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Solving the quantum dimer and six-vertex models one electric field line at a time
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The nature and the very existence of the resonant plaquette valence bond state that separates the classical
columnar phase and the Rokhsar-Kivelson point in the quantum dimer model remains unsettled. Here we take
a different line of attack on this model, and on the closely related six-vertex model, by exploiting the global
conservation law of the number of electric field lines. This allows us to study a single fluctuating electric field
line which we show maps exactly onto a one-dimensional spin chain. In the case of the six-vertex model,
the electric field line maps onto the celebrated spin 1/2 XXZ model which can be solved exactly. In the
quantum dimer model, the electric field line is mapped onto a two-leg spin 1/2 ladder, which we study using
numerical exact diagonalization. Our findings are consistent with the existence of three distinct phases including
a Luttinger liquid phase, the one-dimensional precursor to the two-dimensional plaquette valence bond solid.
The uncanny resemblance of our quasi-one-dimensional electric field line problem to the full two-dimensional
problem suggests that much of the behavior of the latter might be understood by thinking of it as a closely packed
array of field lines which themselves are undergoing nontrivial phase transitions.
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I. INTRODUCTION

Lattice gauge theories are quantum mechanical lattice
models with local conservation laws which often harbor un-
conventional phases of matter [1,2] and can simulate the
behavior of the vacuum of our universe [3]. Traditionally
they have been proposed as descriptions of certain frustrated
quantum magnets, such as spin ice materials [4], but there
is also recent interest in alternative platforms such as cold
atomic systems [5,6].

A simple model which realizes a lattice gauge theory is the
quantum dimer model (QDM) in the square lattice introduced
by Rokhsar and Kivelson (RK) nearly thirty years ago [7].
A closely related model is the quantum six-vertex model
(Q6VM) which can be viewed as a quantum spin ice model
in the checkerboard lattice [8–10]. These models fall within
the class of quantum link models studied by the lattice gauge
theory community [11,12]. Both models realize a U(1) lattice
gauge theory [1] and can be viewed as restrictions to different
subspaces of the Gauss law for a common underlying mi-
croscopic Hamiltonian, as we will revisit in the next section.
This RK Hamiltonian contains a single independent param-
eter v that can be tuned to realize different phases. Various
features are shared between the QDM and Q6VM. For v < 1
the ground states in the square lattice are broken symmetry
phases, in which the charges are confined from the gauge the-
ory point of view [13]. For v = 1, the Hamiltonian realizes the
celebrated RK point, at which a soft quadratically dispersing
photon mode appears. For v > 1 the Hamiltonian has a large
number of degenerate states that grows exponentially with the
linear dimension of the lattice [14], and both systems exhibit
a form of fragile subdimensional deconfinement [8,15].

Remarkably, in spite of its history, the precise nature of
phases of the QDM in the square lattice is still a matter

of debate. An early numerical study found evidence for a
columnar phase for all v < 1 [16]. Two subsequent studies
advocated for an intervening plaquette valence bond solid
phase separating the columnar phase and the RK point, al-
though they disagreed on its location [17,18]. A third possi-
bility was put forth in Ref. [19], which found evidence for
a mixed columnar-plaquette phase intervening between the
pure columnar and pure plaquette phases. This study also
advocated for a considerably reduced region for the potential
pure plaquette phase. More recently, by employing height
mappings [20], two Monte Carlo studies have reached larger
system sizes and brought the discussion full circle by advo-
cating that there is no intervening plaquette or mixed phase
separating the columnar phase and the RK point [21,22].

In contrast, the situation is more clear in the Q6VM. An
exact diagonalization study [8] found evidence for a columnar
phase for v � −0.4, undergoing a phase transition into a
plaquette phase that is stabilized for −0.4 � v � 1. Similar
conclusions were reached in a subsequent Monte Carlo study
employing a height mapping [23]. This study argued that the
transition was first order but it found it to be anomalously
weak, which was interpreted as arising from proximity to
the terminal tricritical point of the first order phase transition
line, although such a putative tricritical point has not yet been
explicitly accessed to the best of our knowledge.

In addition to their local conservation laws, which encode
the local Gauss law constraint, U(1) lattice gauge theories can
have additional global conservation laws that depend on the
topology of the space. For example in a 2D torus, there are
two topological conserved quantities that measure the total
electric flux along the periodic directions in the torus, known
as t’Hooft operators [1]. These two operators, also referred to
as winding numbers, can be used to further split the QDM and
Q6VM Hilbert spaces into decoupled subspaces or sectors.
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One can think of these operators as measuring the total
number of electric field lines that thread the torus in a given
direction. The global ground state of the RK Hamiltonian
for v < 1 belongs to the sector with zero winding in which
there are as many electric field lines going to the left, to the
right, and in up and down directions. For v > 1, many large
winding sectors become degenerate and there is no unique
global ground state; a set of exactly degenerate ground states
emerges which grows exponentially with the perimeter of the
torus, as we will revisit in Sec. II B.1 At the RK point, v = 1,
one indeed has an even larger number of exactly degenerate
zero energy ground states. This is because, in addition to the
aforementioned ground states that appear in large winding
sectors for v > 1, there appears at least one exact zero energy
ground for every winding sector, since at the RK point the
Hamiltonian is a sum of projectors. The number of winding
sectors in a 2D torus scales as the linear size of the system,
thus leading to an additional order ∼L ground states at the
RK point.

In the present paper, we study the phase diagram of
these models using an unconventional line of attack. We
will exploit the conserved winding numbers to isolate the
quantum dynamics of a single electric field line. This can
be achieved in the torus by restricting to the sectors of the
Hilbert space with large winding numbers. Similarly in open
boundary conditions, one may study a single electric field
connecting two static charges in a background vacuum of
inert, fully polarized electric field lines. As we will show,
the Hamiltonian governing the quantum mechanics of these
isolated electric field lines can be mapped exactly onto one-
dimensional models. In the case of the six-vertex model, the
electric field line maps onto the XXZ spin 1/2 chain. This
chain is exactly solvable and its phases are well understood. It
has three: a gapped symmetry-breaking antiferromagnet, an
XY magnet with quasi-long-range order (Luttinger liquid),
and a ferromagnet. As we will see, these are, respectively, the
natural precursors to the columnar, plaquette, and staggered
phases of the two-dimensional Q6VM. The RK point corre-
sponds to the critical point between the Ising and XY magnet
and hence has an exact underlying SU(2) symmetry. This will
allow us to demonstrate that in the largest winding sectors the
RK point has a form of perfect charge deconfinement with
exactly zero string tension for finite charge separations. We
will also show that the single electric field line of the QDM
model maps into a two-leg ladder spin 1/2 chain, which to our
knowledge has not been previously studied. We find numerical
evidence for three phases in this ladder: a gapped phase, a
Luttinger liquid, and a phase-separated state. The Luttinger
liquid is the natural precursor of the plaquette phase at zero
winding, but we find that it has a substantially reduced Drude
weight, compared to the Q6VM case, indicating that the
liquid is closer to crystallizing. These results are summarized
in Fig. 1 where we show the Drude weight and schematic
diagrams of the ground state electric field configurations. We

1It is often stated that for v > 1 the staggered pattern of dimers
is the ground state of the RK Hamiltonian, but this is only true if
one restricts to a specific winding sector and ignores the degeneracy
coming from the sectors.

FIG. 1. Drude weight and phases for the electric field line for
the Q6VM (top), which maps onto the spin-1/2 XXZ chain, and the
QDM (bottom), which maps onto a spin-1/2 two-leg ladder. Insets
depict the ground state of the electric field lines in the different
regimes. We see similar trends in Q6VM and QDM, with a fluid
state intervening between two solids, although in the latter we rely
on exact diagonalization of small systems. The solid phases are
precursors to the columnar and staggered phases and the liquid is
a precursor to the resonant plaquette phase in two dimensions.

caution, however, that our numerical results are limited to very
small system sizes and thus it is possible that richer behavior
might arise for the QDM two-leg ladder at larger system sizes.

The resemblance of the quasi-one-dimensional single elec-
tric field line problem and the full two-dimensional problem
in the zero winding sector suggests that much of the behavior
of the latter might be understood by thinking of it as a closely
packed array of electric field lines which by themselves are
undergoing nontrivial phase transitions. This idea is not un-
precedented and was advocated in pioneering work by Orland
[24,25], which, however, incorrectly argued the ground state
of the QDM and Q6VM to be a gapless liquid like state. A
closely related treatment of the problem of quantum spin ice
in the presence of Zeeman fields was developed as well in
Ref. [26]. A related line of thinking has also been used to
study the quantum dynamics of stripes [27]. In this work, we
will follow this line of thinking by focusing on understanding
the behavior of a single electric field line in the QDM and
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Q6VM. In an effort to make our presentation self-contained,
we have provided a short introduction to the lattice gauge
theory formulations of the QDM and Q6VM in Sec. II. In
Sec. III we describe the mappings of the Q6VM and QDM
as well as their analytical and numerical characterizations.

II. U(1) GAUGE STRUCTURE OF THE QDM AND Q6VM

In this section we revisit the gauge structure of the QDM
and Q6VM. These two models can be viewed as arising from
the same underlying microscopic Hamiltonian restricted to
two different subspaces of Gauss’ theorem. The Hilbert space
of this underlying Hamiltonian consists of spin 1/2 degrees
of freedom lying on the links of the square lattice. We label
lattice sites by r = (x, y), and assign a rightward orientation
to the horizontal links and an upward orientation to the vertical
links. The two outgoing links from a given site r are labeled
by the ordered pair r, x for the rightward link and r, y for the
upward link.

The electric field is viewed as a vector directed along each
link, and its orientation relative to that of the link is given by
the corresponding σz operator:

Er,x = σ z
r,x , Er,y = σ z

r,y. (1)

To emulate Gauss’ theorem in the lattice, we define a charge
operator at every site Qr as the discrete divergence of the
electric field:

∇ · Er = Er,x − Er−x̂,x + Er,y − Er−ŷ,y ≡ Qr. (2)

The charge operators are the generators of the local gauge
transformations at every site r, which are explicitly imple-
mented by the action of

U = exp

(
i
∑

r

θrQr

)
. (3)

There are then two essential requirements that any Hamil-
tonian must satisfy in order to qualify as a gauge theory: It
must commute with every Qr and it should be a sum of local
terms. The gauge transformations acting on the spin raising
and lowering operators, σ±

r,�, as follows:

Uσ±
r,�U† = e(±2i

∫ ∇θ ·d�)σ±
r,� = e±2i(θr+l̂−θr )σ±

r,�. (4)

Thus, σ±
r,� transforms like a charge hopping (or dipole cre-

ation) operator of the form c†
r+�cr, endowing these operators

with the following notion of directionality:

(5)

More generally we can introduce a charge hopping operator
associated with a directed line γ that starts at site r and ends at
site r′, by taking ordered products of σ±

r,� following the natural

convention for a discrete line integral, as follows:

L± =
∏
r∈γ

σ±
r . (6)

The above charge hopping operator for open lines is not gauge
invariant. Gauge invariant operators can be obtained by taking
ordered products of σ±

r,x(y) to form oriented closed loops,
which guarantees that the phases from gauge transformations
cancel in pairs. The smallest nontrivial closed loop, associated
with each plaquette, is:

(7)

We will sometimes refer to these closed loop charge hopping
operators as magnetic loop operators.

As we have described, the divergence of the electric field
is a locally conserved quantity in a U(1) lattice gauge theory.
This conservation law expresses a dynamical conservation of
the number of oriented electric field lines pierce any given
region bounded by a contractible loop. This can be made
more explicit by making use of the lattice version of Gauss’s
theorem, which reads as follows:∫

S
∇ · E =

∑
r∈S

∇ · Er =
∑
r∈∂S

n̂ · Er =
∮

∂S
(n̂d�) · Er. (8)

It is convenient to transform the integral above into a
conventional line integral. For this purpose we define a dual
electric field E = E × ẑ, which is a rotated version of the
electric field E. Since it is rotated, it is often convenient
to visualize it as residing on the links of the dual lattice.
In this way, Gauss’ theorem law for a region bounded by
a contractible loop can be expressed as a conventional line
integral of the dual electric field∫

S
∇ · E =

∮
∂S

(d� × ẑ) · Er =
∮

∂S
d� · E . (9)

Therefore, any closed line integral of the dual electric field
over a contractible oriented loop in the dual lattice is a con-
stant of motion. Now, in geometries with nontrivial topology
such as the torus, it is possible to have noncontractible loops
for which Gauss’ theorem as described above cannot strictly
be applied. However, it is easy to show that provided that
the underlying Hamiltonian is local and also gauge invariant
(i.e., that it commutes with the divergence of the electric field
at every site), then the line integral of the dual electric field
over such noncontractible loops necessarily commutes with
the Hamiltonian as well [1]. These operators are known as
t’Hooft operators or winding operators. In a torus there are
two independent t’Hooft operators associated with the two
principal noncontractible loops, defined as:

Wx =
∮

+d�yEr,x =
∑

↑
Er,x =

∑
↑

σ z
r,x

Wy =
∮

−d�xEr,y =
∑
←

Er,y =
∑
←

σ z
r,y,

(10)
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FIG. 2. The links intersected by the above two noncontractible
loops on the torus are those that are summed over to form the ’t Hooft
operators described in Eq. (10).

where x, y designates the direction of the electric lines which
are integrated (see Fig. 2). We will refer to the eigenspaces
with definite t’Hooft operators as winding sectors. Therefore,
a U(1) lattice gauge theory has additional topological con-
servation laws which are distinct from the local conserva-
tion laws associated with charge conservation. These global
conservation laws are associated with a gauge group U(1)x ⊗
U(1)y which acts as:

G(θx, θy) = exp(iθxWx + iθyWy). (11)

Notice that charge hopping line operators as defined in
Eq. (6) commute with t’Hooft operators only if they intersect
an even number of times because [σ z, σ±] = ∓σ±, so each
adds a term to the commutator of alternating sign. This implies
that any closed contractible magnetic loop, such as that from
Eq. (7), commutes with the t’Hooft operators. However, this
is not the case for closed noncontractible magnetic loop
operators (Wilson loop operators) and for open line charge
hopping operators which intersect the t’Hooft operator an odd
number of times.

The commutator between the t’Hooft operators and one
such charge hopping or Wilson loop operator L is:

[Wx′, L] = [
σ z

r′,x′ , σ
±
r′,x′

] ∏
x �=x′

σ±
r,x = ±L, (12)

where the ± sign is dictated by the direction of the line integral
used to obtain L. Therefore, the Wilson loop operators act as
raising and lowering operators for the t’Hooft operators and
move between different winding sectors of the Hilbert space.
The action of the Wilson loop operators can be interpreted
as the process of creating a pair of opposite charges from
the vacuum and annihilating them after hopping them over a
noncontractible loop, which results in change in the winding
number.

A. Construction of the Hamiltonian

The structure described above is generic to U(1) lattice
gauge theories in 2 + 1D. In this section we will describe
a specific Hamiltonian that reduces to the RK Hamiltonians
of the QDM and Q6VM in the appropriate subspaces of the

FIG. 3. Six vertices consistent with Qr = 0.

Gauss law. The Hamiltonian reads

H = −t
∑

P

(L†
P + L†

P ) + V
∑

P

(L†
PL†

P + L†
PL†

P ), (13)

where the plaquette operator LP is defined in Eq. (7). The
first term is the analog of the magnetic field term in Maxwell
theory which induces quantum fluctuations of the electric field
configurations. The second term is diagonal in the electric
field configurations and acts as a potential. In fact,

L†
PLP =

(
1 − σ z

r,x

2

)(
1 − σ z

r+x̂,y

2

)(
1 + σ z

r+ŷ,x

2

)(
1 + σ z

r,y

2

)
.

(14)

Thus we see that L†
PLP projects onto loop eigenstates of the

electric field at a given plaquette. These two configurations
are depicted in Fig. 4 and are denoted by |�〉 and |�〉. If a
plaquette has either of these two electric field configurations,
we call it flippable (otherwise, not flippable). Notice that the
Hamiltonian in Eq. (13) only acts on flippable plaquettes;
nonflippable plaquettes are annihilated by both the magnetic
and the electric field terms. Therefore, the Hamiltonian can be
expressed in the following more intuitive notation:

H = ∑
� −t (|�〉 〈�| + |�〉 〈�|) + V (|�〉 〈�| + |�〉 〈�|).

(15)

Notice that the term proportional to V counts the total number
of flippable plaquettes and the t term exchanges flippable
plaquettes. There is a single parameter v ≡ V/t which con-
trols the physics. The RK point is located at v = 1 where the
Hamiltonian becomes a sum of projectors.

B. Six-vertex model

The six-vertex model is realized in the subspace in which
the charge operator is set to zero, Qr = 0, for every site r,
which constrains the electric fields at each site to one of the
six configurations shown in Fig. 3, and hence the name of the
model. Additionally, the Hilbert space further separates into
winding sectors specified by the t’Hooft operators Wx,y from
Eq. (10). Let us consider the sector with maximal winding:
Wx = Lx,Wy = Ly where Lx,y are the number of sites along the
x, y directions. This maximal winding sector contains a single
eigenstate in which the electric field at every link is σr,x(y) =
+1. Such a state is trivially a zero energy eigenstate of the
Hamiltonian in Eq. (15) as it contains no flippable plaquettes
and is one of the exponentially large number of degenerate
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FIG. 4. One possible path on the lattice before (left) and after
(right) having acted with L†

P on the counterclockwise flippable pla-
quette of the figure on the left.

ground states realized to the right of the RK point for v>1.
We will see this trivial sector as the reference vacuum on top
of which we will create a single electric field line by the action
of a charge hopping operator L from Eq. (6) along a suitably
chosen path.

Specifically, we act on the reference vacuum with a charge
hopping operator L which reverses the electric field along this
path and terminates at two sites where charges Qr = ±2 are
created. This state then evolves under the Q6VM Hamiltonian,
Eq. (15). An example of the action of H is depicted in Fig. 4,
in which it is shown how a plaquette flips with a corresponding
change in the electric field line configuration. As we will show
in Sec. III A, this problem maps identically into the spin 1/2
XXZ chain.

C. Quantum dimer model

The QDM model is realized in a different subspace of the
Gauss law. This is achieved by splitting the sites of the square
lattice into two sublattices and requiring:

Qr = 2(−1)rx+ry . (16)

We call the positive (negative) charge sublattice A (B). There
are four allowed configurations for the electric field lines in
the links touching a site in either the A or B sublattices.
For the A sublattice, three electric field lines always flow into
the site, while a single field line goes out, and the reverse
holds for the sublattice B. We can denote the configurations
by covering the unique link where the electric field flows
into the A sublattice with a dimer. This is also the unique
link which flows out of the B sublattice. Since every lattice
site is touched by one and only one of these dimers, the
allowed configurations of electric field lines in this subspace
are in one to one correspondence to arrays of closely packed
nonoverlapping dimers that fully cover the lattice.

Similarly to the Q6VM, the reference vacuum is chosen
so that there are no flippable plaquettes and is a state with
an staggered array of dimers such as that depicted in Fig. 8.
Notice that this state has winding numbers for the t’Hooft
operators given by Wx = 0,Wy = Ly. Therefore, unlike the
Q6VM, within the subspace of the QDM model, it is impos-
sible to simultaneously maximize the winding numbers along
both directions of the torus.

FIG. 5. Top: Two states of a string on a square lattice. Left: The
state at t = 0 has five flippable plaquettes and is an eigenstate with
energy 5V . Right: The state has seven flippable plaquettes and is an
eigenstate too, with energy 5V . This is also a maximally kinked state.
Bottom: The equivalent configuration of the hardcore boson chain.

This staggered vacuum is an exact zero energy eigenstate
of the RK Hamiltonian from Eq. (15). We can again study how
the addition of charges alters the reference vacuum. As we
will show in Sec. III B, we can act on the background with an
open charge hopping line operator. If the path satisfies certain
simple conditions, charges will only be created at the ends of
the line. The resulting state will now be dynamical, and, as we
will see, it maps onto a two-leg ladder of spin 1/2 degrees of
freedom. In Fig. 8, we show an example of such a state and
the action of the Hamiltonian.

III. SOLUTION OF THE MODELS

In this section, we consider the problem of a pair of charges
connected by a single fluctuating electric field line. We will
map these problems to the XXZ chain for the Q6VM and a
two-leg ladder for the QDM. The phase diagram is known in
the former case, and we will provide numerical evidence that
the diagram is the qualitatively similar for the latter.

A. Mapping the electric field line of the Q6VM to the XXZ chain

We construct a state with a single electric field line on
top of the fully polarized state, which we call the reference
vacuum. This reference vacuum is the unique state where
the electric field is positive along every link of the lattice.
We then add two charges ±2 to prepare the electric field
line. Preservation of the local Gauss law requires that the two
charges must be connected by a sequence of contiguous links
on which we reverse the electric field relative to the reference
vacuum. Notice that a flippable plaquette appears at every
corner of the electric field line, and therefore such corners
have nontrivial quantum dynamics under the action of the
Hamiltonian, Eq. (15) as depicted in Fig. 5. Since the reversed
electric field line must flow against the polarization of the ref-
erence vacuum, it is bounded by the rectangle whose corners
are defined by the charges. We take one charge to be sitting
at the origin and the other at the site r = (�x, �y). The con-
straint that the line must run against the polarization of the
vacuum gives rise to a dynamical conservation of its length,
measured using the taxicab distance |�x| + |�y|. An analogous
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dynamical constraint appears in the strong coupling expansion
of lattice QCD [28,29].

To map this fluctuating electric field line onto a conven-
tional 1D system, we unfold the line into a chain of L ≡
�x + �y sites labeled by i. We fill the chain with hardcore
bosons b†

i defined by

[bi, b j] = 0, i �= j

{bi, b†
i } = 1, (17)

so that every horizontal segment corresponds to an empty
site and every vertical segment corresponds to a filled site.
Because both �x and �y are conserved quantities, the system
has a global U (1) symmetry generated by the conservation of
the total particle number:

Nb =
∑

i

b†
i bi = �y. (18)

This allows us to define a filling ν = Nb
L = 1

1+�x/�y
.

To write the Hamiltonian of the boson chain, we note that
the action of the kinetic term in Eq. (15) is to flip a corner,
reversing the order of its constituent horizontal and vertical
segments. This corresponds to hopping a boson between
nearest neighbor sites. The potential term counts the number
of corners. Therefore these corners can be viewed as counting
the links of the 1D lattice on which there is a change of the
absolute value of the occupation number of the bosons. Thus,
the Hamiltonian can be written as:

H6v =
L∑

i=1

−t (b†
i bi+1 + H.c.) + V (ni − ni+1)2. (19)

Note that we may fix t>0 because its sign may be changed
via a unitary transformation bi → (−1)ibi. The single electric
field line has therefore a Hamiltonian which is equivalent to a
1D Bose-Hubbard model with nearest neighbor hopping and
interactions. This model has a particle-hole symmetry �:

�†bi� = b†
i

�†b†
i � = bi (20)

which takes �†ni� = 1 − ni. The ground state is only in-
variant under this symmetry for ν = 1

2 . This particle-hole
conjugation can be interpreted as a reflection of the electric
field line configuration along the diagonal of the square lat-
tice that intersects the charge located at the endpoint of the
electric field line at the origin (0,0) and therefore swaps the
coordinates of charge at the endpoint located at (lx, ly), lx ↔
ly. Therefore the ground state is invariant only for charges
displaced diagonally on the lattice.

As is well known, this model can be mapped from hard-
core bosons onto spin 1/2 degrees of freedom. We let bi =
S−

i , b†
i = S+

i , ni = Sz
i + 1

2 and find

H6v = −J
L∑

i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + vSz

i Sz
i+1 − v

4

)
, (21)

where J = 2t, v = V/t . This Hamiltonian generalizes the one
first obtained by Orland in Ref. [24] to nonzero values of v.
This is the well-known XXZ spin chain which is an exactly
solvable model [30,31]. At zero magnetization, or half filling,

FIG. 6. Top: The Drude weight of the model is computed for
systems of size L = 3, . . . , 8 using exact diagonalization. The phase
transition at the RK is obvious as D → 0 at v = 1, but the conver-
gence is slower for the infinite order Kosterlitz-Thouless transition at
v = −1. The inset shows the second derivative of the Drude weight
d2D
d2v

which changes sign roughly at the phase transitions. Bottom:
The exact phase diagram is shown at M = 0.

there are three phases for the XXZ model: a gapped Ising fer-
romagnet for v>1, a gapless XY-like magnet with power law
correlations for |v| < 1, and a gapped Ising antiferromagnet
for v < −1, as illustrated in Fig. 6. The energy density of
these phases, defined as the total energy divided by the total
number of sites, plays the role of the tension of the electric
field line and dictates the interaction law between the charges.
In general it can be written as:

E (v, M ) = f (v, M )L + O(L−1),
(22)

M = 2

L

∑
i

Sz
i = �y − �x

L
,

where M is the conserved magnetization and f (v, M ) is the
free energy density. Reference [31] contains expressions for
f (v, M ) obtained from the Bethe ansatz. We will include
selected results from this work in the following more detailed
description of the phases, and the reader is otherwise referred
to the original paper.

We begin in the v>1 ferromagnetic phase at fixed M.
The global ground state is the trivial fully polarized state
with |M| = 1 and energy E = 0. For |M| �= 1, the system
is unable to reach the global fully-aligned ground state due
to the conservation of M. Instead, a domain wall is created,
corresponding in the bosonic picture to phase separation and
in the electric field line picture to the path approaching its
bounding rectangle. When this domain wall is large compared
to the lattice scale (namely when v → 1), it can be modeled
using a semiclassical continuum description. Using the U(1)
symmetry, we can fix the spin to lie in a plane with Sz

i →
sin θ (x), Sx

i → cos θ (x). In this approximation, the energy is
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given by

E =
∫ L

0
dx

(
ρ

2

(
dθ

dx

)2

− λ cos2 θ

)
(23)

with ρ = J, λ = J (v − 1) in units where the lattice spacing
is one. One can minimize this energy using Euler-Lagrange
equations, and they may be exactly solved in terms of Jacobi
amplitudes for finite L. In the limit L → ∞ the solution is
given by

Sz(x) = tanh
x − x0

w
, w = 1√

2(v − 1)
, (24)

where w is the width of the domain wall and x0
L = 1−M

2
fixes the magnetization. This solution has θ∼0, π except in
the region |x − x0| � w, so the presence of a domain wall
contributes an energy O(L0) to the system, which can be
estimated to leading order in v − 1 to be:

E = 2
√

2J
√

v − 1. (25)

This result is noteworthy as it encodes a form of subdimen-
sional charge deconfinement emerging in the staggered phase
to the right of the RK point for v>1 [8,15]. Namely, when
two charges are separated strictly along the horizontal and
vertical directions of the square lattice they have an electric
field line that costs zero energy and are therefore deconfined;
however, when the charges try to move perpendicularly, a do-
main wall is created that incurs an energy cost 2

√
2J

√
v − 1.

This form of subdimensional deconfinement differs however
from the recently studied case of fracton models (see, e.g.,
Refs. [32–36]).

A remarkable implication of our mapping is that an SU(2)
symmetry emerges at the RK point, since it occurs at v = 1
where the XXZ chain becomes the isotropic ferromagnetic
Heisenberg model. This has profound consequences on charge
confinement. Since the exact ground state of the ferromagnetic
is a simple tensor product of spins pointing in the same
direction, the exact ground state energy is E = 0. Because the
ferromagnet can smoothly cant away from the z axis without
any energy cost due to the exact SU(2) symmetry, the electric
field has vanishing tension independent of orientation of the
charges. One should bear in mind that the background we
are considering has exactly zero energy at the RK point, so
it belongs to the full zero energy manifold even when the
restriction of global winding numbers is removed. Recall that
at the RK point, all states have non-negative energy because
the Hamiltonian is a sum of projectors. Therefore, we have
proven that there is ground state at the RK point with exactly
zero string tension even for finite charge separations. This
is a form of perfect charge deconfinement, which contrasts
with the generic deconfinement in which the vanishing string
tension appears in the asymptotic thermodynamic limit of
large charge separations compared to the lattice scale.

The system then enters a gapless phase with power law
correlations for |v| < 1, undergoing a continuous spin-flop
type transition from an Ising magnet with easy axis anisotropy
to an XY magnet with easy plane anisotropy through an SU(2)
invariant point. The kinetic term dominates and the plaquettes
are strongly resonating. Much of the behavior of this phase
can be understood by studying the point v = 0, at which the

FIG. 7. The two lowest energy states in each k sector for L = 7
are shown relative to the ground state energy for φ = 0. At large
negative v, the odd and even charge density waves at k = 0, π

become degenerate, and the low lying excitations are propagating
domain walls. The discontinuity in the first derivative at the RK
is visible. On the right, the lowest energy state at each k becomes
approximately degenerate.

Hamiltonian may be mapped into free 1D fermions with the
Jordan-Wigner transformation. This is most easily seen from
Eq. (19) where the interaction term vanishes. It is then simple
to obtain

f (0, M ) = − J

π
cos

π

2
M. (26)

This function is minimized at M = 0 where the electric field
line is oriented diagonally. We will see later that this is also
the preferred orientation of the antiferromagnet.

Because of its strong plaquette flipping fluctuations (which
correspond to boson hopping processes), the present gapless
phase can be seen as a precursor to the resonating plaquette
phase of the full 2D zero winding sector of the Q6VM. Such a
zero winding sector can be seen as containing a finite density
of electric field lines which we have studied. The electric
field lines have, however, strong interactions, and these are
presumably responsible for turning the liquid Luttinger phase
that we encountered into the plaquette crystalline phase seen
in numerical studies [8,21].

At v = −1, the system undergoes a form of the Kosterlitz-
Thouless transition and the free energy is smooth to all orders
[31].2 In Fig. 7, we compute the lowest two energy levels at
each momentum for a finite sized system; the RK point is
clear in the spectrum at v = 1 but the transition at v = −1
is much less so. The gap reopens for v < −1 and the system
becomes antiferromagnetic for the rest of the parameter space,
corresponding in the boson language to a charge density wave.
In this regime, the path approaches the diagonal, becoming
jagged, and quantum fluctuations freeze out as |v| increases.

2An SU(2) symmetry also exists at v = −1, as can be seen after
rotating the spins on alternating sites to flip the sign of the XY terms.
Thus, Hv=1 = −Hv=−1. As a result, the ground state at v = −1, a
spin singlet, is the highest excited state at v = 1, where the ground
state is fully polarized.
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It is instructive to compare the behavior of the model
with explicit numerical solutions. Although this is not strictly
needed in the present case where the phases can be under-
stood exactly, it will prove essential for the QDM model
where we lack exact solutions. To diagnose and distinguish
fluid and gapped phases, it is useful to introduce the Drude
weight D. The Drude weight is finite in the gapless Luttinger
liquid phase in which the bosons can flow in response to a
probe electric field and vanishes in the insulating phases. The
Drude weight can be conveniently computed by twisting the
boundary conditions of a length L one-dimensional chain [37],
which we implement by adding a phase eiφ at the last bond as
follows:3

H6v,closed = H6v,open + eiφtb†
1bL + H.c. (27)

The eigenvalues of the Hamiltonian can be determined
as functions of φ numerically and the Drude weight can be
computed as the stiffness for twisting boundary conditions
[37]:

D ≡ L
d2E0

dφ2
. (28)

In Fig. 6, we see that the Drude weight distinguishes the
conducting and insulating phases fairly well even for modest
L. We will find a similar behavior for the QDM.

B. Mapping the electric field line of the QDM to a two-leg ladder

Having studied the Q6VM, we now search for a similar
mapping in the QDM. To create a single electric field line, we
follow an analogous procedure. Without loss of generality, we
choose the line to start and end on the A sublattice sites with
charges Qr = +2.4 We draw a direct line through a sequence
of connected links always against the flow of the background
configuration. Notice that flowing against the reference vac-
uum requires the path to follow a sequence of links which
alternates between those with dimers and those without. The
line is constructed so that defect monomer charges appear
only at the ends of the line, with values Qr0 = 0 at the starting
site and Qr f = +4 at the ending site, as illustrated in Fig. 8.
Along this path, we reverse the direction of the electric field
compared to the reference vacuum. This causes the dimers
initially present in the background configuration to become
unoccupied and the initially unoccupied links of the path
to now contain dimers. At the ends of the line, two dimers
overlap the first site and no dimers touch the last.

To map the problem into a conventional 1D system, it is
convenient to simplify the picture by representing the dimers
of the background configuration as points. In this way the
electric field line appears as a directed string joining the
sites of a triangular lattice as depicted in Fig. 8. In this
picture, a single flippable (triangular) plaquette is created

3Notice that this is still a translationally invariant problem with
a conserved momentum as the flux can be spread uniformly by
changing the gauge via a unitary transformation b†

j → ei jφ
L b†

j , which
leads to a complex hopping amplitude teiφ/L .

4When the path terminates in the B sublattice the last link remains
inert under the action of the Hamiltonian.

FIG. 8. Left: Figures (a), (b), and (c) show successive states of
an open string after having acted with the Hamiltonian on the right
flippable plaquette. Right: The same configurations and shown in the
triangular lattice where the dimers are contracted to points. Bottom:
The projection into a 1D chain is shown, including the flipping from
diagonal to horizontal configurations as hoppings from odd to even
sites.

when segments of opposite slope are joined into a triangular
corner, and two are created when the segment is horizontal.
No flippable plaquettes are created when a horizontal segment
joins a sloped segment. This dictates the form of the diagonal
potential term. The kinetic term locally changes the electric
field line by flipping triangular corners to horizontal segments.
One such possibility is shown in Fig. 8(b). As demonstrated
there, string’s length along the triangular lattice is not con-
served, making mapping to a 1D chain less straightforward.
Notice that in this case the string is also constrained to move
within a finite region determined by the position of the charges
similarly to the Q6VM. In the triangular lattice picture this
region is a parallelogram as illustrated in Fig. 8.

We have found, however, a mapping onto 1D hard-core
bosons moving in a chain with a basis of two distinct sites
which can be viewed as an asymmetric two leg ladder. This
chain is obtained by projecting the triangular lattice on a
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horizontal line to make a one-dimensional lattice as depicted
in Fig. 8. This one-dimensional lattice is viewed as having a
two-site basis per unit cell of a tight-binding model. The two
sites correspond, respectively, to the projection of the vertices
and the projection of the bonds of the triangular lattices onto
the horizontal axis and are depicted by the ticks and the links,
respectively, in Fig. 8. The sites corresponding to the projected
vertices will be taken to be even sites (ticks in Fig. 8) and the
neighboring sites coming from the projected bonds (links in
Fig. 8) will be denoted as odd sites.

We place hardcore bosons on this chain with the following
convention: A downward slopping segment of the path in
the triangular lattice corresponds to placing a boson on the
odd site (links in Fig. 8) and an upward segment of the path
corresponds to an empty odd site. A horizontal segment of the
path in the triangular lattice corresponds to a placing boson
on the even site (ticks in Fig. 8), as depicted in Fig. 8. As
in the Q6VM, we take one charge at the end of the electric
field line to be at the origin, while the other one is placed at
a site located at r = (2�x, �y) in the dimer lattice. It is often
convenient to visualize the triangular lattice as a square lattice
rotated by 45◦; this makes the path resemble the one in the
Q6VM except that now it is also allowed to occupy one of
the diagonals of the square lattice. In this picture one charge
would be placed at r′ = (�x, �y). In the 1d representation, the
chain would have a total number of sites (counting both even
and odd sites) given by 4�x − 1 and a total number of bosons
N = �x − �y.

Although this convention assigns a unique boson config-
uration to every allowed path between the two charges, not
every boson configuration corresponds to a physical path.
Following the rules described above, there is no allowed dimer
configuration corresponding to two bosons occupying two
nearest neighbor sites, one site being even and the other site
being odd. Additionally, there are no allowed configurations
with two bosons occupying adjacent second nearest neighbor
sites which are both even; namely if a boson sits at site 2i there
cannot be another boson at site 2i + 2. These boson configu-
rations need to be projected out. This is easily accomplished
because the two constraints are local and can be enforced by
adding a large energy penalty to those configurations with a
term of the form:

Hcon = U
∑

i

nini+1 + U
∑
i even

nini+2, U → ∞. (29)

After these two constraints are imposed, the path and boson
Hilbert spaces are in one to one correspondence and one can
show that the filling of the model is ν ∼ 1

4 (1 − �y/�x ). Notice
that the constraints impose that the maximum allowed filling
is ν = 1/2.

Let us now describe the quantum dynamics induced by the
action of the RK Hamiltonian (13) on the dimer configura-
tions. There is a single kinetic term that flips plaquettes and
acts on the path in the triangular lattice by flipping a horizon-
tal segment into either an up-down or down-up segment as
depicted in Fig. 8. Therefore, just as in the Q6VM, this term
acts on the bosons simply as a single particle-hopping term
given by

Hhop = −
∑

i

tb†
i bi+1 + H.c. (30)

Now we describe the potential terms which are diagonal in the
path configuration and in the boson occupation basis. When
the bosons lie in the odd sites (namely when the path has no
horizontal segment) then a flippable plaquette appears at every
corner of the path, which corresponds to every link of the 1D
lattice in which there is a change of occupation of the odd
sites, in complete analogy to what was found in the Q6VM.
This leads to a potential energy term for the odd sites of the
form:

Hpot,1 = V
∑
i odd

(ni − ni+2)2 . (31)

Now, every horizontal segment of the path has two adjacent
flippable plaquettes as depicted in Fig. 8, and therefore there
is a term that acts as a the local chemical potential shift on the
odd sites of the form

Hpot,2 = 2V
∑
i even

ni . (32)

In addition when there is a horizontal segment of the path that
is adjacent to a downward segment, there is one less flippable
plaquette than those counted by the terms in Eqs. (31) and (32)
and therefore such energy is removed by a term of the form:

Hpot,3 = −V
∑

i

nini+3 . (33)

Thus the complete Hamiltonian is a sum of the terms above;
explicitly

Hdimer = Hhop + Hpot,1 + Hpot,2 + Hpot,3 + Hcon. (34)

This Hamiltonian generalizes the one first obtained by Orland
in Ref. [25] to nonzero values of v. Notably, unlike the Q6VM,
this model does not reduce to free fermions at V = 0 due
to the presence of the constraint interactions in Eq. (29).
For periodic boundary conditions the Hamiltonian is invariant
under translations by two:

[H, T ] = 0, T b†
i T −1 = b†

i+2. (35)

In addition to this symmetry, there is a particle-hole-like sym-
metry, which can be understood in the triangular lattice picture
as the symmetry that reflects the path along the horizontal axis
that intersects the charge at the origin. Viewing the triangular
lattice as a square lattice rotated by 45◦ makes this symmetry
look analogous to the particle-hole symmetry we encountered
in the Q6VM. This symmetry is presumably responsible
for a degeneracy we observe in numerics at quarter filling
(ν = 1/4), between momenta at k and k + π for antiperiodic
boundary conditions, but we have not found rigorous proof for
this.

C. Phase diagram

In the remainder we restrict to the case of quarter filling
where the charges are only horizontally displaced from each
other by �x = L, �y = 0 on the triangular lattice and corre-
spond to the largest Hilbert space which is expected to be
closest precursor to the behavior of the full two-dimensional
underlying QDM. We consider a periodic chain of length
� = 4L in order to exploit the conservation of total many-body
momentum of the L bosons. We begin considering the limit
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V → −∞, in which the plaquette resonance terms acts as a
perturbation on classical ground states, which in the boson
language can be thought of as charge density wave (CDW)
states with a definite occupation of the sites. Remarkably,
and unlike the Q6VM case, there are two distinct degenerate
CDW states in this limit for the QDM. They correspond to
the bosons occupying either the even or the odd sites. Each
of these states spontaneously breaks the translation symmetry
defined in Eq. (35), and each of them has a symmetry related
copy leading to a total of four ground states in the thermody-
namic limit, depicted in Fig. 9. The explicit wave function in
the V → −∞ limit of the two distinct states is:

|odd〉 =
L−1∏
i=0

b†
4i+1 |0〉 , |even〉 =

L∏
i=1

b†
4i−2 |0〉 , (36)

and their symmetry related copies are obtained by translating
those above by two units. In the path picture on the triangular
lattice, they are either maximally jagged (odd) or maximally
straight (even), each having the maximal number (2�) of
flippable plaquettes (see Fig. 9).

Because there is no symmetry relating these states, quan-
tum fluctuations will select a unique true ground state at finite
t out of these two. As we will see, however, their competition
is delicate and is only resolved at fourth order in perturbation
theory in t . All odd terms in t must vanish, because the sign
of t can be changed by a gauge transformation, and thus the
perturbation series begins at t2. These are easily seen to be
degenerate because in both CDWs the particle can hop one
site in either direction. At fourth order, this degeneracy splits
due to competition between single-particle and two-particle
processes. On the odd sublattice, a single particle is able to
hop two spaces in either direction and return to its original
site, thus lowering the energy by delocalizing. In contrast,
Hcon prevents this on the even sublattice. However, the pair
encounters raise the energy for V < 0. On the odd sublattice
where particles are more mobile, these interactions raise the
energy. Explicitly, we find

Eodd

L
= 2V − 2t2

|V | + t4

|V |3 + O(t6)

Eeven

L
= 2V − 2t2

|V | + 0 + O(t6) (37)

leaving the even sublattice CDW as the true ground state. The
spectrum at L = 7 is shown in Fig. 10; the four ground states
at k = 0, π are evident, along with the excitations above them.

As we raise V from −∞, the bosons spread into the
other sublattice in order to lower their energy by delocalizing
under the increasingly strong kinetic term. This allows for the
possibility of a phase transition like the one we encountered at
v = −1 in the Q6VM. Even for small v, the model is strongly
interacting due to Hcon, and it is nontrivial to study the system
here analytically. From the original 2D Hamiltonian, and as
will be evident from the numerics, the system has a phase
transition at the RK point v = 1 above which we can perform
a strong coupling expansion. For v>1, particles in the odd
sublattice experience the nearest neighbor attraction resulting
from Eq. (31), and the constraints impose no restriction for
them to cluster on the odd sublattice. This state is phase

separated and has vanishing energy density, much like the
ferromagnetic phase of the XXZ chain. This is most easily
seen on the triangular lattice where the classical V → ∞
ground state is given by a large triangular path, degenerate
with its reflection under particle-hole symmetry. For periodic
boundary conditions, there would be two flippable plaquettes,
the second appearing where the string reconnects. Because
of translational symmetry, a larger quasidegenerate manifold
would appear due to the delocalization of the domain walls.
At quarter filling, these 2L quasidegenerate states are given
by

|k〉 = 1√
2L

2L−1∑
n=0

e−ikn
L∏

i=1

b†
2i+1+2n |0〉 , k ∈ 2π

2L
Z (38)

and are all degenerate as V → ∞. One can perform standard
perturbation theory to find this energy to be:

E = 2V − 2t2

V
+ . . . . (39)

(a)

(b)

(c)

FIG. 9. Odd and even CDW states. Figures (a) and (c) show
CDW on odd sites and are related under the particle-hole-like sym-
metry, while (b) shows the CDW on even sites.
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FIG. 10. The two lowest energy states in each k sector for L = 7
are shown relative to the ground state energy at φ = 0. At large
negative v, the odd and even charge density waves at k = 0, π

become degenerate. The discontinuity in the first derivative at the
RK is visible. On the right, the lowest energy state at each k becomes
approximately degenerate, forming the phase-separated eigenstates
in Eq. (38).

This is twice the domain wall energy (twice because of the
periodic boundary conditions). Since the uniform ground state
has exactly zero energy density, there is strictly zero string
tension, and all the energy is localized within the domain wall.
This encodes the same kind of subdimensional deconfinement
that we previously encountered in the case of the Q6VM
between the monomer charges at the end of the electric field
line.

As we have discussed, the two limits of V → ±∞ lead
to classical insulating CDW-type states. Metallic Luttinger-
liquid-like states could appear in between these two limits.
To explore this possibility quantitatively, we calculate the
Drude weight from the exact diagonalization of the system
for � = 2, . . . , 7 with φ flux through the periodic system. In
analogy with the Q6VM case, the twisted boundary conditions
are implemented by adding one extra site at the end and
localizing the phase change φ in the final bond. We implement
the numerical code using only the physical states derived from
the string picture to avoid the extended Hilbert space of the
bosons. The Drude weight at a selection of system sizes is
shown in Fig. 11.

Our numerical results confirm the intuition above—that
there appears a metallic region intervening between the two
insulating phases realized at V → ±∞, which we interpret
as the natural 1D precursor to the 2D plaquette phase. The
RK point appears clearly. There is evidence in the softer
falloff at V < 0 for a second critical point like in the Q6VM
with a conducting region in between. We caution that our
numerics are restricted to small system sizes, preventing us
from making systematic extrapolations to the thermodynamic
limit. Interestingly, the behavior of the Drude weight as a
function of v is notably different from the Q6VM result. In the
Q6VM we see that the second derivative of the Drude weight
with respect to v changes sign only two times as a function of
v near the critical points between the insulating and metallic
phase, as shown in the inset of Fig. 6. However, the second
derivative of the Drude weight appears to change sign four

L=2

L=3

L=4

L=5

L=6

L=7

−8 −6 −4 −2 0 2 4 6 8 10
v

0.2

0.4

0.6

0.8

1.0
101

− 10 −5 5 10
v

''(v)

FIG. 11. Drude weight of Hdimer is computed for systems L =
2, . . . , 7 via exact diagonalization for the ground state in the k = 0
momentum sector. The RK point appears sharply at v = 1 and there
is evidence for an intermediate conducting phase. Unlike the Q6VM,
there is much more structure in the putative critical region; as shown
in the inset, the second derivative of the Drude weight (for L = 7)
changes sign three times.

times in the QDM, as shown in the inset to Fig. 11. This could
indicate the presence of more than one phase intervening
between the two classical ground states at V → ±∞, but
verifying such speculation would certainly require accessing
much larger system sizes, which should be possible in DMRG
studies.

IV. SUMMARY AND DISCUSSION

We have studied the problem of single fluctuating quantum
electric field lines connecting two isolated charge monomers
in the QDM and Q6VM. By constructing these isolated strings
on top of trivial inert vacua that appear as ground states to the
right of the RK point, we have been able to map the problems
exactly onto conventional one-dimensional systems with local
Hamiltonians.

In the case of the Q6VM model, the electric field line
maps exactly onto the spin-1/2 quantum XXZ chain, which
is exactly solvable and well understood. This reveals three
distinct phases which correspond to the Ising ferromagnet,
the XY magnet, and the Ising antiferromagnet. These three
phases are natural one-dimensional precursors to the full two-
dimensional phases, seen in numerical studies of the Q6VM
[8,23]. In particular the resonant plaquette phase appears
as the Luttinger liquid-like XY magnet state. This mapping
has allowed us to reveal an underlying SU(2) symmetry in
the RK point for large winding sectors, which corresponds
to the critical point between the Ising and the XY magnet
in the XXZ chain. This SU(2) symmetry leads to a perfect
charge deconfinement in which the string tension separating
charges vanishes even for finite string length. It also allows
us to understand the subdimensional deconfinement present
in the staggered phase [8] as a form of phase separation and
domain wall formation that occurs in the Ising magnet when
the global magnetization is fixed.

In the case of the QDM model, the electric field line
maps exactly onto a one-dimensional lattice of hard-core
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bosons with two sites per unit cell (or equivalently a two-
leg spin-1/2 ladder). We have not been able to solve this
problem analytically but have been able to understand per-
turbatively the phases that occur far away from the RK point.
These two phases correspond to a CDW state (analogous to
the Ising AFM in the Q6VM case) and a phase separated
state (analogous to the phase separated Ising FM in the
Q6VM case). These two states are the natural precursors
to the columnar and the staggered phases of the full two-
dimensional QDM. Subdimensional deconfinement appears in
the phase separated state, corresponding to the deconfinement
in the staggered dimer phase [15]. By numerically comput-
ing the Drude weight, we have found evidence for a liquid
state intervening between the two crystals that exist away
from the RK point. We interpret this liquid, delocalized phase
as the one-dimensional precursor of the plaquette valence
bond solid in the full two-dimensional problem.

The resemblance of the quasi-one-dimensional single elec-
tric field line problems that we have studied and the full
two-dimensional problems indicates that the behavior of the
latter might be understood by thinking of them as a closely
packed array of electric field lines which by themselves are
undergoing nontrivial phase transitions. More specifically, as
we described in Sec. II, the decoupling of the Hilbert space
into winding sectors can be interpreted as a conservation
law for the total number of electric field lines. The zero

winding sector where the global ground state of the full
Hilbert space resides at the left of the RK point contains
a large number of such electric field lines. These lines can
be viewed as bosonic strings with hard-core interactions so
that the electric field lines do not overlap. This perspective
provides a natural understanding of why the crystalline phases
of the one-dimensional electric field line survive in the fully
two-dimensional multistring case. However, these strong in-
teractions are presumably responsible for the freezing out of
the quantum fluctuations of the Luttinger liquid type phase
that we have encountered, transforming it into the resonant
plaquette crystal state that is seen in numerical studies of the
full two-dimensional problem of the six-vertex model. We
hope that in the future, more systematic numerical studies of
our current setting and of its generalizations to the few strings
problems might offer an alternative window to the behavior
of the less well understood aspects of the presumed resonant
plaquette phase of the quantum dimer model.
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