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Suppressed energy transport in the strongly disordered Hubbard chain

Maciej Kozarzewski,1 Marcin Mierzejewski,2 and Peter Prelovšek3,4

1Institute of Physics, University of Silesia, 40-007 Katowice, Poland
2Department of Theoretical Physics, Faculty of Fundamental Problems of Technology,

Wrocław University of Science and Technology, 50-370 Wrocław, Poland
3J. Stefan Institute, SI-1000 Ljubljana, Slovenia

4Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

(Received 26 April 2019; published 28 June 2019)

We study the dynamics of the energy fluctuations in the Hubbard chain with strong potential disorder that
preserves the SU(2) spin symmetry. Within the effective spin-only model that correctly captures relaxation in
the situation of localized charges, we show that the decay of local energy correlations is suppressed and is at
least marginally nonergodic, being qualitatively different from the subdiffusive dynamics and relaxation of local
spins. The anomalous behavior can be traced back to the singular distribution of effective exchange couplings.
Numerical results for the dynamical thermal conductivity within the full Hubbard model confirm that the energy
(thermal) transport is closer to the charge dynamics, which appears to be also marginally localized in a wide
parameter range.
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Introduction. The dynamics of strongly disordered many-
body systems has recently attracted significant attention. The
main interest focused on the phenomenon of many–body
localization (MBL) [1,2] which has been supported by a
vast amount of numerical investigations, predominantly of
disordered one-dimensional (1D) model of interacting spin-
less fermions or equivalent XXZ spin chains with random
magnetic field. In particular, it has been recognized that such
MBL systems exhibit several unique properties: logarithmic
growth of the entanglement entropy [3–8], absence of ther-
malization [7–27], vanishing steady transport, [28–35] and
suppressed heating effects in driven systems [34,36–41]. It
has also been shown that these properties originate from
the presence of local integrals of motion [10,21,22,42–47].
While the above evidence of MBL holds for systems, where
the disorder breaks the SU(2) symmetry, the situation is far
more complex if the latter symmetry is preserved despite the
presence of the disorder [48–54]. It is the case for the 1D
Hubbard chain with spin-1/2 fermions where disorder enters
only via the charge potential. Such model is directly relevant
also for the experiments on cold-fermion lattices [12,55–57].
Then, the localization may occur only in the charge subsystem
[47,52,58,59,59] (partial MBL) unless one introduces an addi-
tional mechanism that breaks the SU(2) symmetry [47,60,61].
On the other hand, the delocalized spins in the SU(2) invariant
case exhibit anomalous subdiffusive transport [52,62].

While the theoretical as well as experimental investigation
of the disordered Hubbard chain focused on the charge (den-
sity) and spin dynamics, the relevant question on the character
of energy (thermal) transport, responsible for the system
thermalization, has not been addressed. In the following we
show that the spatial energy fluctuations are, in analogy with
charge, almost localized and decay not faster than log(t ).
At the same time, the spatial spin fluctuations undergo the
subdiffusive relaxation, ∼tα with α > 0 being large enough to

clearly distinguish between the power-law and the logarithmic
dependencies. We numerically show and also qualitatively
explain this result within an effective spin-only model [62],
where the charge localization is introduced as an assumption.
However, we confirm the suppression of the energy (thermal)
transport also via the direct numerical studies of the dynamical
energy (thermal) conductivity within the full 1D disordered
Hubbard chain. This property appears to be consistent with
the novel nonergodic phases recently reported in Refs. [54]
and partially also in [63].

Disordered Hubbard chain and the effective spin model.
We study dynamics and transport properties of the disordered
Hubbard chain,

H = −th
∑

iσ

(c†
i+1σ ciσ + H.c.) +

∑
i

εini

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

where c†
i+1σ creates a fermion with spin σ = ± 1

2 , ni = ni↑ +
ni↓, and niσ = c†

iσ ciσ . The chain consists of L sites and N
electrons, where we fix the total spin projection Sz

tot = 0
and set the hopping integral th = 1. The charge potential is
chosen as a random variable with a uniform distribution,
εi ∈ [−W,W ]. In the present work we focus on the energy
(thermal) dynamics and transport, comparing it with subdiffu-
sive spin dynamics as established previously in Ref. [62]. In
analogy to Refs. [52,62], we first assume that charge is frozen
and the energy dynamics is possible only via delocalized spin
fluctuations within the effective spin-only model. The stronger
the disorder is, the more justified is this simplification. Later
on, we relax this assumption and discuss numerical results
also for the full Hubbard model.
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Let us first consider the effective spin model. We recall
the main steps of its derivation and refer to Ref. [62] for
more details. We use the single-particle eigenstates of the
noninteracting model (Anderson states), |a〉, as the single-
particle basis. These states are sorted according to the maxima
of the corresponding wave functions, |〈i|a〉|, in such a way that
the Anderson states |a〉 and |a + 1〉 are the nearest neighbors
in the real space. Then, we rewrite the Coulomb repulsion
U in Eq. (1) in the latter basis and neglect terms which
alter the occupations of the Anderson states, i.e., we assume
na↑ + na↓ = const. The remaining terms become the effective
spin model [62],

H = −2U
∑

a

J̃a �Sa · �Sa+1 =
∑

a

ha, (2)

where ha is the energy density operator and the summation is
carried out only over singly occupied Anderson states. The
number of such states equals Ñ 	 N − N2/(2L) and Ñ is
the effective length of the spin chain which determines the
complexity of numerical calculations. Here, we use standard
spin operators Sz

a = 1
2 (na↑ − na↓), S+

a = c†
a↑ca↓, S−

a = c†
a↓ca↑,

where c†
aσ denotes the fermionic creation operator in the

Anderson state |a〉 and with spin σ = ±1/2. We note that the
effective exchange interaction is ferromagnetic, −2UJ̃a < 0,
where 0 � J̃a � 1 has been shown [62] to be a random
variable with the probability distribution,

fJ̃ (J̃ ) = λ̃J̃ λ̃−1, λ̃ = λ/d. (3)

Here, λ is the Anderson localization length within the non-
interacting system, i.e., for the Hamiltonian (1) with U =
0, and d is the average real-space distance between singly
occupied Anderson states d = L/Ñ . For strong disorder λ <

d and the distribution function is singular at J̃ = 0, whereby
the latter singularity has been shown to be responsible for
the anomalous (subdiffusive) spin dynamics and transport in
the disordered Hubbard model [62]. The very same model,
Eqs. (2) and (3), has been recently studied also in Ref. [54]
for its nonergodic dynamics.

Results within the effective model. We discuss relaxation of
spatial fluctuations for spin and energy density. For this sake,
we calculate correlation functions

CS (t ) =
〈〈

Sz
a(t )Sz

a

〉 − 〈
Sz

a

〉2〈
Sz

aSz
a

〉 − 〈
Sz

a

〉2
〉

dis,a

, (4)

Ch(t ) =
〈 〈ha(t )ha〉 − 〈ha〉2

〈haha〉 − 〈ha〉2

〉
dis,a

, (5)

where 〈· · · 〉 = Tr(· · · )/Tr(1) denotes averaging over infinite-
temperature canonical ensemble. 〈· · · 〉dis,a denotes averaging
over Ñ Anderson states (i.e., positions in the real space) and
Ns > 1 realizations of disorder. Both functions are by defi-
nition normalized so that CS,h(t = 0) = 1. We focus here on
the asymptotic time dependencies, t 
 1, of both correlation
functions. We use two complementary numerical methods to
verify the consistency of results. Namely, for Ñ ∼ 18 and
times t � 103 we use a time-dependent Lanczos method [64],
whereas arbitrary long times but smaller systems L̃ � 14 are
studied via the exact diagonalization (ED). Within the ED
method, the averaging 〈· · · 〉 is carried out over all eigenstates
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FIG. 1. Results from the Lanczos propagation method averaged
over Ns = 2000 realizations of disorder. (a) Spin density CS (t ) and
energy density Ch(t ) correlation functions for λ̃ = 0.5 and Ñ = 18.
Dashed line shows analytical prediction for asymptotic dynamics,
CS (t ) ∼ t−λ̃/(1+λ̃). (b) and (c) Ch(t ) for λ̃ = 0.3 and λ̃ = 1.0, respec-
tively. (d) Finite-size scaling of Ch(tm ) for the longest accessible
time, 2Utm = 103.

of Hamiltonian when 〈Sz
a〉 = 〈ha〉 = 0. However, for the Lanc-

zos method, it is replaced by the averaging over a few random
initial wave functions. These approaches give quantitatively
consistent results for system sizes which are accessible to both
methods.

Figure 1(a) shows numerical results of the Lanczos time
propagation for CS (t ) and Ch(t ), together with the ana-
lytical prediction for asymptotic dependence, CS (t 
 1) ∼
t−λ̃/(1+λ̃), derived in Ref. [62] within the weak-link (Griffiths)
scenario [30,57,65,66]. While CS (t ) indeed decays subdiffu-
sively, the relaxation of Ch(t ) is significantly suppressed. In
fact, it is quite delicate to establish whether the energy stiff-
ness Ch

0 = Ch(t → ∞) eventually remains finite or decays to
zero. To clarify this question, we plot in Figs. 1(b) and 1(c)
Ch(t ) for various Ñ , but for two different disorders which
correspond to λ̃ = 0.3 and λ̃ = 1.0, respectively. Here, λ̃ =
0.3 leads via Eq. (3) to a singular distribution of J̃ . It is evident
that in this case the stiffness Ch

0 > 0 is not a finite-size effect
and its nonzero value is essentially Ñ independent. On the
other hand, results in Fig. 1(c) for λ̃ = 1, which correspond to
a uniform (nonsingular) distribution of J̃ , reveal evident finite-
size dependence. This indicates that in the thermodynamic
limit, Ñ → ∞, we are dealing with an ergodic behavior and
vanishing energy stiffness Ch

0 = 0. In order to get a further
insight into the finite-size effects, we plot in Fig. 1(d) Ch(tm)
obtained for the longest accessible times 2Utm = 103 vs 1/Ñ
for different λ̃. Again, Ch(tm) vs 1/Ñ clearly decays to zero
for a nonsingular distribution of J (λ̃ = 1), while results for
smaller λ̃ � 0.5 are more consistent with finite Ch

0 > 0 and

241113-2



SUPPRESSED ENERGY TRANSPORT IN THE STRONGLY … PHYSICAL REVIEW B 99, 241113(R) (2019)

100 101 102 103 104

2Ut

0.2

0.4

0.6

0.8

1.0

Ch(t)

(a)

λ̃ = 0.5

λ̃ = 1
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FIG. 2. Results from the ED method averaged over Ns � 104

realizations of disorder. (a) The same as in Fig. 1(c) for λ̃ = 0.5
and λ̃ = 1 but for longer times. (b) Finite-size scaling of the en-
ergy stiffness Ch

0 vs 1/Ñ . (c) and (d) Diagonal matrix elements,
sn = 〈n|�Sa · �Sa+1|n〉 vs eigenenergy En obtained for a bond with the
largest Ja for Ñ = 14 and two particular realizations of disorder
corresponding to the same λ̃ = 0.5.

the localization of the energy fluctuations. Still, it should be
acknowledged that data in Fig. 1(d) are obtained for long
but finite time and are still scattered due to sample-to-sample
fluctuations, and therefore it is difficult to carry out a clear-cut
finite-size scaling.

In order to investigate further the energy stiffness Ch
0 , we

have carried out also ED calculations which, in principle,
allow one to reach arbitrarily long times t → ∞, relating
Ch

0 to the diagonal matrix elements within the eigenfunction
basis. Results have been averaged over Ns = 105, 3 × 104 and
104 realizations of disorder for Ñ = 10, 12, 14, respectively.
Figure 2(a) confirms for both presented λ̃ = 0.5 and 1 that
Ch(t ) shows very slow logarithmic decay and eventually
saturates for t > ts. However, ts increases with the system
size, hence the saturation might be a finite-size effect. In
order to test the latter possibility, we have carried out the
finite-size analysis of the stiffness Ch

0 , shown in Fig. 2(b).
The negative curvature of Ch

0 vs 1/Ñ suggests that in the limit
Ñ → ∞ we may even have Ch

0 = 0 for arbitrary λ̃ > 0. While
this is quite clear for λ̃ ∼ 1, in order to observe complete
relaxation of Ch

0 → 0 for λ̃  1 one needs extremely large
system sizes which are far beyond the limitations of our
numerical methods. This observation is fully consistent with
conclusions in Ref. [54].

At first sight, it is quite surprising that spin and energy
dynamics (i.e., subdiffusive vs nonergodic, respectively) are
qualitatively different at strong disorder. In order to explain
this difference in relaxations we study the diagonal ma-
trix elements of operators which enter the energy density,

i.e., sn,a = 〈n|�Sa · �Sa+1|n〉. Similar quantity has recently been
studied in Ref. [54]. For a nondegenerate energy spectrum,
analogous matrix elements for local spin 〈n|Sz

a|n〉 = 0 vanish
due to spin-rotation SU(2) symmetry, hence CS (t → ∞) = 0
precluding finite local spin stiffness and the spin localiza-
tion. However, the latter argument does not apply to energy
fluctuations. Figures 2(c) and 2(d) show typical structures
of sn,a vs eigenenergies En, obtained for the links with the
largest exchange interactions J̃a and for two different disorder
configurations corresponding to the same λ̃ = 0.5. One may
observe that in both realizations in Figs. 2(c) and 2(d) sn,a

is essentially fluctuating between two values, either close to
−3/4 (spin singlet) or 1/4 (spin triplet), which both just
represent the limiting values and are both blocking locally the
energy transport. It explains the saturation of Ch(t → ∞), and
consequently Ch

0 > 0, at least for finite systems.
Conductivities within full Hubbard model. The effective

model has been derived under the assumption that charge
degrees of freedom are frozen. While such an assumption
is better justified for the studies of spin dynamics (which is
relatively fast), the results and conclusions on the energy fluc-
tuations and the energy (thermal) transport should be tested
also for the full starting Hubbard model, Eq. (1). For this sake
we study numerically dynamical transport response functions
within the half-filled (N = L) Hubbard model, as relevant
at high temperature (β = 1/T → 0). In the latter limit, the
linear-response charge, spin, and thermal (energy) dynamical
conductivities are given, respectively, by σ c,S (ω) = βσ̃ c,S (ω)
and κ (ω) = β2σ̃ t (ω), where

σ̃ c,S,t (ω) = 1

L
Re

∫ ∞

0
dt eiωt 〈Ic,S,t (t )Ic,S,t 〉, (6)

are dynamical quantities actually calculated and remaining
finite even in the limit β → 0. Here, the corresponding current
operators following from the model (1) are given by

Ic =
∑
j,σ

I jσ , IS =
∑
j,σ

σI jσ , (7)

It = −
∑
j,σ

(ic†
j+1σ c j−1σ + H.c.)

+
∑
j,σ

I jσ

(
ε j + ε j+1

2
+ U

nlσ̄ + nl+1σ̄ − 1

2

)
, (8)

and I jσ = i(c†
j+1σ c j,σ − c†

jσ c j+1σ ).
For the numerical calculations of σ̃ c,S,t (ω) we employ

the microcanonical Lanczos method (MCLM) [67,68] on
the Hubbard chains of maximum length L = 14. The high-
frequency resolution is achieved by a large number of Lanczos
steps, NL = 3000, allowing for δω ∝ L/NL ∼ 0.003, while
the sample averaging is performed over Ns ∼ 30–100 disorder
realizations. In Fig. 3 we present some characteristic results
for dynamical conductivities, σ̄ c,S,t (ω), for more transpar-
ent comparison normalized by their sum rules, i.e., σ̄ (ω) =
σ̃ (ω)/

∫
dω′σ̃ (ω′).

First, in Figs. 3(a) and 3(b) we present the comparison
of results for σ̄ S (ω) and σ̄ t (ω), as obtained for different
sizes L = 10, 12, 14. Apart from the high-ω regime, where
spectra are strongly sample dependent and need substantial
sample averaging, Ns 
 1, low-ω regime is very reproducible
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FIG. 3. Normalized charge, spin, and thermal dynamical conduc-
tivities, as obtained via the numerical MCLM in different Hubbard
chains with large disorder. (a) and (b) show the finite-size effects
(comparison of results for L = 10–14 systems, of σ̄ S (ω) and σ̄ t (ω),
respectively, for fixed disorder W = 8 and U = 2. (c) and (d) show
the comparison of σ̄ c,S,t (ω) for two different parameter sets, obtained
for the largest L = 14.

even at modest Ns and quite L independent. Results for
σ̄ c,S,t (ω), obtained at largest L = 14, are then presented in
Figs. 3(c) and 3(d) for two different sets of parameters,
U = 2,W = 8 and U = 4,W = 12, both corresponding to
large disorder. The qualitative difference between considered
dynamical conductivities at low ω  1 is evident. While the
spin transport follows the subdiffusive behavior, σ̄ S (ω) ∝ ωα

with α < 1, the charge as well as the energy follow nearly
linear variation σ̄ c(ω) ∝ ωγ , σ̄ t (ω) ∝ ωδ with γ ∼ δ ∼ 1. We
note that δ ∼ 1 is just the marginal MBL case which is
consistent with the log(t ) decay of the local energy correlation
function, Ch(t ), found previously in the effective spin model.
We have carried out calculations (not shown) also for stronger
disorder W = 16, 20 and for interactions U = 2, 4. In the low-
frequency regime, ω � 0.5, all the dynamical conductivities

are qualitatively very similar to the results shown in Fig. 3.
In particular, we have found α < 1 and γ ∼ 1 for all the
considered cases. While the spin dynamics becomes slower
for stronger disorder, we have not found any signature of spin
localization. Moreover, we should also stress the observation
that we obtain the charge exponent γ ∼ 1 instead of γ > 1
required for localization, i.e., the charge appears to be only
marginally localized.

Conclusions. It is by now well established for the 1D
Hubbard model with (charge) potential disorder that there
cannot be the regime of full MBL. This result originates from
the remaining SU(2) spin symmetry and leads to qualitatively
different dynamics of charge and spin degrees of freedom,
well documented in the previous works [52,54,62] as well as
in the present study. It follows from the present investigations
that the thermal (energy) transport responsible for the thermal
equilibration, qualitatively follows that of the charge (particle
density). Namely, the spatial energy fluctuations Ch(t ) as cal-
culated within the effective spin model relax nearly logarith-
mically in time and for large disorder, e.g., effective λ̃ < 0.5,
seem to result in a saturation and a finite local energy stiffness
Ch

0 > 0. However, we cannot exclude the possibility that in
very large system L → ∞ and after extremely long evolution,
the energy equilibrates, i.e., Ch(t → ∞) → 0, which is still in
sharp contrast with the relatively fast relaxation of CS (t ). The
origin of qualitative different spin and energy dynamics can
be understood in the framework of the effective spin model,
as emerging from three spin processes involved in the energy
spread being essentially blocked due to singular distribution
of the effective exchange interaction J̃a. The numerical study
of the full Hubbard model confirms that the low-ω dynami-
cal thermal conductivity σ̄ t (ω) ∝ ωδ, δ ∼ 1 indicates on the
marginally localized energy fluctuations. We have also found
that qualitatively σ̄ t (ω) ∝ σ̄ c(ω), i.e., the spin contribution to
the energy transport is as well suppressed as in the effective
spin model. In contrast to the latter model, the results pre-
sented for the Hubbard model indicate that σ̄ c(ω) ∝ ωδ, δ ∼
1, meaning that the charge remains only marginally localized
and nonergodic, even at largest disorders. This might soften
some conclusion on the strict charge localization in numerical
and experimental studies; still the effect can be distinguished
only at extremely long times and very large systems.
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