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Double quantum dot scenario for spin resonance in current noise
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We show that interference between parallel currents through two quantum dots, in the presence of spin-orbit
interactions and strong on-site Coulomb repulsion, leads to resonances in current noise at the corresponding
Larmor frequencies. An additional resonance at the difference of Larmor frequencies is present even without
spin-orbit interaction. The resonance lines have strength comparable to the background shot noise and therefore
can account for the numerous observations of spin resonance in scanning tunneling microscope noise with
nonpolarized leads. We solve also several other models that show similar resonances.
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Coherent control and detection of a single spin are funda-
mental challenges in nanoscience and nanotechnology, aiming
to determine electronic structures as well as provide qubits for
quantum information processing [1,2]. Of particular interest
are studies that combine the high-energy resolution of electron
spin resonance (ESR) with the high spatial resolution of
a scanning tunneling microscope (STM). These ESR-STM
studies are of two types, either monitoring the current power
spectrum in a DC bias [3–5], or monitoring the DC current
when an additional AC voltage is tuned to resonance condi-
tions [6–8]. In the latter case with a magnetic tip [7,8] the
theory is well understood [7,9]. In Ref. [6] the tip is apparently
nonmagnetic, hence it should be interpreted as the inverse
phenomenon to that of the first type.

We focus here on the ESR-STM phenomenon of the first
type, i.e., a DC bias alone. The experimental technique is con-
ceptually simple: an STM tip is placed above a localized spin
center in the presence of a DC magnetic field and the power
spectrum, monitoring the current fluctuations, is measured;
the data exhibits a sharp resonance at the expected Larmor
frequency [3–5] even at room temperature. This phenomena
has been further confirmed by an associated electron-nuclear
double resonance effect [10]. The understanding of this ESR-
STM phenomenon presents a theoretical challenge even at
present [4]. It was proposed early on that a spin-orbit coupling
is essential for converting the spin fluctuations to current
noise, assuming also that the tip and substrate are spin polar-
ized [11–13]. However, the experimental data [3–5] involves
nonpolarized tip and substrate. It was argued that an effective
spin polarization is realized either as a fluctuation effect [5,14]
or due to 1/ f magnetic noise of the tunneling current [15].
The first theoretical model that conclusively showed an ESR-
STM phenomena in this case, i.e., nonpolarized electrodes in
a DC setup, was a nanoscopic interferometer model [16,17].
In this model the current has an additional channel of direct
tunneling from the tip to the substrate in parallel to the
current via the spin states. The interference between the two
channels leads to an ESR resonance; however, the signal is
rather weak. Furthermore this model ignores on-site Coulomb
interactions, that are expected to be significant at a localized
spin site.

In the present work we propose a mechanism for the
ESR-STM phenomenon, a mechanism that provides a strong
signal, comparable to that of the background shot noise, and
allows for a strong Coulomb interaction at the spin site. The
model assumes the presence of an additional spin such that the
current passes in parallel via two spins, i.e., a double quantum
dot (DQD). The additional spin is unintentional in the ESR-
STM experiments so far, yet its presence can be tested by
monitoring our predictions. In particular, in addition to the
expected resonance at ν1 = g1μBH additional resonances are
present at g2μBH and at |g1 − g2|μBH ; g1, g2 are the g factors
of the two spins, respectively, μB is the Bohr magneton, and H
is the DC magnetic field. We solve also the single spin model
[16,17] with strong on-site Coulomb repulsion, as well as the
noninteracting two-spin model. We find that the DQD model
provides a strong signal-to-noise ratio and is most likely to
account for the ESR-STM data. The properties of all the
studied models are summarized in Table I below.

We review first the previous model [16,17] that involves
interference between tunneling via the spin and direct tunnel-
ing, as illustrated in Fig. 1(a). Consider l = L, R (left, right)
fermion leads (i.e., tip and substrate) with the Hamiltonian
H0 = ∑

l,k,σ εlkc†
lkσ

clkσ where σ = ± denotes the spin and
k are continuum states; clkσ are the lead fermion opera-
tors whose dispersions εlk include the voltage and are spin
independent, justified by the small ratio 10−5 of the Lar-
mor frequency and a typical electron bandwidth. The spin
site involves fermion operators dσ and a Hamiltonian Hd =∑

σ (ε0 + 1
2νσ )d†

σ dσ where ν = gμBH is the (single) Larmor
frequency with g factor g. The reservoirs are connected by
a direct tunneling as well as by tunneling via the spin; the
latter allows for an SU(2) spin-orbit rotation [16,17] û =
eiσzφe(1/2)iσyθ where σ are the Pauli matrices. The total Hamil-
tonian is H1 = H0 + Hd + H(1)

tun with the tunneling term,

H(1)
tun = tc†

Ld + t ′c†
Rûd + W c†

LcR + H.c., (1)

where all operators are now spinors and c†
l = ∑

k c†
lk is at

the tunneling site. The current noise for this model has
been solved exactly [16,17] with results summarized in the
first column of Table I, yet it is instructive to derive the
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FIG. 1. Interference paths that lead to an ESR-STM effect:
(a) paths via a single spin and a direct tunneling path and (b) paths
via two spins in parallel (for � = 0).

main results heuristically. The resonance linewidth is seen
from a Golden rule � = 2πt2N (0), assuming now t = t ′ and
the density of states N (0) per spin of both leads are taken
equal, for simplicity. The resonance in the current correla-
tion involves a closed loop with a given spin that passes
at both spin levels, as illustrated in Fig. 1(a). Hence one
needs at least six tunneling events: four via the spin and
two direct tunnelings, as well as two spin flips of probabil-
ity sin2 1

2θ , hence an amplitude ∼t4W 2 sin2 1
2θ which multi-

plies a Lorentzian of width �, hence the peak amplitude is
∼t4W 2 sin2 1

2θ/� ∼ t2W 2 sin2 1
2θ . This derivation is valid if

the spin levels are within the voltage window [16,17], i.e.,
|ε0| < 1

2 eV [1 + O(T/eV )] at temperature T . The direct cur-
rent L → R is also found by a golden rule rate 2πW 2N (0) per
spin times the final number of available states eV , i.e., JW =
4πe2VW 2N2(0). Assuming W � t the background shot noise

is 2eJW , hence the Fano factor, i.e., the ratio of the resonance
peak to that of the background, is F ≈ � sin2 1

2θ/eV . For [4,5]
� ≈ 10 MHz, V ≈ 1 eV this ratio is ≈10−6, too small to
account for ESR-STM data. [If t � W , the Fano factor would
be even smaller, F ∼ W 2N2(0).]

We consider next our new model; first, its noninteracting
variant. The model involves current transport via two spins,
in parallel, i.e., the Hamiltonian is H2 = H0 + H(2)

d + H(2)
tun

where d1, d2 are fermion spinor operators on the two spin
sites,

H(2)
d = 1

2ν1d†
1 σzd1 + d†

2

(
� + 1

2ν2σz
)
d2,

H(2)
tun = c†

L[t1d1 + t2d2] + c†
R[t ′

1d1 + t ′
2ûd2]. (2)

We assume that only the R electrode (probably the tip) has
significant spin-orbit interaction. In general this yields two
SU(2) spin rotation matrices û1, û2 for tunneling from R to
sites 1 and 2, respectively, i.e., t ′

1c†
Rû1d1 + t ′

2c†
Rû2d2. In general

the wave functions of the two spins differ in their orbital part
as well as in their locations, hence we expect û1 �= û2. In the
Supplemental Material [18] we extend Bardeen’s formula to
include spin-orbit coupling and estimate the spin-flip angle
θ . We find that 0 < | tan 1

2θ | � 1, depending on the location
of the spin site. Hence two spin locations can lead to fairly
different û1, u2. We then rotate c†

R → c†
Rû†

1 so as to cancel û1 in
the d1 term while û = û†

1û2 for the d2 term, resulting in Eq. (2).
The current fluctuations correspond now to Fig. 1(b), i.e.,

a closed loop passing through both spins, at either level
of each spin. A resonance appears then at the difference
in energy levels, i.e., at 1

2 |ν1 ± ν2|; the + (−) sign is for
trajectories through opposite (same) side levels. For a finite
relative chemical potential � there are more resonance lines
at | 1

2ν1 ± 1
2ν2 ± �|. The significant virtue of the process in

Fig. 1(b) is that only four tunneling events are needed, hence
a much stronger resonance. We present [18] an exact solution
of Eq. (2) with numerical plots of typical results. The solution
can be expanded for weak tunneling, with results summarized
in the third column of Table I. While the Fano factor is strong
the model is inadequate since it neglects on-site Coulomb
interactions, expected to be strong for the experimental real-
izations. Furthermore, the resonance frequencies depend on
the unknown � parameter. In fact, the addition of Coulomb
interactions is essential for confining the dots as neutral so
that the chemical potential � becomes irrelevant.

TABLE I. Summary of four models for weak tunneling, � � ν � eV , and equal tunneling amplitudes t (noninteracting models). The
Aharononv-Bohm phase χ is finite only in the second column. The Fano factors in the third column correspond to | 1

2 ν1 + 1
2 ν2 ± �| and

| 1
2 ν1 − 1

2 ν2 ± �|, respectively. In the fourth column the linewidth for |ν1 − ν2| differs [given by Eq. (8)]. The Fano factor in column 1 or 2
is shown for W � t or W � J , respectively (the correction is shown in the DC current). The Fano factor in column 4 is shown for the ν1, ν2

resonances; other cases are in Eq. (9).

Single spin + direct tunneling Two spins

Noninteracting Strongly interacting Noninteracting Strongly interacting (DQD)

Linewidth � 2πt2N (0) 16πJ2N2(0)eV 4πt2N (0) 16π (J2
1 +J2

2 )N2(0)eV
DC current 4πe2VW 2N2(0)+2e� 2πe2V (2W 2+3J2)N2(0) 2e� 3

8 e�
Resonance frequencies ν ν+δν and 0 | 1

2 ν1 ± 1
2 ν2 ± �| ν1, ν2, |ν1−ν2|, 0

Fano factors F 3π�

16eV sin2 1
2 θ sin2 χ sin2 1

2 θ and 1
8 sin2 1

2 θ and 1
8 (1+

2 sin2 χ sin2 φ cos2 1
2 θ cos2 1

2 θ−2 cos φ cos 1
2 θ )

2πJ2
1 J2

2
3(J2

1+J2
2 )2 sin2 1

2 θ
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We proceed now to solve both models, Eqs. (1) and (2),
when strong on-site Coulomb interactions are present, as
indeed is the case in atoms and small molecules. Considering
first Eq. (1), we add a term Un↑n↓ where nσ = d†

σ dσ . The
effective Hamiltonian for large U,−ε0 � t, ν is well known
from a Schrieffer-Wolff (SW) transformation [19]

Hc
1 = H0 + [2Jc†

RσcL · S + We−iχc†
Rû†cL + H.c.] + νSz,

(3)

where S is the spin operator, J = O( tt ′
U , tt ′

|ε0| ), and an
Aharonov-Bohm phase χ is introduced, useful in the follow-
ing. W may include potential scattering terms generated by
the SW transformation. We note that J is reduced by the
strong Coulomb interaction, i.e., large U and −ε0, an effect
known as the Coulomb blockade. We keep in Eq. (3) only
exchange terms that allow transport between the electrodes;
other exchange terms that involve electrons only on one elec-
trode are neglected since their contribution to transport would
be of higher order. We perform [18] a perturbation expansion
to order J2W 2 using the Keldysh method. The result shows,
surprisingly, that the resonance term precisely vanishes when
χ = 0. In ESR-STM experiments we expect χ = 0 since the
nanometric dimensions of the setup allow only a negligible
magnetic flux. To motivate this result, consider an interference
along the loop R → (via spin) → L → R and an additional
trajectory of going around the loop in the opposite direction
R → L → (via spin) → R. When χ = 0 these trajectories are
related by time reversal; the single spin in the loop then yields
a relative minus sign, i.e., cancellation. More specifically,
these two processes, when the localized spin is flipped up, sum
up to

〈c†
Lσ−cRc†

Rû†cL〉e−iχ + 〈c†
LûcRc†

Rσ−cL〉eiχ

= fL(εL )[1 − fR(εR)]{Tr[σ−û†]e−iχ + Tr[σ−û]eiχ }
= fL(εL )[1 − fR(εR)]2i sin χ sin 1

2θeiφ, (4)

where fl (ε) are Fermi functions and Tr[σ−û†] = −Tr[σ−û] =
2 sin 1

2θeiφ . Hence the interference cancels at χ = 0. Energy
conservation implies εL = εR + O(ν) and integration on εL

yields then an eV factor. Additional interference cycles that
start at L involving fR(ε)[1 − fL(ε)] are negligible for V >

0 and eV � ν, T . The result (4) is confirmed by detailed
perturbation expansion [18], as summarized in the second
column of Table I. Hence for the experimentally relevant case
with χ = 0 this model may give a resonance only at orders
higher than J2W 2 and therefore does not account for ESR-
STM data. We note also that replacing σ− → σz in Eq. (4)
yields a resonance at ω = 0 with amplitude ∼Tr[σzû†]e−iχ +
Tr[σzû]eiχ = 4 sin χ sin φ cos 1

2θ .
For completeness, we evaluate the resonance linewidth,

relevant when χ �= 0. The simplest approach is a golden rule
for the decay of a spin up by passing an electron from L to R,

�↓ = 2πN2(0)
∫

εL,εR

|4J〈↑|c†
L↓cR↑S+|↓〉|2δ(εL − εR − ν)

= 8πeV J2N2(0). (5)

Similarly for �↑, leading to 1
T1

= �↓ + �↑ = 16πeV J2N2(0),
hence for the isotropic interaction in Eq. (3) the linewidth is
1/T1 = 1/T2. This result is confirmed by solving a Lindblad-

type equation [18] for the spin dynamics; it is also con-
sistent with the linewidth as derived by higher orders in
Keldysh diagrams [20]; however, the framework of the
Lindblad equation, being a proper second-order perturba-
tion, is considerably more convenient. The Lindblad equa-
tion also shows a shift in the resonance frequency δν =
−4πeV JW N2(0) sin φ cos 1

2θ cos χ , that may well be larger
than the linewidth.

We proceed to our most interesting model, the DQD model
with strong on-site Coulomb interactions. Proceeding with a
SW-type derivation [18] we find that Eq. (2) is replaced by

Hc
2 = H0 + 2J1c†

RσcL · S1 + 2J2c†
RûσcL · S2

+ ν1S1z + ν2S2z, (6)

which is an obvious extension of the single spin case. This
Hamiltonian neglects potential scattering terms that may gen-
erate terms beyond those that we study of order J2

1 J2
2 ; also

χ = 0 here, for simplicity. Tunneling between the two spin
sites is neglected, leading to higher order terms for transport
[18]; this tunneling yields also a direct exchange between the
spins which shifts the Larmor frequencies; we neglect here
this effect (e.g., if one spin is on the tip and the other on the
surface this exchange is much weaker than either J1 or J2).

We note that the spin-orbit factor û is essential for ob-
serving a resonance at a Larmor frequency. If û = 1, then
the tunneling elements conserve the total spin, while the Sz

terms in Hc
2 allow conservation of the z component of the

total spin. Thus a closed loop of a lead electron returning to
its original spin cannot flip a single spin, i.e., no resonance
at either ν1 or ν2. The loop can, however, flip both spins
in opposite ways, hence a resonance at |ν1 − ν2| is possible
even without spin-orbit effects. In fact, the same symmetry
reasoning applies to all the models considered above. We
further note that models with transport via a single spin, even
if including spin-orbit interaction, e.g., Eq. (6) with J1 = 0, do
not show an ESR-STM phenomenon. This is seen by rotating
c†

R → c†
Rû† so that û is canceled and then total Sz conservation

rules out a spin-flip resonance. This conclusion holds for
models with other types of isotropic exchange interactions
[5,14], interactions that commute with the total Sz.

To appreciate the type of results, we consider the loops as
in Eq. (4), which for a single spin flip involve σ− on one spin
while σz on the other, hence

〈c†
Lσ−cRc†

RûσzcL〉 + 〈c†
Lσzû

†cRc†
Rσ−cL〉

= fL(εL )[1 − fR(εR)]{Tr[σ−ûσz] + Tr[σzû
†σ−]}

= −2 fL(εL )[1 − fR(εR)] sin 1
2θeiφ. (7)

Hence we expect resonances of the form ∼J2
1 J2

2 sin2 1
2θδ(ω −

νi ), i = 1, 2. An additional resonance at |ν1 − ν2| appears
when σz → σ+ in Eq. (7); the matrix elements then lead
to 2 cos 1

2θeiφ , hence a resonance ∼J2
1 J2

2 cos2 1
2θδ(ω − |ν1 −

ν2|). One further resonance is possible at ω = 0 when σ− →
σz in Eq. (7), i.e., no spin flips, leading to 4 cos φ cos 1

2θ ,
hence a resonance ∼J2

1 J2
2 cos2 φ cos2 1

2θδ(ω). Finally, there is
no resonance at ν1 + ν2 since σ 2

− = 0.
We proceed now to our diagrammatic expansion. First,

consider skeleton diagrams, i.e., without Keldysh indices, that
show readily which type of diagrams to fourth order can
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FIG. 2. Skeleton diagrams: solid straight lines are electron prop-
agators on either the right or the left electrode (being interchanged
at each vertex), wavy lines represent spin propagator with poles at
the Larmor frequency ν1 or ν2 or at 0 (Sz propagator), and dashed
lines are external current sources. (a) Conservation of frequency at ei-
ther current vertex leads to resonances δ(ω ∓ ν1), δ(ω ∓ ν2), δ(ω ∓
|ν1 − ν2|), and δ(ω). (b) A diagram that does not show a resonance.

produce a resonance. Figure 2(a) shows a typical diagram that
has a resonance, i.e., frequency conservation at each vertex
yields readily δ function resonances at ν1, ν2, |ν1 − ν2|, and
0. In contrast, Fig. 2(b) shows that all spin frequencies merely
shift an electron energy which is being integrated. Hence a
weak ω dependence, i.e., a nonresonant effect. [We note that
similar skeleton diagrams can be constructed also for our
single dot model, Eq. (3); one spin line is eliminated while
its vertices remain as the direct tunneling W term.]

We present a detailed Keldysh diagrammatic expansion
[18]. The results are consistent with the reasoning above and
are summarized in the fourth column of Table I. We also solve
[18] a Lindblad equation for this case to identify the various
linewidths �(ωres) of the various resonances ωres, leading to

� = 16πeV N2(0)
(
J2

1 + J2
2

)
, ωres = ν1, ν2, 0,

�(|ν1 − ν2|) = 16πeV N2(0)
(
J2

1 + J2
2 − 2J1J2 cos 1

2θ cos φ
)
.

(8)

This result is similar to that of the single spin case obtained
from Eq. (5), except that each spin is affected also by the
longitudinal relaxation of the other spin; furthermore, the
ν1 − ν2 resonance includes a nonsecular ∼J1J2 term [18].

The DC current is given in Table I; as expected it is ≈e�, so
that the background shot noise is ≈e2�. The resonance signal
at maximum is obtained from the discussion following Eq. (7)
and is confirmed by the diagrammatic expansion [18], with
the replacement δ(ω − ωres) → 1/π�(ωres). The ratio of this

peak value and that of the background is given for ν1, ν2 in the
table while for the other resonances it is F (ωres),

F (0) = 4πJ2
1 J2

2

3
(
J2

1 + J2
2

)2 cos2 1
2θ cos2 φ,

F (|ν1 − ν2|) = 2πJ2
1 J2

2 cos2 1
2θ

(
2 + tanh ν1

2T tanh ν2
2T

)
3
(
J2

1 + J2
2

)(
J2

1 + J2
2 − 2J1J2 cos θ cos φ

) .

(9)

It is remarkable that the resonance at |ν1 − ν2| is strongest
without spin-orbit coupling, i.e., θ = φ = 0, with a narrow
linewidth ∼(J1 − J2)2.

We consider next the relevance of our results to the ex-
perimental situation [3–5]. First, we note that the data shows
a sharp resonance even at room temperature. This is fully
consistent with our results since the linewidth is dominated
by the voltage with eV � kBT . Second, we note that the
linewidth of 25 MHz at I = 0.1 nA [10] implies that the
DC current via the spins (Table I) is 3

8 e� ≈ 10−4 nA, much
smaller than the total current. We expect then that most of the
current tunnels directly between the tip and substrate, indeed
a dominant tunneling as it is not Coulomb blockaded. We
expect that this current is incoherent with those via the spins,
otherwise it would lead to a large shift δν in the resonance
frequency [see paragraph below Eq. (5)]. Finally, the ratio of
peak noise power to that of the shot noise has been estimated
[5] as O(1); however, since the power spectrum is measured
via modulation of the magnetic field its absolute value has not
been so far directly measured.

These experiments [3–5] aim to probe a known spin site on
a surface. We propose that a second spin is present, allowing
for the observed strong signal. The most likely location for
the second spin is on the STM tip, which is usually made
of a heavy metal with significant spin-orbit coupling. Indeed,
the presence of dangling bond surface states in various tip
materials is known [21]; such states are candidates for spin
sites. By extending the measured frequency range, we predict
the observation of a second Larmor frequency ν2 as well as a
signal at a lower frequency |ν1 − ν2|. The latter in fact may
well be stronger than those at either ν1 or ν2 if the spin-orbit
effect is weak, i.e., small θ . We note that preliminary data
shows a strong signal at low frequency for either defects on
a SiC surface or for Tempo molecules on Au substrate [22].

We note finally that the second type of ESR-STM, i.e.,
enhanced DC current at resonance with an applied AC voltage
[7,8], involves a magnetized Fe atom on the tip. While this is
superficially similar to our two-spin scenario, it is a funda-
mentally different mechanism, being based on a permanently
strong magnetic atom. In our scenario both spin sites exhibit
spin fluctuations; in fact, even the average spin of each site
is extremely weak [18], ≈νi/eV � 1 (i = 1, 2); yet, data on
noise in the spin current might show similarities.

In conclusion we have solved a number of models showing
an ESR-STM phenomenon, concluding that the model of two
spins with strong on-site Coulomb interactions is the most
likely to account for the data. Observation of our predic-
tion for additional magnetic-field-dependent frequencies in
the power spectrum would be the clearest support for our
mechanism.
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