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We propose a universal driving protocol for the realization of symmetry-protected topological phases in
2 + 1-dimensional Floquet systems. Our proposal is based on the theoretical analysis of the possible symmetries
of a square lattice model with pairwise nearest-neighbor coupling terms. Among the eight possible symmetry
operators we identify the two relevant choices for topological phases with either time-reversal, chiral, or
particle-hole symmetry. From the corresponding symmetry conditions on the protocol parameters, we obtain
the universal driving protocol where each of the symmetries can be realized or broken individually. We
provide specific parameter values for the different cases, and demonstrate the existence of symmetry-protected
copropagating and counterpropagating topological boundary states. The driving protocol especially allows us
to switch between bosonic and fermionic time-reversal symmetry, and thus between a trivial and nontrivial
symmetry-protected topological phase, through continuous variation of a parameter.
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I. INTRODUCTION

Topological phases have become a central topic of con-
densed matter research over the last few decades [1-6].
Recently, topological phases in periodically driven sys-
tems [7-13] have attracted increasing interest, including the
anomalous Floquet topological insulators that exhibit a non-
trivial topological phase although each of the individual Flo-
quet bands is topologically trivial [14]. Photonic lattices of
evanescently coupled waveguides are especially well suited
for the realization of these new topological phases [15,16]. In
photonic lattices, periodic driving is replaced by spatially pe-
riodic modulation of the interwaveguide distance, and thus of
the coupling between adjacent waveguides, such that one spa-
tial coordinate represents the time axis of a 2 4+ 1-dimensional
Floquet system [17,18]. In this way, direct implementation of
driving protocols for (anomalous) Floquet topological insula-
tors becomes possible [19,20].

In this paper, we propose a universal driving protocol
for symmetry-protected Floquet topological phases. Presently,
most of the theoretical proposals for the realization of such
phases [21-32] focus on solid state applications and utilize
mechanisms that are not well-suited for a photonic lattice im-
plementation, involving, e.g., spin degrees of freedom [25,30],
complicated driving schemes [26,27], or complex gauge po-
tentials [21-24,27]. The driving protocol proposed here, in
contrast, has minimal complexity: With only six steps per
period and simple pairwise couplings between adjacent sites
of a square lattice it can realize Floquet topological phases
with time-reversal, chiral, or particle-hole symmetry. Given
its minimal complexity, the protocol is not only of intrinsic
theoretical value, but allows for immediate experimental ob-
servation of these symmetry-protected topological phases in
photonic systems.
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The starting point for our construction is the analysis of
the possible symmetry operators for a driving protocol with
only pairwise couplings. On a square lattice, eight distinct
symmetry operators have to be considered, but only two of
them can lead to driving protocols with symmetry-protected
topological phases.

The symmetry analysis provides us with the general
form of the driving protocol, which appears in two types:
a protocol A that supports time-reversal symmetry, and
a protocol B that supports particle-hole symmetry. These
two types of the universal driving protocol cover all four
symmetry combinations with nontrivial 2 4+ 1-dimensional
topological phases. To verify the universality of the pro-
tocol we provide specific parameter sets according to
the conditions enforced by the different symmetries. The
symmetry-protected Floquet topological phases realized with
these parameters are analyzed by means of symmetry-
adapted topological bulk invariants [25,26,32], and trans-
port via counterpropagating boundary states is demonstrated
numerically.

The structure of the paper is as follows. In Sec. II, we define
the square lattice model that is the basis of the present study. In
Sec. 111, we identify the eight types of symmetry operators that
are compatible with the assumptions made in the construction
of the square lattice model, analyze which of these operators
can be used to implement time-reversal, chiral, or particle-
hole symmetry, and determine the resulting constraints on
the driving protocol. The universal driving protocol is then
introduced and investigated in Secs. [IV-VII, once with a focus
on time-reversal symmetry (protocol A in Secs. V and VI),
once for particle-hole symmetry (protocol B in Sec. VII). We
conclude in Sec. VIII. The appendices detail the pseudospin
interpretation of our construction (Appendix A), explore the
differences between parallel and antiparallel diagonal cou-
plings (Appendixes B and C), and explain why a universal
driving protocol with a two-site unit cell should not exist
(Appendix D).

©2019 American Physical Society
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FIG. 1. Eight examples of patterns of compatible pairwise couplings in the square lattice model. The couplings are indicated by lines
between adjacent sites. The labels below each pattern follow the notation in the text, with the four sites A (filled red), B (filled blue), C (open

red), and D (open blue) as shown in the leftmost pattern.

II. SQUARE LATTICE MODEL

For the construction of the driving protocol, we start with
a square lattice with a four-element unit cell, which is the
minimal choice for the realization of topological phases with,
e.g., time-reversal symmetry (see Appendix D for the case of a
two-element unit cell). The lattice sites are located at positions
r =ia, + ja, + 4, with i, j € Z and 5 € {A, B, C, D}. Here,
a, = (2,0),a, = (0,2) are the primitive vectors of lattice
translations, and §4 = (0, 0), 8z = (1,0)',6¢c = (1, 1), 8p =
(2, 1) enumerate the four sites in the unit cell (see Fig. 1).
This enumeration is purely a matter of convention, but the
present choice will prove useful later. All vectors are mea-
sured as multiples of some unspecified unit of length.

On the square lattice, pairwise coupling of neighbor-
ing lattice sites can occur along four directions: hori-
zontal [6_, = (1, 0)], vertical [84 = (0, 1)], diagonal [§ » =
(1, 1], and antidiagonal [d\, = (1, —1)]. This gives 4 x 4 =
16 translational invariant pairwise coupling terms fyy =
Zr:iaﬁjay Ir + 8, + 8.)(r + d|, with s € {A,B,C, D} and
o€ {\., —, 7, 1}. In essence, f;.y moves a particle (repre-
senting, e.g., light in a Wavegulde) from sites of type s along
direction o to sites of type s'. The Hermitian conjugate 7.,
operates in the opposite direction, from s’ to s. Note that s’
is determined by s and o, and included for notational clarity
only. In addition to the pairwise coupling terms, there are four
on-site terms i, = Zr:iaﬁjav Ir + 8,)(r + 8|, which involve
a single type s of lattice sites.

Note that we do not use the language of second quanti-
zation but the simpler bra-ket notation. In particular, we do
not fix the particle statistics, as encoded by the (anti) com-
mutation relations of creation and annihilation operators in
second quantization, and consider both fermionic and bosonic
symmetries for the driving protocol.

The general square lattice Hamiltonian reads

H(t) = Yo e e + Ty 0
s € {A,B,C,D}
oe{\,—, /1]
+ ) AW ¢y
s€{A,B,C,D}

Itincludes 4 x 4 4+ 4 = 20 time-dependent parameters Jy.y (¢)
(for pairwise couplings) and A(t) (for on-site potentials). All
parameters, and so H (¢) itself, will be periodic in time, with
period T'.

In the Hamiltonian (1), not all parameter combinations are
admissible. Instead, we impose a compatibility constraint on

the pairwise couplings: terms that involve the same lattice site
cannot occur together at the same time. Therefore J; ¢ (1) #
0 requires Jp.y () = 0 for any other coupling with {p, p'} N
{s, s’} # @. Note that this compatibility condition is fulfilled
precisely if the two operators 7.y, fpey commute. A further
restriction concerns pairwise couplings that “cross each other”
on the lattice, which occurs only for diagonal couplings. For
example, J4 ~c (1), Jp\ z(¢) cannot both be nonzero at the same
t. The on-site potentials A4(¢) are not restricted, and can occur
together with any pairwise coupling.

The combination of compatible pairwise couplings gives a
total of 12 diagonal + 4 horizontal + 4 vertical = 20 coupling
patterns, eight of which are depicted in Fig. 1. For every
coupling pattern, at most two parameters J.y () of the Hamil-
tonian are nonzero. The driving protocol will consist of a
cyclic sequence of these coupling patterns, which are selected
according to the symmetry analysis in the next section.

In the introduction, we have motivated the universal driving
protocol also with the possibility of a photonic lattice imple-
mentation. In such an implementation, lattice sites correspond
to waveguides. Since coupling of waveguides is achieved
by reducing their distance locally [18], spatially complex
coupling patterns are not easily realized experimentally and
thus should be avoided in the driving protocol. This includes
the coupling of more than two or of nonadjacent waveguides,
and results in the constraints imposed on the Hamiltonian
above.

III. SYMMETRY OPERATORS AND
SYMMETRY CONDITIONS

The symmetry relations of time-reversal, chiral, and
particle-hole symmetry, as specified further below, involve
a transformation SH(t)S™! of the Hamiltonian with a
translational-invariant operator S. The symmetry relations
can only hold if the transformed Hamiltonian has the same
structure as the original Hamiltonian, and is again composed
only of pairwise couplings and on-site potentials.

This observation restricts the possible symmetry operators
S in a similar way to the coupling patterns in Fig. 1. In partic-
ular, every operator can only be composed of nonoverlapping
pairwise terms £y or on-site terms 7. Otherwise, with over-
lapping terms, the transformed Hamiltonian SH (¢)S~! would
contain couplings between three or more lattice sites. We do
not, however, have the restriction that pairwise terms cannot
Cross.
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how each symmetry operator maps a site onto itself, or onto one of its eight neighbors. The lines in the lower row indicate the compatible

pairwise coupling terms.

In total, there are the eight possible symmetry operators
S1, ..., Sg shown in Fig. 2, not counting rotations, reflections,
or translations. These operators map every lattice site onto
exactly one other lattice site, either the same (e.g., for S1) or a
different one (e.g., for Sg).

Each symmetry operator is compatible with the pairwise
couplings shown in the lower half of Fig. 2. Exactly these cou-
plings are mapped again to couplings between adjacent sites
in the transformation SH (#)S~' with the respective symmetry
operator. The remaining pairwise couplings are mapped onto
coupling terms that do not occur in the Hamiltonian, and must
be excluded.

Two observations are immediate. First, if the graph
spanned by the compatible pairwise couplings in Fig. 2 is
disconnected, such that propagation is restricted to a lower-
dimensional subset of the lattice, nontrivial 2 4+ 1-dimensional
topological phases cannot exist. The symmetry operators Ss
and Sy restrict propagation to quasi-one-dimensional stripes,
S4 and Sg to finite regions. Only the operators Sj, Sz, S3,
Sg allow for propagation on the entire two-dimensional lat-
tice. Second, among these four operators, S;, S», S3 involve
isolated on-site terms 7i;. Such terms necessarily square to
(&ny)(ERy)* = |E|*A, for any & € C, which is incompatible
with nonunitary symmetries that require SS* = —1 (e.g.,
fermionic time-reversal symmetry with ®> = —1). These two
observations leave us with the operator Sg for the construction
of the universal driving protocol. Note that Sg is compatible
with the symmetry operator S;, which will allow us to imple-
ment an additional particle-hole symmetry once the protocol
has been constructed with Ss.

The unitary operators S; and Sg can be specified by two
2 X 2 unitary matrices o, T in the form

Si,8 = 0aafig + Oppiig + Opalasp + OBty . g
A A ~ A'i'
+ tcc fic + tpp fip + Toctcp + Teptop . (2)

where o, T have only diagonal (for S;) or only off-diagonal
(for Sg) entries. The mnemonic form of this equation is

« |A) (Al |C) (Cl\.,
S8 = (|B>) "’<<Bl> * (|D>> "<<Dl) -9

This expression suggests a pseudospin interpretation of the
“red” and “blue” sublattice structure depicted in Figs. 1 and 2,

which is detailed in Appendix A. For the following consider-
ations, this interpretation is not needed.

The operator Sg is compatible with ten pairwise coupling
terms, as depicted in Fig. 2, and all diagonal terms ;. These
fourteen terms change according to Table I under a transfor-
mation with the operator S; or Sg. These transformation rules,
together with the symmetry conditions specified next, deter-
mine the constraints on the parameters of the Hamiltonian for
the respective symmetry, and thus the structure of the driving
protocol.

Inspection of Figs. 1 and 2 shows how a transformation
with the symmetry operators S; and Sy affects different cou-
pling patterns. The symmetry operator S; maps every pattern
onto itself. For horizontal couplings, the symmetry operator
Sg leaves pattern (a) invariant but is not compatible with
pattern (h). The remaining two horizontal patterns not shown
in Fig. 1, as well as all four patterns with vertical couplings,
are also incompatible with Ss. For patterns with perpendic-
ular diagonal couplings, Sg swaps patterns (b) <> (e) and
(c) <> (d). For patterns with parallel diagonal couplings, Sg
leaves pattern (f) invariant while pattern (g) is mapped onto

TABLEL Transformation T + §,7S;" and T + SgT'Sg"' of the
fourteen terms 7 used in the construction of the driving protocol.

T SiTS;! SsT Sy
fasn 0410BB fasp OpAOAB ’A/-ALB
fcop e Top fe—p TheTen i p
fA JC o :A Tcc fA JC 0 ;A Tpc fB D
fA \C o :A Tcc fA\c o ;A Tpc fB\D
fc JA 0AA Téc ic A OBA T[*,c ) /B
fosa OaaTic fona AT T
fB/D UEBTDD fB/D UXB Tcp fA/C
fB\D UEBTDD fB\D UXB Tcp fA\c
fD/'B OBRT)p fD/B OABTEp fC/A
fD\B UBBTZSD fD\B O'ABTED fC\A
fia T fig

le ﬁB ny

fic fic np

ﬁ]) ﬁ[) nc
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TABLE II. Conditions on pairwise couplings and on-site potentials for time-reversal, chiral, and particle-hole symmetry, which follow
from Egs. (4), (6), and (8) and the corresponding choice of the Ss or S, operator. The top and bottom row of each segment of the table must be
identical. The sign in the first two relations for time-reversal and particle-hole symmetry with I1 = KSg coincides with the sign of the relations
©?2 = £1, IT?> = £1. Note that we allow for J,,¢ (t) € C but, due to Hermiticity of the Hamiltonian, have A,(t) € R.

time-reversal symmetry

Jasp(T —1)  Jesp(T —1)  Jg (T —1) Jp (T —1) Jp (T —1) Jpns(T — 1) Ap(T —1) Ap(T —1)
+J4 () +Jcp() Ji c(t) Jine® JE a (1) JEsa0) A1) Ac(?)
chiral symmetry
Jasg(T —1t)  Jesp(T —t)  Jpp(T —1) Jpp(T —1) Jp (T —1) Jps(T —1t) Ap(T — 1) Ap(T —1)
Jio(®) JeLp(®) —Jaqc(t) Janc (@) —Jca(t) Joa @) —Au(t) —Ac(t)
particle-hole symmetry with IT = K S|
Jasp(t) Jeop(t) Js g () Jow (1) Au(t) Ap(t) Ac(t) Ap()
Jip(®) Jep@) I3 (1) I (1) 0 0 0 0
particle-hole symmetry with IT = KSg
Jasp(t) Jeop() Js p(1) Jenp () Jp (1) Jpna(t) Ap(t) Ap(t)
:FJAHB([) :FJC~>D(t) _Jj/c(t) _J:\C(I) _Jé‘/A(t) —Jé\A(t) _AA(Z) —Ac(l‘)

a different pattern with parallel couplings (cf. Appendix B).
Note that this behavior concerns only the geometric structure
of the coupling patterns. For the mapping of the coupling
parameters, Table I has to be consulted.

A. Time-reversal symmetry
The symmetry relation for time-reversal symmetry is
Hy(T —1) = OH(1)®" , “)

with an antiunitary symmetry operator ® for which ©2 =
+1. For our purposes, the operator ® can be written in the
form ® = KSg, with the unitary symmetry operator Sg from
the previous section and complex conjugation K. Then, the
condition ®% = #1 is equivalent to 0*0 = t*7 = +1.

For fermionic time-reversal symmetry with ©2 = —1, the
only choice is ¢ = aoy and T = Bo,, with the Pauli matrix
oy and two phases a, g € C, |a| = |B| = 1. Without loss of
generality, we set « = 8 = 1 such that the transformation of
(anti)diagonal couplings in Table I involves the same sign. The
relevant operator Sg thus is

Sy = i(Fap — 11 ) +ilesp —Fp) Q)

thatis oqp = —0ops = Tcp = —Tpc = —i. Note that the opera-
tor does not involve on-site terms 7;. The resulting conditions
on the parameters of the Hamiltonian following from Eq. (4)
are given in Table II. For bosonic time-reversal symmetry with
®?% = 1, we must have 0*c = t*7 = 1, and choose 0 = 7 =
o, with the Pauli matrix o,.

B. Chiral symmetry
The symmetry relation for chiral symmetry is
He(T — 1) = =T Hen ()l ©)

with a unitary operator I' and, by convention, I'> = 1. Note
that, in difference to unitarily-realized symmetries, this re-
lation contains a minus sign: the Hamiltonian anticommutes
with I'.

In the universal driving protocol, which will be constructed
based on the symmetry operator Sg, chiral symmetry can be

implemented either by means of S| or Sg. Here, we deliber-
ately choose the operator Sg because of its overall significance
in the present constructions.

In order to obtain a symmetry-protected phase, chiral
symmetry must be realized as a bipartite even-odd sublattice
symmetry, where the operator I' includes a minus sign on
every second unit cell [27,32]. With this alternating sign, we
have

DM e +8) e+ 81 |Ss (D

r-|

r=ia; + jay
s € {A,B,C, D}

as a modification of the translational-invariant operator Ss.
The alternating sign depends on our choice of the unit cell
of the square lattice, which here consists of the sites A, B, C,
and D in Fig. 1. This is the natural choice when dealing with
the symmetry operator Sg.

The condition I'* = 1 is equivalent to S3 = 1, that is 0% =
72 = 1, since the alternating sign cancels. As for fermionic
time-reversal symmetry, we choose 0 = t = o, with the Pauli
matrix o,. Note that this choice gives I'2 = 1 here, but ©2 =
—1 for time-reversal symmetry due to the antiunitarity of ©.
The resulting conditions on the parameters of the Hamiltonian
following from Eq. (6) are again given in Table II.

C. Particle-hole symmetry

The symmetry relation for particle-hole symmetry is

Hpn(t) = —TTHp ()T, ®)

with an antiunitary operator IT for which IT? = #1. Note that
the same time argument ¢ appears on both sides of the relation.

For 1% = 1, use of the operator Sy (with 0 =1 = 0,)
forbids the appearance of horizontal pairwise couplings A —
B and C — D in the driving protocol according to the con-
straints listed in Tab. II. Then, the lattice decouples into
two independent (“red” and “blue”) sublattices. To avoid this
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situation, we use the operator S; for particle-hole symmetry
with T1? = 1.

We now choose 0 = —t = o, with the Pauli matrix o,
such that

Sy =ny—ng—nc+np, )

or oy4s = —opp = —Tcc = Tpp = 1. The resulting conditions

on the parameters of the Hamiltonian following from Eq. (8),
especially Ag(t) = 0 for all on-site potentials, are given in
Table II.

For 12 = —1, we have to use the operator Sy according
to the analysis in Sec. IIl. We can choose 0 =t =0y as
for fermionic time-reversal symmetry. Now, however, the
symmetry relation (8) contains the same time argument. The
resulting conditions on the parameters of the Hamiltonian are
again given in Table II.

IV. UNIVERSAL DRIVING PROTOCOL: PRINCIPAL
CONSIDERATIONS

The driving protocols considered here consist of n consec-
utive steps during which the Hamiltonian is constant. Since
we can always multiply the Hamiltonian in one step by a
number proportional to the step length, we can assume that
all steps have equal length 6t = T /n, where T is the period of
the driving protocol.

Due to the constraints imposed on the Hamiltonian in
Sec. II, each step of the driving protocol is given by one
pattern of compatible pairwise couplings, several of which
are shown in Fig. 1. While there remains some ambiguity in
the construction of the protocol, the selection of the coupling
patterns, and their arrangement into the n-step sequence, has
to be carried out according to the symmetry analysis from
Sec. III. In particular, only coupling patterns that are com-
patible with the symmetry operator Sg can be chosen in the
construction.

The principal distinction between the two protocols that
will be introduced in Secs. V and VII arises from the
time argument in the symmetry relations (4) and (8). For
time-reversal symmetry, where different time arguments ¢
and T —t appear on either sides of the symmetry rela-
tion (4), in principal any pattern “(p)” compatible with Sg
can be used in the protocol if its counterpart “Sg (p)Sg 1
appears at T —¢. Exploration of the different combina-
tions quickly shows that only the four patterns (b)—(e) with
perpendicular diagonal couplings give rise to a nontriv-
ial driving protocol with a small number of steps. In
fact, it is not surprising that perpendicular couplings
should be used since the protocol has to support counter-
propagating boundary states for time-reversal symmetry (see
also Appendix B). Therefore the driving protocol for time-
reversal symmetry (“protocol A”) will be constructed out
of the four patterns (b)—-(e) in Fig. 1 with perpendicu-
lar diagonal couplings, in combination with the horizontal
pattern (a).

For particle-hole symmetry, where the same time argument
t appears on both sides of the symmetry relation (8), only
patterns that are mapped onto themselves by Sg can be used.
Therefore the driving protocol for particle-hole symmetry
(“protocol B”) will be constructed out of patterns with par-
allel diagonal couplings (pattern (f) in Fig. 1, or patterns

(f1)-(f4) in Fig. 12 in the Appendix), in combination with the
horizontal pattern (a).

V. UNIVERSAL DRIVING PROTOCOL A:
TIME-REVERSAL SYMMETRY

A. Construction of the protocol

According to the previous section, we construct the driving
protocol A for time-reversal symmetry out of the four perpen-
dicular diagonal coupling patterns (b)—(e) from Fig. 1. How
these patterns should be arranged into a sequence can now
be deduced from the mappings induced by the operator Sg.
If we start the sequence with, say, pattern (b), the sequence
has to end with pattern (e) since Sg swaps (b) <> (e). If the
second step in the sequence is pattern (c), the penultimate
step in the sequence must be pattern (d) since Sg swaps (c) <
(d). Therefore only two different four-step sequences qualify
for driving protocol A: (b) — (c) — (d) — (e) and (b) —
(d) = (c) — (e). Starting with different patterns results in
equivalent sequences.

In these two four-step sequences, the “red” and “blue”
sublattice of the square lattice remain decoupled, as can be
deduced from Fig. 1. Therefore a horizontal (or, equivalently,
vertical) coupling pattern has to be added to the sequence.
The only pattern of this type compatible with Sg is pattern
(a) in Fig. 1. In order to allow for time-reversal or chiral
symmetry, pattern (a) has to appear in symmetric position in
the sequence: (i) as the central step 3 of a five-step sequence,
(ii) as steps 1, 6 or (iii) steps 2, 4 of a six-step sequence.
Taking into account that according to Table I fermionic time-
reversal symmetry changes the sign of the parameters J4_, 5,
Je_sp of pattern (a), only the last possibility (iii) results in a
nontrivial addition to the sequence.

To summarize, we have the two variants of driving pro-
tocol A shown in Fig. 3. The protocol is constructed out of
the first five coupling patterns in Fig. 1, and according to
our construction will be able to support either time-reversal,
chiral, or particle-hole symmetry. In each step, the coupling
patterns can be combined with arbitrary on-site potentials
A, (1) without changing the structure of the driving protocol or
violating the constraints on the Hamiltonian. This gives a total
of 6 x (2 4+ 4) = 36 parameters, which are further restricted
by the conditions in Table II if the respective symmetry is
enforced.

B. Perfect coupling

“Perfect coupling” denotes the situation where all on-site
potentials Ay = 0, and the pairwise couplings in a given step
are either both Jyo¢y =0 or |[Jyy| =J),, with J, =7/(251)
(here, for six steps, J, = 37 /T). The sign of the Jy,y param-
eters must be chosen according to Table II for the respective
symmetry.

At perfect coupling, pairwise coupling fully transfers the
amplitude on one lattice site to an adjacent lattice site. The
driving protocol reduces to a sequence of jumps that follow
the geometric shapes of the coupling patterns.

The resulting patterns of motion for the two variants of
driving protocol A are shown in Fig. 4. The difference between
the two variants is only the coupling in the horizontal steps
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consists of the sequence (b) — (a) — (d) — (¢) — (a) — (e). As shown in the text, both variants are equivalent.

2 and 5, which is equal to &J, for the “left” variant and
equal to zero for the “right” variant. A particle in the bulk
moves in a closed loop, while a particle at the boundary is
transported by two sites in one cycle. The direction of motion
depends on the starting site (“red” or “blue”). This pattern
of motion gives rise to a nontrivial topological phase, and to
a symmetry-protected pair of boundary states with opposite
chirality.

Note that when we introduce boundaries, either here or for
Figs. 5-9 below, we always choose boundaries that do not sep-
arate sites within one unit cell, and thus are compatible with
the symmetry operators S; and Sg. As in Fig. 4, boundaries
along the x direction (y direction) are parallel to the translation
vector a, (a,).

For perfect coupling, scattering between boundary states
with opposite chirality is strictly forbidden by the construction
of the protocol, rather than by a topological constraint. In
particular, a state starting on a “red” (“blue”) site always
ends up on a “red” (“blue”) site after a full cycle. Fully
developed symmetry-protected phases require general param-
eters in the driving protocol, and will be studied in the next
section.
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C. Equivalence of driving protocols

The patterns of motion in Fig. 4 suggest that the two
variants of the driving protocol A are in fact equivalent. As we
show now, the equivalence holds not only at perfect coupling
but in general.

The Floquet propagator U(T), over one period of the
driving protocol, is a simple product

U(T) = UsUsU U3 U, U, (10)

of the Floquet propagators Uy = exp[—id¢Hy] for each of the
steps k = 1, ..., 6, with constant Hamiltonian H (t) = H; for
(k — 1)t <t < két in step k.

Now let S = fyp +1) 5 +icop +fy_,, be the unitary
operator that swaps the “red” and “blue” sublattice (we have
S =ST and §? = 1). In fact, S is a special case of the sym-
metry operator Sg, and § = —ilU, = —iUs at perfect coupling
JA—)B = JC—)D = Jp~

Inserting S into the Floquet propagator, we have the alter-
native expression

U(T) = Us (UsS") (SUS) (SU3ST) (SU) Uy . (11)
O O (@) (@) O O O O
oo o 3\6/: AR K
OO O O O O O OO
o 0 o [ ]
@] O O
[ ]
@] @]
[ ]
O O O
[ I )

FIG. 4. Patterns of motion during one cycle of driving protocol A at perfect coupling, on a finite lattice of 6 x 4 unit cells (one unit cell is
shown as a gray rhomboid). The lattice comprises only entire unit cells, such that the boundaries are compatible with the symmetry operators
S and Sg. The left and right panel correspond to the two variants of the protocol in Fig. 3. For the “left” variant, the coupling in the horizontal

steps 2, 5 is equal to &J,, for the “right” variant it is equal to zero.
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FIG. 5. Dispersion of bulk (solid) and boundary (dashed) states
for perfect coupling with fermionic time-reversal (left) or chiral
(right) symmetry. Parameter values can be deduced from the corre-
sponding columns in Table III, setting J = J, and A = 0. Here and
in Figs. 6-8. we show the states on one boundary of a semi-infinite
ribbon, and do not include the states on the opposite boundary.

Since S swaps the “red” and “blue” sublattice, it effectively
exchanges steps 3 and 4. On the other hand, the product
SU, can be combined into a horizontal coupling step 2 with
modified parameters, as in

JA—>B . JA—)B —-J
SU. =—-1iU. L 12
2|:JC—>D1| ! 2|:JC—>D _Jp:| ( )

where we include the coupling parameters explicitly.
Therefore the Floquet propagator U (T ), over one driving
period of the protocol, is identical (up to a sign (—i)*> = —1)
for both variants if the parameters of the horizontal coupling
steps 2, 5 are modified by £/, according to the above trans-
formation. Especially at perfect coupling, the parameters are
either J,, (“left” variant) or zero (“right” variant), as in Fig. 4.
Note that the “right” variant in Fig. 4 has a close connec-
tion to the driving protocol from Ref. [14], which realizes
Floquet topological insulators without additional symmetries.
Essentially, two copies of this protocol have to be combined
to obtain our driving protocol with symmetries. The details
of the combination, as well as the conditions on the protocol
parameters, follow from the symmetry analysis provided here.

D. Equivalence of coupling steps

Similar to the entire driving protocol, also the individual
steps can be written in different equivalent ways. To see how,
assume that the Hamiltonian in one step of duration 4¢ is of
the form Hyep = J (Froy + 1) + ARy — fiy), with J, A € R.

The propagator for this step evaluates to
Ustep(Ja A) = eXP[—i t Hstep]

; 13
=cos(6t&)1 — 1@ I'Istep ’ (1

with & = (J> + A%)!/2. Essentially, this propagator is an
SU(2) rotation.

The right-hand side of Eq. (13) is periodic in the quantity

&. Therefore
Ustep(Ja A)= (=" Ustep(amja an ) (14)
for every a,, = 1 + (2mJ,)/(J* + A*)/? withm € Z.

This relation becomes especially clear for A =0,
where Ugep(J, 0) = (=1)" Useep(J + 2mJ,,, 0). In particular,
for perfect coupling |/| = J, = /(2 6t), where U(£J,, 0) =
Fi(fyoy +1 ), negative and positive couplings J = +J,, are
equivalent.

The equivalence of coupling steps with different param-
eters has important consequences, both conceptually (see
Sec. VIB) as well as practically for a photonic lattice im-
plementation. Implementation of negative couplings between
waveguides is a challenging procedure [33], but depending
on the symmetry negative couplings cannot be avoided in
the driving protocol (cf. Table II). Fortunately, any negative
coupling J <0 can be replaced by an equivalent positive cou-
pling «,,J from Eq. (14). This argument shows that negative
couplings are not a principal obstacle against a photonic lattice
implementation of the universal driving protocol.

VI. SYMMETRY-PROTECTED FLOQUET
TOPOLOGICAL PHASES

In 2 4 1 dimensions [28], fermionic time-reversal symme-
try (8% = —1) leads to a symmetry-protected Z, topologi-
cal phase with counterpropagating boundary states. Bosonic
time-reversal symmetry (®? = 1) does not lead to a nontrivial
topological phase. Particle-hole symmetry with 1> =1 al-
lows for generic Chern insulators without additional symme-
try protection, while particle-hole symmetry with IT> = —1
features a 27 topological phase with an even number of
copropagating chiral boundary states.

TABLE III. Parameter sets for driving protocol A with time-
reversal (TRS), chiral (CS), or particle-hole symmetry (PHS). TRS
and CS have the two free parameters J, A. PHS with I1> = 1 has
two free parameters J, J'. Perfect coupling corresponds to A = 0 and
J =1J =J,, where J, = 3m /T for a six-step protocol. Unspecified
parameters are zero, and the sign in step 5 of the TRS column is +
for bosonic and—for fermionic time-reversal symmetry. In Figs. 6-9,
we use the values of A, J, J specified under “this work.”

TRS cs PHS [1° = 1
step 1 JA/’C =Jp JA/C =Jp JA/C =Jp
Jeo =9 Jeo =Jp Jeo =Jp
AA == AB == A AB == —A
Ac=Ap =—A Ap= A
step2 JA»B =J JA»B =J JA~>B =J
Jeop=J Jeop=J Jeop=J
step 3 JC/VA = Jp JC/VA = Jp JC/VA = Jp
Jos = Jons =Jp Jons =Jp
AA - AB - A
AC = AD =—-A
step 4 JC\A = Jp JC\A = Jp JC\A = Jp
J])/B = Jp JD/’B = —Jp JD/'B = —Jp
AA - AB == A
Ac=Ap=—A
step 5 JA»B ==+J JA»B =J JA~>B =J
Jeop==£J Jeop=J Jep =T
step 6 JA\C = Jp JA\C = Jp JA\C = Jp
Jsop=Jp Jsp=—J, Jpp=—Jp
AA - AB == A AA - A
ACZADZ—A ACZ—A
this J=2n/T J=2n/T J=2n/T
work A=3/T A=9/T J =n/T
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The symmetry-protected Z, phase with fermionic time-
reversal symmetry is realized in the driving protocol A. Since
this constitutes the most interesting situation, we start with an
extended discussion of topological phases and boundary states
in this protocol. The 27 phase with particle-hole symmetry
will be discussed after the introduction of protocol B in
Sec. VIIL.

At perfect coupling, the driving protocol A realizes a non-
trivial topological phase with counterpropagating boundary
states that follow the patterns of motion in Fig. 4. The bulk
bands and boundary state dispersions are shown in Fig. 5,
where we plot the Floquet quasienergies ¢ as a function of
momentum k, or k, along a boundary in x or y direction.
The quasienergies are computed from the eigenvalues e~ of
the Floquet propagator after one driving period. At perfect
coupling, the bulk bands are flat at ¢ =0 and a gap exists
at ¢ = m. The boundary states have linear dispersion, which
does not depend on the orientation of the boundary. Due
to symmetry, they occur in pairs of opposite chirality. Fur-
thermore, with zero potential A; = 0, time-reversal or chiral
symmetry appears together with particle-hole symmetry.

To realize symmetry-protected Floquet topological phases
away from perfect coupling, we use the parameter values
listed in Table III. Of the 36 parameters of the protocol, at
most 28 parameters are assigned nonzero values. Steps 2 and
5 do not involve on-site potentials, and all parameters are real.
It is straightforward to check that the three parameter sets
fulfill either the conditions of time-reversal, chiral, or particle-
hole symmetry in Table II. Each set depends on two free
parameters, and includes the perfect coupling case in Fig. 5.
For the remainder of this section, we use the parameters listed
under “this work™ and the “left” variant of driving protocol A
in Fig. 3.

A. Time-reversal symmetry

In Fig. 6, we show the Floquet bands and boundary states
for fermionic and bosonic time-reversal symmetry. Both cases
differ only by the sign of the parameters in step 5 of the driving
protocol (cf. Table III), such that the gap is either at e = 7
(fermionic) or € = 0 (bosonic).

For fermionic time-reversal symmetry (top row in Fig. 6),
two boundary states with opposite chirality traverse the gap.
The crossing of the boundary states at the invariant momen-
tum k,, = 0 is protected by Kramers degeneracy. Since the
two boundary states are mapped onto each other by the sym-
metry operator Sg, they can be described as helical boundary
states in the pseudospin interpretation of the driving protocol
given in Appendix A.

Because of time-reversal symmetry, the boundary states
have to appear in pairs of opposite chirality. In this situation,
the W3 invariant [14], which counts the net chirality of bound-
ary states in a gap of a Floquet system, necessarily vanishes.
Therefore the topological phase observed here is not protected
against general deformations of the Floquet Hamiltonian, but
only against deformations that preserve time-reversal symme-
try.

To characterize this symmetry-protected topological phase,
we can compute the relevant Z,-valued bulk invari-
ant [25,26,32]. In the present situation, we get a nonzero
invariant (W # 0 in the notation of Ref. [32], computed with
the algorithm from Ref. [34]). This confirms that the driving
protocol indeed supports a nontrivial time-reversal symmetric
topological phase, with a pair of counterpropagating boundary
states.

Additionally, we find that the Kane-Mele invari-
ants [3,35,36] of the individual Floquet bands are zero. We
recognize the signature of an anomalous Floquet topological

o [en)
Il Il
- = el
o o
I Il
-
D —
=

FIG. 6. Floquet bands and boundary states for fermionic (top row) and bosonic (bottom row) time-reversal symmetry, using the parameters
from Table III. (Left column) Blue arcs indicate the (fourfold degenerate) Floquet bands, red arcs the gaps. Quasienergies ¢ are plotted on
the circle ¢ — e . Included are the respective (Kane-Mele KM or Chern number C) invariants of the bands, and the W,, invariant or the W5
invariant associated with the gap. (Central and right columns) Floquet bands (solid) and boundary state dispersion (dashed), as a function of

momentum k, or k, for a boundary along the x or y direction.
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FIG. 7. Switching between bosonic (left and central) and
fermionic (central and right) time-reversal symmetry through con-
tinuous variation of the parameter § (see text). The panels show the
boundary state dispersion. The protocol parameters for the negative
and positive § = £ /T used here agree with Fig. 6.

phase [14,26], which exists although all Floquet bands are
topologically trivial.

For bosonic time-reversal symmetry (bottom row in Fig. 6),
the Wj invariant still has to be zero. Now, however, crossing of
the boundary states is not protected by Kramers degeneracy.
The boundary states do not have to traverse the gap and can
be deformed continuously to merge with the Floquet bands,
without breaking the symmetry. Consequently, the system is
topologically trivial.

B. Continuous switching between fermionic and bosonic
time-reversal symmetry

Since fermionic and bosonic time-reversal symmetry differ
by the sign of the parameters in step 5 of the driving protocol,
they are realized in separate regions of the parameter space.
Especially at perfect coupling (J = +J,), the conditions for
fermionic or bosonic time-reversal symmetry in Table II are
mutually exclusive. However, considering the argument in
Sec. VD, the cases J = J, and J = —J, are in fact equivalent.
The Floquet propagators in both cases differ only by a minus
sign, which shifts the quasienergies by m but affects neither
the topological invariants nor the existence of boundary states.

Building on this observation, we can switch continuously
between fermionic and bosonic time-reversal symmetry: Set

Jap=Jecp = Jp — |8| in step 2 and Jp.p = Je—p = Jp +
d in step 5. For § < 0, the driving protocol has bosonic time-
reversal symmetry. For § > 0, the parameter value J, + 6 in
step 5 is equivalent to the parameter value J, +6 — 2J, =
—(J, — |8]), up to a minus sign of the Floquet propagator.
The driving protocol has fermionic time-reversal symmetry.
At perfect coupling 6 = 0 in steps 2 and 5, both fermionic and
bosonic time-reversal symmetry are realized simultaneously.

In Fig. 7, we show the change of the boundary state
dispersion if the parameter § is varied through § = 0, and we
switch continuously from bosonic to fermionic time-reversal
symmetry. Note that since the propagator acquires a minus
sign for 6>0, if compared to Fig. 6, the position of the gap
remains at ¢ = 0. Because of time-reversal symmetry, the
boundary dispersion is invariant under the mapping k, —
—k,. While the boundary states are separated for § <0, they
are gapless for §>0. Only in the latter parameter regime, the
crossing at the invariant momentum k, = 0 is protected by
Kramers degeneracy. In this way, continuous variation of §
switches between a trivial (bosonic) and nontrivial (fermionic)
time-reversal symmetric topological phase, without the bulk
gap closing at § = 0.

C. Chiral and particle-hole symmetry

In Fig. 8, we show the Floquet bands and boundary
states for chiral and particle-hole symmetry, with two gaps
at quasienergies ¢ = 0, . For both symmetries, we are inter-
ested in “weak” topological phases, where protected boundary
states occur in the gap, but transport in real space is not
necessarily topologically protected.

For chiral symmetry, the W3 invariant has to be zero in both
gaps (at ¢ =0, ). Similar to time-reversal symmetry, this
implies that the boundary states are not stable under general
deformations of the Floquet Hamiltonian. However, with the
alternating sign of Eq. (6), chiral symmetry gives rise to a
symmetry-protected Z, phase that is visible in the dispersion
(k) of boundary states in momentum space [27,32]. The
reason is that the dispersion fulfills the constraint &(ky,, +
) = —e&(kyy) mod 27, such that chiral symmetry protects
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FIG. 8. Same as Fig. 6, now for chiral (top) and particle-hole symmetry (bottom) and parameters from Table III. The relevant bulk invariants
are here the Chern numbers C of the Floquet bands, and the symmetry-adapted W, and W, invariants from Ref. [32].
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the crossings of e(k,,) through the quasienergy ¢ =0 or
& = . The crossings have to occur in pairs that are separated
by momentum 7 (see Appendix B of Ref. [32] for an extended
argument). Note that inclusion of the alternating sign in the
symmetry relation (6) is essential for this momentum-space
protection, otherwise chiral symmetry does not protect any
nontrivial phase [28,29,31].

In Fig. 8, exactly two crossings exist in each gap and on
each boundary, which agrees with the nonzero value W, # 0
of the Z,-valued invariant W, that is adapted to chiral sym-
metry [32]. The above momentum-space constraint on &(k, )
does not enforce that the boundary states traverse the band
gap. Therefore the chiral symmetric phase seen here does
not necessarily exhibit counterpropagating boundary states
with opposite chirality, and with the concomitant transport
properties.

For particle-hole symmetry with 1> = 1, topological
phases are still characterized by the Chern number or, for
Floquet systems, the W5 invariant. Weak topological phases,
where the number of boundary states depends on the boundary
orientation [27], arise for vanishing Wj invariant. Several
Z,-valued invariants Wp"}‘1 are required in this situation [32].
In Fig. 8, all Wi, invariants are nonzero and boundary states
exist in each gap and on each (x or y) boundary. Particle-hole
symmetry does not enforce a zero W5 invariant, but here it is
W3 = 0 in Fig. 8, such that the net chirality of the boundary
states in each gap is zero.

Similar to chiral symmetry, in these weak phases the
appearance of boundary states in momentum space does not
imply topologically protected transport in real space. In Fig. 8,
the boundary state dispersion is perfectly flat on the boundary
in y direction while the bulk bands are dispersive (this is
a particular property of the parameter set in Table III, not
of particle-hole symmetry). In this situation, states propagate
along the y direction only in the bulk but not on the boundary.

In contrast to time-reversal symmetry, which requires the
Kane-Mele invariant of the Floquet bands, the Chern number
remains a relevant invariant for chiral and particle-hole sym-
metry. In Fig. 8, the Chern numbers of all Floquet bands are
zero. Therefore the boundary states observed here belong to
anomalous Floquet topological phases, and appear although
the individual Floquet bands are topologically trivial.

D. Propagation of boundary states

In Fig. 9, we show the real-space propagation of boundary
states in the vicinity of a corner. At ¢ = 0, an initial state is
prepared either on a “red” A site of the horizontal boundary in
the x direction or on a “blue” B site of the vertical boundary
in the y direction, and then observed after three (r = 3T') and
eight (t = 8T) periods of the driving protocol A.

Since the parameter values in Table III are sufficiently
close to perfect coupling such that the essential patterns of
motion from Fig. 4 still survive, the “red” (or “blue”) state
propagates mainly counterclockwise (or clockwise). Note that
the amplitude at the boundary decreases over time since
the state propagates partially into the bulk. Also, since the
boundary state dispersion is not perfectly linear (see Figs. 6
and 8), the state is distributed over several lattice sites at later
propagation times.

1 1
0.5 0.5
0 0

<>
® 0
)0.000000000)

FIG. 9. Propagation of boundary states in the vicinity of a cor-
ner, starting from a “red” A site or a “blue” B site. Open black
circles indicate the lattice sites. Shown is the (squared) wave func-
tion amplitude, with colors according to the two color bars, after
zero (t = 0), three (t = 3T), or eight cycles (¢t = 87) of driving
protocol A.
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FIG. 10. (Left) Six-step driving protocol B for particle-hole symmetry T1> = —1. (Central) Patterns of motion during one cycle at perfect
coupling. (Right) Floquet bands and boundary states for the set of parameters from Table IV.

As soon as the state hits the corner, it either propagates
around the corner without backscattering (for fermionic time-
reversal symmetry), or is partially (for chiral symmetry) or
totally (for particle-hole symmetry) reflected. This behavior
can be attributed to the different nature of the (weak) topo-
logical phases for the different symmetries: For fermionic
time-reversal symmetry, transport is topologically protected.
For chiral symmetry, the boundary states are still protected in
momentum space but the dispersion along the y boundary does
not traverse the band gap, which leads to partial reflection. For
particle-hole symmetry, the boundary state dispersion along
the y direction is perfectly flat, which leads to total reflection
of states starting on the x boundary. States on the y boundary
stay within one unit cell, moving back and forth between the
initial B site and the adjacent A site with each period of the
driving protocol.

VII. UNIVERSAL DRIVING PROTOCOL B:
PARTICLE-HOLE SYMMETRY

For particle-hole symmetry with I1> = —1, again the sym-
metry operator Sg has to be used for construction of the driving
protocol. Now, the symmetry relation (8) contains the same
time argument on both sides, and according to Sec. IV, we
have to use the parallel diagonal coupling patterns (f1)—(f4)
from Fig. 12 in Appendix B.

TABLE IV. Similar to Tab. III, parameter set for driving protocol
B with particle-hole symmetry 1> = —1. In Fig. 10, we use the
values of the free parameters A, J, and J’ specified under “this
work.”

PHS > = —1

step 1 Jaqc= Jp step 4 Jea= Jp
]B/'D == —Jp JD/'B = —Jp
Ap=Ap= A Ay=Ap= A
ABZACZ—A ABZACZ—A

step 2 Jaiopg=J step 5 Japg=J'
Jewsp=J Jesp = J

step 3 JC\A = Jp step 6 JA\C = Jp
JD\B = —Jp JB\D = —Jp
Ar=Ap= A Ay =Ap= A
ABZACZ—A ABZACZ—A

this J=2x/T J =n/T

work A =3/T

Repetition of the procedure from Sec. V leads to the driving
protocol B in Fig. 10. The considerations from Sec. V C can
be adapted to construct two variants of the protocol, and the
strategy from Sec. V D allows for replacement of negative by
positive couplings.

The patterns of motion for perfect coupling (Joy = J, in
steps 1, 3, 4, 6 and Jy,y = 0 in steps 2 and 5) are shown in
the central panel of Fig. 10. Comparison with Fig. 4 shows
that now states on the “red” and “blue” sublattice propagate
in the same direction. This explains, quite intuitively, why
parallel (perpendicular) diagonal coupling patterns are used
for particle-hole (time-reversal) symmetry with copropagating
(counterpropagating) boundary states.

For the general case, we use the parameter values in
Table IV. The corresponding Floquet bands and boundary
states are shown in the right panel of Fig. 10. Two bound-
ary states with the same chirality exist in the two gaps at
quasienergies ¢ = 0 and ¢ = . This phase is characterized by
the conventional Chern number C and Wj invariant, which are
restricted to even values (2Z) by the particle-hole symmetry.
In accordance with the appearance of two copropagating
boundary states, we have W3 = 2 for both gaps. Consequently,
we have C = 0 for the individual Floquet bands, which is
the signature of an anomalous Floquet topological phase with
C =0but W3 # 0.

VIII. CONCLUSIONS

The universal driving protocol introduced in the present
paper allows for the realization of Floquet topological phases
with time-reversal, chiral, or particle-hole symmetry. Switch-
ing between the different symmetries only requires adjustment
of a few parameters, or the replacement of parallel (proto-
col B) with perpendicular (protocol A) diagonal couplings.
The general structure of the driving protocol, which follows
from the analysis of the possible symmetry operators for the
underlying square lattice Hamiltonian, remains unchanged.
In fact, if we allow for coupling of three or more lattice
sites, the two types A and B of the universal driving protocol
are continuously connected, and appear as special cases of
the slightly generalized universal driving model depicted in
Appendix C.

Due to the minimal complexity of the universal driving
protocol, which is a result of the constraints accounted for
in its construction, it is not only of theoretical value but
can be implemented by extension of previous experimental
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FIG. 11. The square lattice can be viewed as a centered square
lattice, or the union of a “red” and “blue” square lattice.

work [19,20]. Reference [37] documents the photonic lattice
implementation of the driving protocol with fermionic time-
reversal symmetry, and reports the observation of a topo-
logical phase with scatter-free counterpropagating boundary
states. These states are protected by the fermionic time-
reversal symmetry prescribed by the protocol, even though the
underlying photonic system is of bosonic nature.

A novel aspect yet to be explored in more detail is the
possibility of switching between fermionic and bosonic time-
reversal symmetry by continuous variation of a parameter.
Normally, without symmetries, switching between nontrivial
and trivial topological phases requires that a gap closes and
reopens. The driving protocol allows us to switch between
a nontrivial and trivial symmetry-protected topological phase
without directly affecting the topological nature of the sys-
tem (the gap stays open), and without breaking time-reversal
symmetry. Instead, only the type of time-reversal symmetry
changes, and that even in a continuous manner.
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APPENDIX A: PSEUDOSPIN INTERPRETATION

The pseudospin interpretation of the “red” and “blue”
sublattice structure depicted in Figs. 1-4 is suggested by the
geometric structure of the operator Sg in Fig. 2. A natural way
to represent the pseudospin is to understand the original lattice
as a centered square lattice (see Fig. 11), and associate the
“red” (“blue”) sublattice with the “up” (“down’) component
of a spin %

Technically, the pseudospin interpretation is obtained
through a Hilbert space isomorphism Zs, which is defined by

(12) (13)
JITITI oo

(14
2aas SRAL TINS

Q
AARP s aq NN

C/A DB ANC BN\.D CN\A D\B

(1)
L
L

A C BJD

the mapping

Isliby + jb2) @ |1) = [iby + jb2) ,

Isliby + jb2) ® [{) = [ib; + jby +e;),
for i, j € Z. Here, by = (1, —1)", by = (1, 1) are the trans-
lation vectors of the centered square lattice, and e, =
(1,0),e, =(0,1) the unit vectors of the original square

lattice. In terms of the vectors a,, a,, &, used in Sec. II, we
have

Isliby + jbo) ® 1S) = |1 ]a, + |5 Ja, +68,) . (A2)

where |-] denotes the floor function (rounding down to the
next integer), and s is chosen according to

(AD)

S=t S§=|
i+jeven s=A s=B (A3)
i+ jodd s=C s=D

Within the pseudospin interpretation, diagonal pairwise
couplings correspond to translations along the vectors
b, and b, that preserve the pseudospin, as in

(Zs'ix »cTs) liby + jba) @ 1) = (i + Dby + jb2) @ [1),
(Zs™'ta »cZs) liby + jb2) ® |]) = 0. (A4)

The horizontal coupling pattern (a) in Fig. 1, which appears in
steps 2 and 5 of the universal driving protocol, corresponds to
a spin transformation

Is \(tamp + i p+icop +ip p))Is =0, (A5)

with the Pauli matrix o, that preserves the i, j index of the
centered square lattice. Note that here the parameters J4_, g,
Je—p of the two pairwise couplings are equal (cf. Table III).
The remaining horizontal and vertical couplings, which are
not compatible with the symmetry operator Ss, have no such
simple representation.

The operator Sg itself allows for a simple representation
if the matrices o, t in Eq. (2) are given by a common 2 x 2
matrix ¥, i.e., 0 = t = X. Then, we simple have

Is 'SsZs =% . (A6)

At least for fermionic time-reversal symmetry, this form of Sg
is mandatory (with ¥ = oy), up to phase factors in o, 7. Note
that these phase factors could be absorbed into the mapping
Ts, preserving the simple form of Sg even in the general case.

The pseudospin interpretation of the square lattice allows
us to reuse familiar notions such as “helicity” of boundary
states in the present context. Conversely, the existence of this
interpretation, as well as the precise form of the mapping

NS+
N INE 22 27
a v a® vava e s
ANC D\B C\A B\\D AC D/B C, A B/ D

FIG. 12. The eight coupling patterns with parallel diagonal pairwise couplings. Patterns (f1) and (g1) correspond to patterns (f) and (g) in

Fig. 1.

245102-12



UNIVERSAL DRIVING PROTOCOL FOR ...

PHYSICAL REVIEW B 99, 245102 (2019)

ZIs of the (pseudo) spin onto the square lattice, is a natural
consequence of the symmetry analysis provided in the present

paper.

APPENDIX B: PARALLEL DIAGONAL COUPLINGS

On the square lattice with a four-element unit cell, 4 x 4 =
16 diagonal coupling patterns exist in total. Four of them
contain pairwise couplings that cross each other, and are not
allowed due to the constraints imposed in Sec. II. Out of the
allowed twelve patterns, the four perpendicular diagonal cou-
pling patterns (b)—(e) in Fig. 1 constitute the main steps of the
driving protocol A with time-reversal symmetry from Sec. V.
Out of the remaining eight parallel diagonal coupling patterns
depicted in Fig. 12, patterns (f1)—(f4) constitute the main
steps of the driving protocol B with particle-hole symmetry
in Sec. VII. The latter choice is mandatory, because only
these patterns are mapped onto themselves by the symmetry
operator Sg, while patterns (gl) <> (g2) and (g3) < (g4) are
swapped.

That leaves open the question why the parallel diagonal
coupling patterns are not used for the driving protocol A with
time-reversal symmetry. Intuitively, this question is answered
by comparison of the patterns of motion in Figs. 4 and 10:
parallel diagonal couplings give rise to copropagating states,
while time-reversal symmetry requires counterpropagating
states, hence the perpendicular diagonal coupling patterns.

For a more exhaustive argument, consider the situation that
the driving protocol should support time-reversal symmetry,
but has to be composed only out of parallel diagonal coupling
patterns. We can then try to repeat the construction from
Sec. V A and focus on the two central steps, e.g., steps 3, 4 in
a six-step protocol. These two steps must be exchanged under
a mapping with Sg.

If the two steps involve patterns (f1)—(f4), they are mapped
onto each other by Ss, and can be combined into a single
step. In this way, nothing is gained for the construction of
the driving protocol. If the two steps involve patterns (g1)—
(g4), possible combinations are pattern (gl) followed by
pattern (g2), or patterns (g3) followed by pattern (g4), etc.
Visual inspection of these patterns in Fig. 12 shows that such
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FIG. 13. A universal driving protocol that contains protocol A
(right variant in Fig. 3) and protocol B, but violates the constraints
from Sec. II.

FIG. 14. Pairwise couplings (solid lines) on a square lattice with
a two-element (a filled and an open circle) unit cell, and two choices
for translation symmetry.

combinations transport states by two lattice sites in diagonal
direction, but not on a closed loop as required for our driving
protocol (see Fig. 4). Nothing is gained for the construction of
the driving protocol in this way, either.

We conclude that a driving protocol with time-reversal
symmetry has to use the perpendicular diagonal coupling
patterns (b)—(e) from Fig. 1, instead of the parallel diagonal
coupling patterns (f1)—(g4) from Fig. 12.

APPENDIX C: JOINT A AND B DRIVING PROTOCOL

In the main text, the two types A (in Fig. 3) and B (in
Fig. 10) of the driving protocol appear as disjoint cases,
with either perpendicular or parallel diagonal couplings. In
fact, both types of the protocol are just special cases of
the combined driving protocol shown in Fig. 13. However,
continuous interpolation between protocol A and protocol B
requires inclusion of couplings between three or more lattice
sites, as is evident from the zigzag “blue” couplings in Fig. 13.
The inclusion of such couplings is perfectly valid, unless we
impose the very restrictive constraints of Sec. II. Only because
of these constraints, we had to discuss protocol A and protocol
B separately in the main text.

APPENDIX D: PROTOCOLS WITH
A TWO-SITE UNIT CELL

Translational symmetry on a square lattice with a two-
element unit cell can be implemented in two ways (see
Fig. 14): either with primitive translation vectors a, = (2, 0),
a, = (1,1) (left panel), or a, =(2,0), a, = (1,0) (right
panel). With the constraint that pairwise couplings are allowed
only between neighboring lattice sites, only the couplings

50 @50 @ o & 000 @0

-0 000 o &o -0 @0

o es b0 e em
S, s A

NS R

Seoe & en

eoeo o dp

FIG. 15. Options for a symmetry operator for fermionic time-
reversal symmetry on the square lattice from Fig. 14 (top row) and
the compatible pairwise couplings (bottom row).
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depicted in Fig. 14 are possible. In the two cases, either
(anti)diagonal (left panel) or vertical (right panel) coupling
terms are forbidden.

A symmetry analysis in the spirit of Sec. III leaves us with
only three options for a symmetry operator that could be used
to implement fermionic time-reversal symmetry (see Fig. 15).

For all options, the pairwise couplings compatible with the
symmetry do not connect the entire lattice. We conclude
that, under the constraints imposed here, a nontrivial 2 + 1-
dimensional topological phase with time-reversal symmetry
cannot be realized with a two-element unit cell, but requires
at least a four-element unit cell.
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