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Carriers such as electrons and holes inside the Brillouin zone of complex semiconducting materials can form
bound states (excitons, biexcitons, etc.). For obtaining the corresponding eigenstates (e.g., through the Wannier
or Bethe-Salpeter equation) and dynamics (e.g., cluster expansion) the number of involved electrons and holes as
well as the accuracy is limited by the appearing high-dimensional tensors (i.e., wave functions or correlations).
These tensors can be efficiently represented and manipulated via tensor network methods. We show how tensor
networks formulated via classic logic gates can be used to treat electron-hole complexes inside the Brillouin zone.
The method is illustrated for the exciton and biexciton states of a single-layer transition-metal dichalcogenide
MoS2-like model system.
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Introduction. Semiconductor Bloch equations and cluster
expansion methods have been the workhorse for optical-
induced carrier and exciton dynamics in semiconductor ma-
terials for decades [1–7]. Even for the recent monolayer
two-dimensional (2D) materials such as monolayer transition-
metal dichalcogenides (TMDCs), these methods are still
successful. However, most treatments of Coulomb bound
electron-hole states were restricted to exciton states. Trion and
biexciton states and beyond are seldom included [4,8–13]. If
they are included, the correlations are expanded in a basis of
few bound exciton, trion, or biexciton states [4,8–11,13].

Exciton states are calculated using the Wannier equation
[4,8,14–16], either in real space [8,10,16,17] or in reciprocal
space [14,15,18]. Often the evaluation is restricted for exci-
tons living near high symmetrical points such as the � or
K and K ′ points. In the context of ab initio treatments, the
equivalent Bethe-Salpeter equation (BSE) is used for calcu-
lating exciton states [18–24]. On the other hand, calculations
for higher-order correlated electron-hole states such as trions
or biexcitons are sparse [8,10,11,13,25–29]. This Rapid Com-
munication will illustrate a route to make bigger electron-hole
complexes accessible, dynamically or for obtaining bound
eigenstates.

Higher-order correlations (induced by, e.g., Coulomb,
electron-phonon, or electron-photon interactions) for few
level systems such as quantum dots have been successfully
addressed by inductive equation of motion methods [30–32].
However, these methods are restricted to systems with few
discrete levels and few discrete photon or phonon modes and
cannot be applied so far to correlations with many contin-
uous quasimomentum indices. The required memory sizes
for storing the correlations scale exponentially in the number
of involved particles N and polynomial in the number of
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involved states M (∝MN ). Even small numbers of in-
volved particles, e.g., N = 4 leads for a treatment of a two-
dimensional Brillouin zone (BZ) (e.g., for small 30 mo-
mentum points in each dimension a two-band model yields
M = 1800), to a hard numerical problem. So the stored
data required for the simulation is the bottleneck to attack
higher-order correlations. However, the naive raw data amount
required to store entire movies on our computers and smart-
phones is at least impractical, but lossy data compression
solves this issue and storing hundreds of movies on a single
computer is possible. So, for treating higher-order many-
particle correlations, a lossy data compression method and
the ability to calculate directly on the compressed data will
be the solution. Expanding the correlations in a basis (e.g.,
exciton [4,9], trion [10,11,25], biexciton [13,26], permuta-
tional symmetric basis [33,34]) is in principle already a first
simple form of data compression, where known symmetries
and properties of the problem are used for an efficient de-
scription of the system. However, for every problem a dif-
ferent or modified basis is required, where the reformulation
and implementation of the equations is tedious and requires
substantial effort. In the context of highly correlated quantum
systems, tensor network methods such as matrix product states
(MPS) provided a systematic and reliable way to store and
manipulate quantum states of, e.g., spin chains [35–38], and
also system-bath interactions [39,40]. The wave function of
the spin chain is interpreted as a tensor and decomposed in
a tensor network such as a MPS [also called a tensor train
(TT)]. In mathematics and chemistry a new trend uses TT (or
other tensor networks) to compress high-dimensional tensors
regardless of whether the tensor represents an actual quantum
mechanical wave function [40].

Furthermore, for solving partial differential equations in
real space, quantics tensor trains (QTTs) were introduced
[41–46]. QTTs do not use the spatial coordinates as indices
of the tensors, but instead use their binary representation.
We transfer this concept to cluster expansion and Wannier
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FIG. 1. (a) Valence and conduction band of MoS2 for one spin.
(b) Decomposition of a tensor into a tensor train. (c) Diagrammatic
representation of the tensor train coding S(kL

1 · · · kL
n |kR

1 · · · kR
m ).

equations, since correlations appearing there are also tensors.
We show that a binary representation of the BZ quasimo-
mentum allows a straightforward expression of the material
equations using tensor networks with binary logic gates. We
focus on the calculation for a model system with a realistic
numerical complexity, which describes excitons and biex-
citons formed between the valence and conduction bands
of the two-dimensional TMDC MoS2 [8,13,15,27,47–52].
Currently, monolayer TMDCs such as MoS2 are intensively
researched as a new material for applications as (quantum)
optical devices. In particular, very strong excitonic effects
caused by the remarkably strong Coulomb interactions make
monolayer TMDCs a very unique class of materials. The band
structure of MoS2 [cf. Fig. 1(a)] shows several valence and
conduction band extrema, which are relevant to the formation
of bound electron-hole complexes (e.g., for the exciton a
ground state is formed by electrons and holes at the K or
K ′ point). In particular, for larger electron-hole complexes
such as biexcitons or trions, long-range Coulomb interactions
inside the full BZ become important. A calculation of the full
BZ has the advantage that all possible bound quasiparticles
formed by Coulomb interactions are included, not only just
the one localized at the usually investigated K and K ′ symme-
try points.

We demonstrate that the electrons and holes complex quan-
tities can be calculated using a very high number of grid points

in the BZ. This Rapid Communication is a proof of principle
that a combination of tensor network methods increases the
range of problems addressable with the Wannier equation and
BSE. The MoS2 is chosen as the model system, since it is one
of the most widely studied TMDCs and the tight-binding band
structure is available from the literature [53,54] as a solid basis
for the model system. Besides the calculation of (bi)exciton
states, the concept is also extensible towards solving equations
of motions in cluster expansion.

Model system. The Hamilton operator H of the model
system is H = H0 + HC . The electronic band structure enters
the Hamiltonian through H0 = h̄

∑
kλ ελ

ka†
kλakλ, where k is the

quasimomentum in BZ, and λ describes the band and spin. ελ
k

is the band structure of the material, and for this Rapid Com-
munication the tight-binding band structure for MoS2 from
Refs. [53,54] is used. Depending on the band λ = cσ , vσ dis-
tinguishing conduction c and valence band v, with spin σ =
↑,↓, a†

kλ, akλ are the creation and annihilation operator of an
electron (conduction band) or hole (valence band): a†

kλσ =cσ
=

e†
kσ and a†

kλσ =vσ
= h†

kσ . The Coulomb interaction Hamiltonian

HC reads HC = ∑
k1k2qλ1λ2

Ik1k2q
λ1λ2

a†
k1λ1

a†
k2λ2

ak2+qλ2 ak1−C
λ2
λ1

qλ1
.

Cλ2
λ1

is 1, if λ1 and λ2 are both holes or both elec-

trons and −1 otherwise. The prefactor Ik1k2q
λ1λ2

= F k1k2
q VqCλ2

λ1

includes the Keldysh-style Coulomb potential Vq [15,55]
and the tight-binding (TB) coefficients ckn1 inside F k1k2

q =∑
n1,n2

c∗
k1n1

c∗
k2n2

ck2+qn2 ck1−C
λ2
λ1

qn1
. The Coulomb potential Vq

is calculated for MoS2 on a silica substrate (air/silica inter-
face). The model system is slightly simplified (no exchange
coupling term), since this work is focused on the method
(more accurate treatments are subject to future studies).

We introduce the multi-index k = {kλ}, where λ is only
written explicitly, if needed. The correlations describing the
system are 〈a†

kL
1
· · · a†

kL
n
akR

m
· · · akR

1
〉 =: S(kL

1 · · · kL
n |kR

1 · · · kR
m).

Using Heisenberg equations of motion ∂t 〈O〉 = i/h̄〈[H, O]−〉,
we arrive at an equation for S,

∂t S
(
kL

1 · · · kL
n |kR

1 · · · kR
m

) = i
n∑

j=1

εkL
j
S(· · · | · · · ) − 2i

∑

jkq

I
kR

j kq

λR
j λ

S
( · · · kL

n {k + q}| · · · {kR
j − Cλ

λR
j
q
} · · · kR

mk
)

− 2i
∑

i< jq

I
kR

j kR
i q

λR
j λ

R
i

S
( · · · ∣∣ · · · {kR

j − Cλ
λR

j
q
} · · · {kR

i + q
} · · · ) − {L ↔ R, n ↔ m}. (1)

On the right-hand side (rhs) only the changes in the in-
dices of S(· · · | · · · ) compared to the left-hand side (lhs) are
denoted. Note, some terms on the rhs change the number
of indices of S(· · · | · · · ) compared to the lhs. Equation (1)
creates the usual infinite hierarchy of correlations, which is
usually driven by electron-light interaction terms, not included
here. Examples of higher-order correlations include important
spectroscopic contributions such as S(k1k2k3|k4) (contains
density-assisted polarizations leading to excitation-induced
dephasing), S(k1k2k3k4|) (contains biexcitonic coherences),

or S(k1k2k3k4|k5k6) (contains single-exciton to biexciton
correlations). These higher-order tensors S(· · · | · · · ) impose
a high numerical burden that tensor network methods will
lift. While future calculations of the quantum dynamics using
Eq. (1) and the tensor network approach are possible, we
focus here on the calculation of many-particle eigenstates, i.e.,
eigenstates for excitons, biexcitons, etc. As in the calculation
of the Wannier equation [14], we take the homogeneous
part of Eq. (1) and convert the equation to an eigenprob-
lem with eigenenergies E for the respective many-particle
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complexes,

iE S
(
kL

1 · · · kL
n

∣∣kR
1 · · · kR

m

) = i
n∑

j=1

εkL
j
S(· · · | · · · ) − 2i

∑

i< jq

I
kR

j kR
i q

λR
j λ

R
i

S
( · · · ∣∣ · · · {kR

j − Cλ
λR

j
q
} · · · {kR

i + q
} · · · ) − {L ↔ R, n ↔ m}.

(2)

Then, for S(|k1 · · · kN ), Eq. (2) actually has the same
form as the Hermitian conjugate of the Schrödinger
equation of �k1···kN = a†

k1
· · · a†

kN
|�0〉, which describes the

bound electron-hole carriers created out of the neutral ground
state |�0〉 (without prior doping or optical excitation) of the
system. Therefore, for S(|k1k2), Eq. (2) corresponds to the
Wannier equation, the eigenstate problem for excitons (bound
electron-hole pairs) [14] in reciprocal space, and is equivalent
to a BSE [4,21,28]. Remember, 〈akvσ1

akcσ2
〉 is part of S(|k1k2)

and is an electron-hole coherence 〈hkσ1 ekσ2〉. Furthermore,
for S(|k1k2k3k4), Eq. (2) is the generalization to biexcitons,
i.e., bound complexes from two electrons and two holes. In
this Rapid Communication, we will focus on excitons and
biexcitons.

Tensor network methods. In principle, S(kL
1 · · · kL

n |
kR

1 · · · kR
m) is a tensor with indices kL

1 , . . . , kL
n , kR

1 , . . . , kR
m

and rank n + m. If we assume g = 1000 grid points for the
BZ (which is probably too small), the memory requirement
is gn+m = 1000n+m, so that already for very small m and n
the memory exceeds the feasible and possible range. Refer-
ence [56] showed that every tensor Tk1,...,kN can be approxi-
mated as MPS (in mathematics, TT) in the form Tk1,...,kn =∑

α1,...,αn−1
�1,k1

α1
�2,k2

α1α2
�3,k3

α2α3
· · · �n,kn

αn−1
. The tensors �n,k

αα′ have a
maximum of gD2 elements, if D is the maximum number
of αi (link dimension). If the relevant information of the
tensor can be represented with small D, the overall memory
size reduces from exponential scaling gn+m to linear scaling
(n + m)gD2, making higher-dimensional tensors accessible
[37,56–58]. In the following, we will use a diagrammatic
notation for tensors [37,57,58]: The tensor is represented by
a rectangle and indices are denoted as lines [cf. Fig. 1(b)]. If
the two indices of a tensor are contracted (summed), the lines
are connected, so that the decomposition of the tensor Tk1,...,kn

into �n,k
αα′ is represented by the diagram in Fig. 1(b). Tensors

are mathematically vectors, and simple vector operations such
as adding, taking the norm, and scalar multiplication can be
carried out directly on the MPS form without reconstructing
the full tensor [57,58]. Linear operators Ok1,...,kn,k′

1,...,k
′
n

acting
on tensors represented as MPS can be described as matrix
product operators (MPOs), which can be applied efficiently
on MPS [see Fig. 1(b) and Refs. [57–59]].

Representing S(kL
1 · · · kL

n |kR
1 · · · kR

m) directly as MPS is not
a good idea, since the dimension g (the number of grid points)
of k is very high. In Refs. [41–45] QTTs were introduced to
solve this problem, also in the context of BSEs [46]. For a
QTT the tensor indices are not used for the decomposition,
but the bits of a binary representation of the indices resulting
in a (n + m) log(g)D2 scaling of the memory requirement. For
a binary representation of the 2D BZ, the quasimomentum is
written as k = 1/2N

∑N
i=1(k(i)

x bx + k(i)
y by)2i with the number

of bits N and the basis vectors bx/y of the BZ and bits

k(i)
x/y = 0, 1. Furthermore, the band index λ contains one bit

eh for distinguishing valence and conduction bands and one
bit for the spin s. The bit representation is very suitable
for the interaction terms, since relations such as quasimo-
mentum conservation including umklapp processes can be
represented by binary logic gates inside tensor networks. Most
binary logic operations between two k’s connect bits from
the same digit, or adjacent digits. Sorting the bit indices for
the QTT/MPS decomposition by binary digits results in more
efficient tensor networks. Therefore, the bits to describe the
indices kL/R

i of the tensor S(kL
1 · · · kL

n |kR
1 · · · kR

m) are sorted as
([eh], [λ], [k(1)

x ], . . . , [k(N )
x ], [k(1)

y ], . . . , [k(N )
y ]), where [·] rep-

resents a group of bits: [	] = 	L
1 , . . . , 	L

n ,	R
m, . . . 	R

1 [cf.
Fig. 1(c)]. After defining the QTT decomposition, the MPOs
are built from tensor networks for the rhs terms of Eq. (2).

We start with the homogeneous energy term
−iεkR

j
S(· · · | · · · kR

j · · · ), where S(· · · | · · · kR
j · · · ) is the

MPS, on which a MPO will act [see Fig. 1(c)]. We can rewrite
the term as −i

∑
k′R

j k′′R
j
δkR

j k′R
j k′′R

j
εk′R

j
S(· · · | · · · k′′R

j · · · ), where

δkR
j k′R

j k′′R
j

factorizes into
∏

i δk(i)R
m j k′ (i)R

m j k′′ (i)R
m j

for every bit of kR
j

including band and spin bits. Furthermore, εkR
j

is converted
into a QTT ε with the same bit ordering. The tensor network
in Fig. 2(a) depicts the MPO of the homogeneous energy

FIG. 2. (a) TN representing the homogeneous part of Eq. (2),
(b) full adder (FA), and negation (NOT) logical circuits. (c) TN
representing the Coulomb term of Eq. (2) (only k part).
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term. The δ-bit tensor is represented by a dot in Fig. 2 and
connects the initial MPS bit index with the bit index of εkR

j

and the final bit index. For every tensor network construction,
the key design principle is to ensure the correct flow of index
information from the initial MPS [S(· · · | · · · ) on the rhs] to
the term prefactors inside the MPO to the final MPS indices
[S(· · · | · · · ) on the lhs]. In the TN in Fig. 2(a) the connections
and junction ensure that the same indices of the initial tensor
on the rhs of Eq. (2), the energy tensor εkR

j
and the tensor on

the lhs are connected.
Constructing the TN for the Coulomb term −2i

∑
i< jq

I
kR

j kR
i q

λR
j λ

R
i

S(· · · | · · · {kR
j − Cλ

λR
j
q} · · · {kR

i + q} · · · ) is more in-

volved and will require five MPOs, which are subsequently
compressed to a single MPO. q has positive and negative
components, and negative numbers are encoded using two’s
complement representation for binary negative integers [60],
which matches nicely the periodic properties of the BZ. (A
negative q is represented by a positive q + G inside the
BZ with suitable G.) For the correct flow of information
the TN has to connect the bit indices for kR

i , kR
j , kR

i − q,
kR

j + Cλ
λR

j
q, and q with Cλ

λR
j
= ±1. Tensors representing binary

logic gates achieve this: A set of full adders [60] calculates
kR

i − q and kR
j + Cλ

λR
j
q from kR

i , kR
j , and q. For the case

Cλ
λR

j
= −1 additional NOT circuits convert q to a negative input

in two’s complement representation for the full adder. The
corresponding TN is shown in Fig. 2(c); the application of Vq

and calculation of the indices is handled by the MPO in the
middle of the set of five MPOs. Here, the full adders combine
the k indices and the q indices of Vq for every bit of the binary
representation. In addition, carry bits connect the full adder for

different bit digits. In Fig. 2(c) the prefactor F
kR

j kR
i

q is handled
by the four outer MPOs. To include it, the MPO from Fig. 2
is combined with two MPOs representing ck2+qn2 , ck1−C

λ2
λ1

qn1

before its application and two MPOs representing c∗
k1n1

, c∗
k2n2

after its application. (The Supplemental Material [61] includes
a more extensive discussion.)

We use the ITensor C++ library (patched version 2.1.0) for
the calculation of all tensor operations [62]. The rhs of Eq. (2)
is calculated through the TN brought in the form of successive
applied MPOs, which are compressed using a fitApply algo-
rithm. In order to solve Eq. (2) and to determine the respective
exciton and biexciton eigenenergies and wave functions, we
first use a density matrix renormalization group (DMRG) al-
gorithm [58,63] which is capable of obtaining the eigenvalues
and eigenvectors (MPS) of a MPO. We use a modified DMRG
algorithm based on the ITensor DMRG [62] implementation
for adding multiple MPOs and for the calculation of higher-
energy eigenvectors. For the DMRG algorithm the successive
applied set of MPOs (cf. Fig. 2) has to be merged into a single
MPO, however, the resulting MPO requires a very high link
dimension and we could not achieve converged results. Using
imaginary time propagation [57] for the final propagation
resulted in converged results, since here a merger of the sub-
sequent applied MPOs is not necessary. (See the convergence
analysis in the Supplemental Material [61]) To obtain the
eigenstates, Eq. (2) is solved for the exciton S(kL

1 kL
2 |) and

FIG. 3. Selected exciton and biexciton wave functions in BZ:
(a) Bright A exciton with parallel spin up and (b) dark 3d exciton
with antiparallel spin localized at the K valley. (c), (e), and (g) Bright
biexciton formed from two bright A excitons and (d), (f), and (h) dark
biexciton formed from two dark 3d excitons. The plotted variable
is depicted in the corner. (g) and (h) are plotted using a logarithmic
color scale. (a), (c), (e), and (g) are converged results using imaginary
time propagation and while (b), (d), (f), and (h) use DMRG and show
the potential of the method without achieving convergence.

biexciton S(kL
1 kL

2 kL
3 kL

4 |) coherences/wave function on a full
1024 × 1024 grid for every k vector inside the full BZ. To ad-
dress optical excitability states, we focus on (bi)exciton states
with zero overall momentum 〈a†

kvσ1
a†

kcσ2
〉 = 〈h†

kσ1
e†

kσ2
〉 and

〈a†
kvσ1

a†
k+qcσ2

a†
k′+qvσ3

a†
k′cσ4

〉 = 〈h†
kσ1

e†
k+qσ2

h†
k′+qσ3

e†
k′σ4

〉, and the

TN constructing this coherence from S(kL
1 kL

2 kL
3 kL

4 |) is given in
the Supplemental Material.

We obtain the bound, bright A exciton at 1.769 eV com-
pared to a band gap of 2.124 eV at the K point, reproduc-
ing Ref. [54], whose band structure [53,54] is used in the
model system, here. As an example from the exciton states,
Fig. 3(a) shows the A exciton wave function (1.769 eV) for
a parallel spin-up configuration localized at the K valley.
The biexciton coherence with zero center-of-mass momentum
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〈a†
kvσ1

a†
k+qcσ2

a†
k′+qvσ3

a†
k′cσ4

〉 depends on the three momenta k,

k′, and q. To characterize the six-dimensional wave function,
we sum over two momenta (e.g., k′ and q) while plotting
over the third (e.g., over k) in the BZ. Figures 3(c)–3(h)
show two example biexciton states: Two A excitons, one
electron-hole pair with parallel spin up located at the K valley
[Fig. 3(c)] and another with parallel spin down at the K ′ valley
[Fig. 3(e)], constitute a bright biexciton [note q ≈ 0, Fig. 3(g)]
with an energy of 3.518 eV (20 meV binding energy; cf.
Refs. [47,51]).

Furthermore, in principle, the approach allows also to
access higher-energy bound biexciton states (bright or dark).
Figures 3(d), 3(f), and 3(h) show as an example a biexci-
ton composed from two dark 3d excitons with antiparallel
electron-hole spin calculated using DMRG [see the wave
function depicted in Fig. 3(b); cf. Ref. [64]]. However, using
DMRG, the ordering of calculated higher excited states was
highly parameter dependent and we could not achieve con-
vergence, showing the need for modified DMRG types for ex-
cited states [65–67] and successive applied MPOs. Besides the
example exciton and biexciton states, the framework allows

us to determine many higher-energy bound electron-holes
states, in principle, also for other correlated electron and hole
quasiparticles such as trions.

In conclusion, the combination of tensor networks, cluster
expansion, and logic gates on the Brillouin zone allows us to
easily access bound electron-hole quasiparticles with little nu-
merical cost and high precision. We demonstrated our method
on the example of excitonic and biexcitonic states in MoS2

on a silicone substrate. The exciton energies fit well with the
results presented in Ref. [54], whose band structure is used in
our model. The biexciton binding energy is in the same order
of magnitude as reported in the literature [47,51]. Future stud-
ies in this framework will provide systematic investigations of
the bound electron-hole complexes and extend the numerical
technique to quantum dynamics.
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