − 2EC )2

]

− 8g2

π3
(D − EC ), EC � D < 2EC . (91)

Just above the threshold for J (2), D = EC, the current has a
power-law behavior,

J (2) ≈ 8g2EC

π3

(
D

EC
− 1

)3

, (92)

which is to be contrasted with the linear behavior of J (1) above
its threshold. At the other end, D = 2EC, the expression for
J (2) has a logarithmic divergence. Physically, this is a mani-
festation of a resonance: D = 2EC is the condition for creating
a particle-hole dipole excitation in neighboring grains. For
higher fields, D > 2EC, more terms in Eq. (89) will now
contribute to J (2); however, none of these terms eliminate the
logarithmic singularity.

The second-order perturbation correction to the current is
justified provided one does not get too close to the singular
point, i.e.,

g ln

∣∣∣∣ D

2EC − D

∣∣∣∣ � 1. (93)

Similar logarithmic divergence is also evident in �(1)(τ ).
However, the bond correlator, � = �(0) + �(1) + . . . , by
definition is bounded by ±1. This clearly shows that the
divergence in current at the resonance is the result of a per-
turbative treatment about the bare charging action. The region
of validity of the perturbative treatment could be increased
in principle by a resummation of the leading singular terms
to all orders in g. Unfortunately, the number of processes
contributing to current in higher orders increases rapidly with
the order, rendering the calculation of the current at inter-
mediate fields (sufficiently larger than the lowest threshold)
quite complicated. The other possibility is a phase transition
from the Mott phase to a conducting, metallic phase whose

boundary is given by the condition g ln(2EC/ε) = 1, with
ε = 2EC − D � EC . The resummation and possible phase
transition will be studied in detail elsewhere. Incidentally,
the energy scale ε = ECe−1/g also appears in the scaling
analysis of the single site equilibrium AES model close to
the degeneracy point, ng = 1/2 [52]. Below this scale, phase
fluctuations renormalize the gate charge to the fixed point
value, ng = 1/2, which corresponds to resonant transmission.
Finally, for very small values of 2EC − D, we expect that the
energy level discreteness of the dots will begin to matter, and
at resonance, the lower cutoff for |2EC − D| should at least
be of the order of the mean level spacing δ, i.e., we need
g < 1/ ln(2EC/δ).

B. Higher-order contributions and current response at low fields

At low fields, finite contributions to the current appear only
at higher orders. An order-n process has a threshold field
D(n)

th = 2EC/n. Physically, a large-distance cotunneling pro-
cess provides the potential energy gain required to overcome
Coulomb blockade. During the cotunneling process between
sites labeled i and i + n, the classical charges, nc, at the n − 1
intermediate sites only have virtual transitions and thus the
only Coulomb blockade cost appears at the sites i and i + n.

The pure cotunneling process gives the lowest threshold value,
D(n)

th , at any order. The contribution to the current from this
process can be shown to be

J (n) = ι2ng

(
ι2gE2

C

π

)n−1

K (n), (94)

where

K (n) =
∫ n−1∏

i=1

dωi

⎡
⎣n−1∏

j=1

L+−(ω j − D)

ω2
j (ω j − 2EC )2

⎤
⎦

× L+−

⎛
⎝2EC − D −

n−1∑
p=1

ωp

⎞
⎠. (95)

The L+− functions constrain the frequency integration and we
have

K (n) =
( ι

2π

)n
∫ D

2EC−(n−1)D
dω1

∫ D

2EC−(n−2)D−ω1

dω2 · · ·
∫ D

2EC−D−∑n−2
p=1 ωp

dωn−1

× (ω1 − D)(ω2 − D) . . . (ωn−1 − D)
(
2EC − D −∑n−1

p=1 ωp
)

ω2
1 . . . ω2

n−1(ω1 − 2EC )2 . . . (ωn−1 − 2EC )2
. (96)

The integral gets the dominant contribution from the vicinity of ωi = D and is approximately

K (n) ≈
(
− ι

2π

)n n(2n−1)

(2n − 1)!

(
D − D(n)

th

)(2n−1)

D2(n−1)(2EC − D)2(n−1)
�
(
D − D(n)

th

)
,

D − D(n)
th

D(n)
th

� 1. (97)

Combining Eqs. (94) and (97), and making the Stirling approximation for factorials, we obtain, for large n,

J (n) ∼ ngn
( e

2π

)2n−1
[

2EC

D(2EC − D)

]2(n−1)[
D − D(n)

th

]2n−1
�
[
D − D(n)

th

]
(98)

≈ anbnD
(

1 − nD

n

)2n−1
�
(

1 − nD

n

)
, (99)
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where

a = 2π

e

(
1 − 1

nD

)2

,

b = g
( e

2π

)2
(

1

1 − n−1
D

)2

,

nD = 2EC

D
. (100)

Denoting [nD] to be the least integer � nD, the expression for
the total current is given by

J =
∞∑

n=[nD]

J (n). (101)

For D � EC , from the large n form of J (n) in Eq. (99), we see
that the expression for the total current is divergent for b � 1.
We identify the onset of this divergence as the breakdown
of our perturbation theory which is developed to work in
the Mott phase and thus signals the nonequilibrium phase
transition to a metallic phase. Thus, for small values of the
electric field, the phase boundary for the nonequilibrium phase
transition to this metallic phase is given by setting b = 1:

g = g0

[
1 − D

2EC

]2

, D � 2EC, (102)

with g0 a constant of order one. For given g and EC, the critical
electric field is

Dc = 2EC (1 −
√

g/g0). (103)

Let us now look into the form of current within the Mott
phase for small D. From Eq. (99), we see that the expression
for J in Eq. (101) can be approximated by a saddle point
approximation if b � 1. For this we first rewrite Eq. (101) as

J = aD
∞∑

n=[nD]

exp
[
ln n + n ln b + (2n − 1) ln

(
1 − nD

n

)]
.

(104)

The saddle point condition is (neglecting some small terms)

ln b + 2 ln
(

1 − nD

n

)
+ 2nD

n − nD
= 0. (105)

In terms of x = nD/n, an approximate solution of the above
equation can be written as

x = x∗ − (1 − x∗)2 ln(1 − x∗), (106)

where x∗ = (1 − 2
ln b )

−1
. The form of current then turns out

to be (for D < Dc)

J ∼a

⎧⎨
⎩

D exp
{
−(4EC/D) ln

[√
g0

g

(
1 − D

2EC

)]}
, D � Dc

Dc

(
Dc

Dc−D

)2
, Dc−D

Dc
� 1.

(107)

Thus, as the critical field Dc is approached, the perturbation
series for the current diverges, signaling the breakdown of
the Mott insulator state. Farther away from the critical field,
the form of the current resembles an activated behavior, with

the driving field D taking the role of the temperature, and
the Arrhenius cost changed from the bare value EC to an
effectively (field-dependent) lower value, E eff

C = EC ln[
√

g0

g
(1 − D

2EC
)]4. The similarity with thermal activation is not

surprising since the constant and uniform electric field also
generates free particles across the excitation gap, albeit
through the Landau-Zener-Schwinger mechanism. Closer to
the transition field Dc, we expect the divergence of the current
response in Eq. (107) to ultimately get cut off by processes
we did not take into account in our perturbation series that
consisted, at every order, of only the respective threshold
contributions. Further work needs to be done to establish if
there is any nonanalyticity in the current response across the
transition field, for that would imply a true nonequilibrium
phase transition and not a crossover between the Mott
insulator and bad metal phases.

V. DISCUSSION

In summary, we developed an effective Keldysh field the-
ory for studying the nonequilibrium response of dissipative
Mott insulator systems and used it to study the nonequilibrium
current response to a uniform electric field switched on at
some instant of time. Our model, a Keldysh generalization of
the AES model for Mott insulators, is in effect a bosonization
of the Hubbard model with a large number (N ) of electron
flavors at the lattice sites. The effective degrees of freedom
are the excess charges at the sites and the phases conjugate to
these. The large-N is simultaneously a source of dissipation
through the Landau damping mechanism and also affords
significant simplification of the effective action (in compari-
son with the usual Hubbard model) by suppressing all terms
that are higher than second order in the interdot tunneling
amplitude.

The quantum effect that survives in the large-N limit is
charge quantization, which is respected at every stage in the
analysis of our problem. The charge quantization is reflected
in sustained Bloch-like oscillations that decay as an inverse
square power-law in time up to a large timescale τD ∼ 1/TD ∼
N−α, α > 0. The effect of correlations is to split the Bloch
oscillation frequency into two beating frequencies whose dif-
ference is of the order of the Coulomb repulsion scale.

The power-law decay of the current oscillations signifies
the persistence of Coulomb blockade or charge quantization
effects. At small values of tunneling g, Coulomb blockade
effects dominate and the dot charge fluctuations are weak.
The presence of a large number of energy levels in the dots
may scramble the phase of the electronic states but is not able
to erase charge quantization effects at weak tunneling. In the
effective action, �K (t, t ′) that represents correlations between
tunneling events at time t and t ′, decays as a power-law in
the zero temperature limit, 1/(t − t ′)2, which is essentially
why our current oscillations at weak tunneling obey the
same power-law decay. But the energy dissipation that is
responsible for a dc component in the current, also results in
a finite system temperature (TD), which is determined by a
combination of the power dissipation and the (weak) coupling
to the external heat bath. Note that TD is very small due to the
effect of large-N . The nonzero TD causes the 1/t2 decay to
crossover to an exponential decay after t ∼ 1/TD.
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When g is large, the behavior is very much like a classical
RC circuit where charge can take continuous values. In this
regime, the charge fluctuations are strong (i.e., charge quan-
tization effects are weak), and the current oscillations decay
exponentially. To see this, at large g, we expand around the
saddle point configuration of the effective action [Eq. (45)]
and to quadratic order in the phase fields. In the classical-
quantum space, the action takes the form

S[φ] =
∑

q

∫
ω

[φc φq](q,ω)

×
[

0 − ω2

EC
− iωh(q)

− ω2

EC
+ iωh(q) 2ih(q)|ω|

][
φc

φq

]
(−q,−ω)

,

(108)

where h(q) = 2g(1 − cos q). The inverse of the matrix is
given by

−1

(h(q))2ω2 + ω4

E2
C

[
2ih(q)|ω| ω2

EC
+ iωh(q)

ω2

EC
− iωh(q) 0

]
. (109)

We thus have

G±(ω) = − 1

ω
[

ω
EC

∓ ih(q)
] ,

GK (ω) = − 2ih(q)|ω|
[h(q)]2ω2 + ω4

E2
C

. (110)

The presence of the imaginary pole in the retarded Green’s
function implies in the time domain it has an exponential de-
cay with a characteristic timescale, 1/(gEC ), which is equiv-
alent to the time constant, τ = RC, of a resistively shunted
capacitor. So the oscillations in the current after the source is
turned on at t = 0 would also decay exponentially with the
same characteristic timescale.

A major challenge in the area has been to demonstrate a
DC current response in lattice translationally invariant Hub-
bard models. We identified the role played by dissipation
in suppressing the Bloch oscillations (even if as a power
law in time) and enabling a finite DC current response. We
analyzed the DC current response taking into account higher-
order cotunneling processes that allow a trade-off between
the reduced probability of a long-distance cotunneling and
energy gain from the applied electric field. The response at
small electric fields is found to be of the LZS form, J ∼
D[g/ ln2(1/g)]2EC/D, although the exponent is proportional to
the Mott gap EC instead of the usual e−E2

C/D expected for
pair-production probability in the dissipation-free case [3].
We do not find a threshold field below which DC conduction
is absent since at any small field, DC conduction is possible
through sufficiently high-order cotunneling. At higher fields,
the perturbation expansion of the current in powers of the
small tunneling conductance breaks down, and from this we
obtain the phase boundary for the electric-field-driven Mott
insulator to a conducting state. Both a phase transition and
a (rapid) crossover are consistent with our results, since the
expression that we have obtained for higher-order contribu-
tions to the current is only valid at very small values of the
driving field D; but the instability at Dc = 2EC (1 − √

g/g0) in

Eq. (105) suggested by the divergence of perturbation theory
occurs at a value of D that is not necessarily small. Thus, cor-
rections to our expressions might become relevant in actually
determining whether there is a real phase transition or not.

The AES model regards the interdot tunneling processes
to be of the Fermi Golden-Rule type, which breaks down
when the characteristic energies of particle-hole excitations
in the dots approach the mean level spacing, δ. Therefore,
the typical potential drop between neighboring sites or the
temperature should exceed δ. This imposes a cutoff on the
regime of validity of our analysis.

We conclude with a brief discussion of future directions.
Our approach can also be useful for the study of other far
from equilibrium problems of current interest. For example,
it is an interesting question as to how an initial nonthermal
distribution of dot charges would evolve with time—in par-
ticular, whether the long-time behavior retains any memory
of the initial conditions. Similar questions have been posed,
for example, in the context of relaxation of initial charge
distribution in Bosonic cold atom systems [53] and the ap-
proach to thermal equilibrium in fermionic quantum chains
[54]. Our Keldysh-AES model can also be used to study the
energy transport. The problem we have attacked in our paper
is the current response to a uniform DC electric field; however,
the approach is readily generalized to problems involving
time-dependent drives. In this context, it would be interesting
to compare with periodically driven Hubbard chains in the
absence of dissipation [55]. As we noted in our paper, there
are two special values of the background charge on a dot—
integer and half odd integer. The integer case that we studied
in detail corresponds to a Mott insulator, while the latter
is a correlated “bad” metal. The nonequilibrium response
close to half odd integer background charges is an open
question. Another interesting direction would be to study the
nonequilibrium response of driven Josephson-junction arrays.
This direction, especially after taking into account long-range
Coulomb interactions, would shed more light to understand
the sudden jumps observed in the I-V characteristics of disor-
dered superconductors that are in the insulating side and in the
proximity of superconductor to insulator transition [56–59].
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APPENDIX: NORMALIZATION OF THE PARTITION
FUNCTION

A key property of the Keldysh partition function is that in
the absence of source fields, the partition function is normal-
ized. Demonstrating this for the Keldysh-AES action requires
one to take into account the correct causal structure of the
Green functions. We expand exp[ιStun[φ]] in powers of g. To
leading order, we get

Z (0) =
∫

[Dφ][Dn] exp[ι(SC[n, φ])]. (A1)
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Doing the functional integration over φ, we see that the con-
straints ∂t n+ = 0 and ∂t n− = 0 are imposed and then it im-
mediately follows from the boundary condition, n+(−∞) =
n−(−∞), that Z (0) = 1.
Order g. Consider now the O(g) term in the expansion of the
Keldysh partition function.

Z (1) = ιg
∑

k

∫ ∞

−∞

∫ ∞

−∞
dtdt ′Lσσ

′
(t − t ′)

× 〈 exp
[− ιφσ

k,1(t ) + ιφσ ′
k,1(t ′)

]〉
0, (A2)

where <>0 denotes averaging with respect to the bare action.
Thus,

Z (1) = ιg
∑

k

∫ ∞

−∞

∫ ∞

−∞
dtdt ′Lσσ

′
(t − t ′)�σσ

′ (t − t
′
).

(A3)

We have the site correlators,

C++(t − t
′
) = exp[−ιEC |t − t

′ |], (A4)

C+−(t − t
′
) = exp[ιEC (t − t

′
)], (A5)

C−+(t − t
′
) = exp[−ιEC (t − t

′
)], (A6)

C−−(t − t
′
) = exp[ιEC |t − t

′ |]. (A7)

Then we get the bond correlators,

�++(t − t
′
) = exp[−2ιEC |t − t

′ |], (A8)

�+−(t − t
′
) = exp[2ιEC (t − t

′
)], (A9)

�−+(t − t
′
) = exp[−2ιEC (t − t

′
)], (A10)

�−−(t − t
′
) = exp[2ιEC |t − t

′ |]. (A11)

From the bond correlators we immediately see that the term
involving �K vanishes. Now lets look at the term with �+.
In the time representation, we have to keep in mind that it
comes with the causality factor θ (t ) and hence we write it as
�(t )θ (t ). The term involving this reads as,

�+(t )θ (t )[exp(ιECt ) − exp(−ιECt ) − exp(ιEC |t |)
+ exp(−ιEC |t |)]. (A12)

Because of the presence of the θ function, we see that we can
remove the modulus sign from the last two terms and then
clearly this contribution vanishes. Similarly, we see that the
contribution from terms involving �− also vanishes. Hence,
we see that the order g contribution to the partition function
vanishes. We assume that all the higher-order g contributions
to the partition function vanishes too and thus the partition
function is truly equal to 1.
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