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Noise correlations in time- and angle-resolved photoemission spectroscopy
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In time-resolved photoemission experiments, more than one electron can be emitted from the solid by
a single ultrashort pulse. We theoretically demonstrate how correlations between the momenta of outgoing
electrons relate to time-dependent two-particle correlations in the solid. This can extend the scope of time- and
angle-resolved photoemission spectroscopy to probe superconducting and charge density fluctuations in systems
without long-range order, and to reveal their dynamics independent of the electronic gap and thus unrestricted
by the energy-time uncertainty. The proposal is illustrated for superconductivity in a BCS model. An impulsive
perturbation can quench the gap on ultrafast timescales, while nonequilibrium pairing correlations persist much
longer, even when electron-electron scattering beyond mean-field theory is taken into account. There is thus a
clear distinction between a dephasing of the Cooper pairs and the thermalization into the normal state. While
a measurement of the gap would be blind to such pairing correlations, they can be revealed by the angular
correlations in photoemission.
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Angle-resolved photoemission spectroscopy (ARPES) is
a powerful technique to probe the electronic structure in
solids. With short laser pulses in a pump-probe setup one
can moreover achieve femtosecond time resolution, which has
opened a unique path to explore the light-induced dynamics
of collective phases in solids on ultrashort timescales [1].
Time-resolved ARPES (tr-ARPES) has been used to study
ultrafast quasiparticle dynamics [2,3], laser manipulation of
electronic orders [4–6], photoinduced Mott metal-insulator
transitions [7–9], and Floquet Bloch bands [10]. An intrigu-
ing aim of the ultrafast manipulation of condensed matter
phases is to control orders such as magnetism, charge-density
waves, or superconductivity. Although the corresponding or-
der parameters are revealed in the electronic spectra, e.g.,
through the opening of a gap, some fundamental challenges
remain to probe their dynamics using ARPES: (i) Spectro-
scopic probes are limited by the energy-time uncertainty,
while the relevant dynamical processes in the destruction or
formation of an order parameter φ (such as the supercon-
ducting condensate density) may be faster than the inverse
of the gap � which identifies φ in the electronic spectrum
[11] or happen on the same scale, as for the amplitude
mode in superconductors [12–16]. (ii) Collective orders can
exhibit strong fluctuations on the nanoscopic scale without
forming a long-range order, and furthermore, the nonequi-
librium dynamics of such fluctuations can proceed entirely
different from the single-particle dynamics. For example,
fluctuations of the atomic positions at a light-induced lattice
change evolve nontrivially different from the mean [17], and
one can distinguish ultrafast demagnetization via a reduction
of the exchange splitting (which is reflected in the single-
particle bands) versus a dephasing of spin waves [18]. Re-
cent theoretical proposals regard light-induced (critical) dy-
namics of pairing or antiferromagnetic fluctuations [19–21],
or nonthermal dynamics of stripe order in cuprates [22].
A measurement of fluctuations of electronic orders is thus

indispensable for the understanding of the dynamics in com-
plex materials.

Modern time-of-flight detectors for ARPES image outgo-
ing electrons with different momenta onto different pixels of
a detector, and thus allow one to simultaneously record two
electrons which are emitted from a single ultrashort probe
pulse into different angular directions. In this Rapid Com-
munication, we propose that information on time-dependent
two-particle correlations in the solid can be revealed from
the correlation between the emission into different directions,
i.e., the shot-to-shot noise correlation on the detector. The
intriguing potential in measuring noise has been demonstrated
in various other settings. For example, noise correlation in
time-of-flight measurements of the momentum distribution in
ultracold gases [23,24] can distinguish different phases of the
initially trapped quantum state, and the shot-to-shot variance
of the reflectivity in optical pump-probe experiments has been
used to detect squeezing of vibrational modes in a quartz
crystal [25], and to measure the current noise in photoexcited
bismuth to probe nonthermal electrons [26].

Two-particle correlations in photoemission have been used
previously to study electronic interactions in equilibrium
[27–29]. The process discussed here is an emission of two
electrons by two photons from the same ultrashort pulse
(different from a double photoemission where one photon
leads to the emission of two electrons due to secondary pro-
cesses, and different from two-photon photoemission, where
one electron is emitted by the absorption of two photons
[30–32]), and thus allows a theoretical interpretation along
the same lines as the conventional theory for time-resolved
photoemission spectroscopy [33–35]. We start from a Hamil-
tonian H = Hs + He + H ′, where Hs is the Hamiltonian of the
solid, and He = ∑

pσ Ep f †
pσ fpσ describes the emitted electrons

with asymptotic momentum p and spin σ (Ep = p2/2m + W ,
with the work function W ). The Hamiltonian Hs can be
time dependent to incorporate a nonperturbative excitation,
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which also determines a well-defined time zero t = 0. The
excitation could be a pump pulse centered around t = 0, or
any other protocol which creates an excited state at t = 0.
(Pump pulses which overlap with the probe could be included
along the same lines, as long as photoemission due to the
pump is neglected. For simplicity, we restrict the discussion
to nonoverlapping pump and probe, such that the momentum
of the outgoing states is a gauge-invariant observable [35].)
Electron emission is due to the coupling term

H ′ =
∑

k,p,σ,σ ′
S(t )∗ei�t Mσ,σ ′

k,p f †
pσ ′ckσ

+ H.c., (1)

where Mσ,σ ′
k,p ≡ δσ,σ ′Mk,p are matrix elements (for notational

simplicity we restrict the solid to one band with electron
operators ckσ ), and S(t ) is the temporal envelope of the probe
with frequency � centered around t > 0 after the excitation.
The Hamiltonian H has built in two basic assumptions which
are commonly made in the theory of ARPES: (i) There is
no interaction between electrons in outgoing states ( fp) and
electrons in the solid (ck), manifesting the sudden approxima-
tion. Furthermore, (ii), we neglect interactions between out-
going electron and space-charge effects, which is controlled
by the excitation density. Finally, all illustrating calculations
below are based on simple matrix elements Mk,p = Mδk,p.
This corresponds to full momentum conservation, as in two-
dimensional materials where only the momentum parallel to
the surface matters. Matrix element effects could easily be
reinstated for an interpretation of real experiments.

A time-resolved ARPES measurement records the to-
tal population I (1)

pσ = 〈n f
pσ 〉t=∞ in an outgoing state (n f

pσ =
f †

pσ fpσ ), which is accumulated over the entire probe pulse
duration (until t = ∞). Because two electrons can be emit-
ted by two photons from the same pulse, we can measure
the correlations �Ipσ,p′σ ′ = I (2)

pσ,p′σ ′ − I (1)
pσ I (1)

p′σ ′ at p �= p′, with

I (2)
pσ,p′σ ′ = 〈n f

pσ n f
p′σ ′ 〉t=∞, corresponding to the statistical cor-

relations of photoemission events from a number of probe
pulses. Note that the response time of the detector only has
to be fast enough to distinguish the events from separate
probe pulses (which is possible by today’s detectors), but not
the arrival time difference of photoelectrons from the same
pulse. For a weak probe pulse, all signals are obtained using
the leading-order time-dependent perturbation theory in the
coupling H ′, which is second order for I (1) and fourth order for
I (2). We assume that at t = −∞ the outgoing states are empty,
and the solid is described by its initial density matrix ρs

0.
Switching to interaction representation in H ′ yields I (2)

pσ,p′σ ′ =
〈S†n f

pσ n f
p′σ ′S〉0, where S = Tt e−i

∫ +∞
−∞ dt̄H ′(t̄ ) is the S matrix,

and 〈· · · 〉0 the initial-state expectation value. Because the
initial state does not contain outgoing electrons, the leading-
order expansion of S and S† in terms of H ′ is second order
and must contain both f †

pσ and f †
p′σ ′ (both fpσ and fp′σ ′) in S

(S†), respectively. After the expansion, the expectation value
factorizes for the solid and the outgoing states, so that the
result can be expressed in terms of one- and two-point Green’s
functions of the solid, G(1, 1′) = 〈c(1)†c(1′)〉0 and

G(1, 2, 2′, 1′) =〈Tt̄ [c(1)†c(2)†]Tt [c(2′)c(1′)]〉0. (2)

Here, 1 ≡ (k1, σ1, t1), etc., is short for space-time variables,
and Tt (Tt̄ ) is the (anti)-time ordering operator for fermions.
Finally all terms can be combined to [36]

I (1)
pσ =

∫
d1d1′M p,σ

1,1′ G(1, 1′), (3)

I (2)
pσ,p′σ ′ =

∫
d1d1′d2d2′ M p,σ

1,1′ M
p′,σ ′
2,2′ G(1, 2, 2′, 1′), (4)

where
∫

d1 = ∑
k1,σ1

∫ ∞
−∞ dt1, and

M p,σ
1,1′ = Mσ1,σ

k1,p

(
M

σ ′
1,σ

k′
1,p

)∗
S(t1)S(t ′

1)∗ei(Ep−�)(t1−t ′
1 ). (5)

The expression for I (1)
pσ is the conventional expression for

time-resolved ARPES [33,34], which can be understood as
a time-dependent filter M(t, t ′) applied to the single-particle
propagator [37]. Equation (4) provides an analogous view on
two-particle quantities.

To illustrate the use of noise correlation in time-resolved
ARPES, one can consider an ideal ultrashort pulse S(t ) =
Aδ(t − t0). In this case, Eqs. (3) and (4) yield I (1)

pσ =
|AM|2〈nc

pσ 〉t=t0 and

�I (2)
pσ,p′σ ′ = |AM|4(〈nc

pσ nc
p′σ ′

〉 − 〈
nc

pσ

〉 〈
nc

p′σ ′
〉)

t=t0
, (6)

where nc
pσ = c†

pσ cpσ is the momentum occupation, and 〈O〉t

is the expectation value of an operator in the solid at time
t . The angular correlations thus directly yield the momen-
tum correlations in the solid, which can provide unique
information on the state. In the BCS wave function, e.g.,
〈nc

k↑nc
−k↓〉 − 〈nc

k↑〉〈nc
−k↓〉 = |〈ck↑c−k↓〉|2 is a direct measure of

pairing correlations, while 〈nc
kσ 〉 remains smooth throughout

the superconducting transition.
By looking at different pairs k, k′ (k �= k′) in �Ik,k′ , dif-

ferent symmetry broken phases can be characterized (charge-
density waves, superconductivity, etc.). In the following we
provide an illustrative example for using the noise correlations
in the study of superconductivity. We start the discussion from
the Hubbard model

H = −J
∑

〈i, j〉,σ
c†

iσ c jσ + U/2
∑
i,σ

niσ ni−σ , (7)

which is the paradigmatic Hamiltonian to describe the physics
of interacting electrons. Here, J is a hopping between nearest-
neighbor sites on a lattice, and U is an on-site interaction.
We choose an attractive interaction U < 0, which leads to
s-wave superconductivity. To understand the rich nonequilib-
rium dynamics in superconductors, it is illustrative to reca-
pitulate first the time-dependent mean-field solution. By de-
coupling the interaction term in the Cooper channel, the BCS
Hamiltonian HBCS = ∑

k ψ̂
†
k ĥkψ̂k is obtained. Here, ψ̂k =

(ck↑, c†
−k↓)

T
is the Nambu spinor and ĥk = σ̂zεk + σ̂x�

′ −
σ̂y�

′′, with the electron dispersion εk and the gap � = �′ +
i�′′ = U

∑
k〈c−k↓ck↑〉. The BCS Hamiltonian can be written

in terms of the Anderson pseudospins �sk = 1
2 ψ̂

†
k �σψ̂k [38],

which follow the equation of motion �̇sk = �Bk × �sk with the
pseudomagnetic field �Bk = (2�′,−2�′′, 2εk ). This defines an
integrable set of coupled linear differential equations with an
infinite number of conserved quantities [13,39,40]. A simple
protocol such as a sudden quench or ramp of the interaction
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can lead to collective amplitude modes or an ultrafast vanish-
ing of the gap [12,13]. It must be emphasized that the mean-
field dynamics is highly nonthermal, even after a melting of
the gap. For example, after a quench of the interaction to U =
0 in HBCS, the gap exponentially decays as �(t ) ∼ e−2t�(0),
while the Cooper-pair correlations Fk = |〈c−k↓ck↑〉| at each k
remain nonzero, because the Anderson pseudospins �sk simply
precess at different frequencies, such that the global order
only dephases [39]. In contrast, thermalization to a normal
state above Tc (e.g., due to electron-electron scattering) would
imply Fk = 0.

In the following we demonstrate that thermalization and
dephasing of superconducting order can be distinct even when
realistic electron-electron scattering beyond mean-field theory
is taken into account, and that the noise correlations provide a
unique measure to distinguish them experimentally. We exam-
ine a simple quench or ramp of the interaction, which initiates
dynamics representative for a generic impulsive excitation:
The final value of U determines the electron-electron scatter-
ing and the pairing interaction during the dynamics, while the
quench or ramp amplitude mainly sets the excitation density.
To incorporate electron-electron scattering beyond mean-field
theory, the Hubbard model is solved using nonequilibrium
dynamical mean-field theory (DMFT) and an impurity solver
based on iterated perturbation theory [41]. We use a semiel-
liptic density of states D(ε), where the half bandwidth W =
2 sets the unit of energy and time (h̄ = 1). DMFT gives
access to all normal and anomalous single-particle Green’s
function in the lattice, in particular the condensate density φ =∑

k〈c−k↓ck↑〉 and the individual Fk . Momentum-dependent
quantities gk are represented as functions of the band energy
εk ∈ (−2, 2) (Fermi energy εF = 0), and momentum averages
are given by the integral

∑
k gk ≡ ∫

dεD(ε)g(ε).
Figure 1(a) shows the order parameter φ(t ) (solid lines)

and the Cooper-pair amplitude Fk f (dashed lines) at the Fermi
surface, after a sudden quench of the interaction from an
initial value U0 = −3 to U = U0 + �U . For weak excitations
�U , the order parameter and Fk f oscillate with a small am-
plitude, while both decay to zero for large �U (e.g., dark
red lines). In general, Fk f decays much slower than φ, even
at relatively large interactions and excitations strong enough
to melt the gap (see, e.g., the bold curve for U = −0.6).
Hence there is a large time window where the vanishing of
the order parameter φ is mainly due to dephasing, in spite of
electron-electron scattering. This behavior can be unraveled
by the noise correlation measurement. As the condensate
of Cooper pairs is formed by electrons with opposite mo-
mentum p and −p, it is natural to measure the correlations
�Ip ≡ 1

2

∑
σ,σ ′ �Ipσ,−pσ ′ . For the BCS Hamiltonian one could

use Wick’s theorem to decouple the two-point function (2).
The only nonvanishing contribution to the connected Green’s
function G(1, 2, 2′, 1′) − G(1, 1′)G(2, 2′) which enters the
fluctuations �Ip is therefore related to an anomalous Green’s
function Ḡp(t, t ′) = 〈Tt̄ [c

†
p↑(t ′)c†

−p↓(t )]〉 [cf. Eqs. (4) and (3)],

�Ip =
∣∣∣∣
∫

dt ′dt ′′S(t ′)S(t ′′)Ḡp(t ′, t ′′)ei(Ep−�)(t ′+t ′′ )
∣∣∣∣
2

, (8)

where we set Mσ1,σ
k,p = δkσ1,pσ as explained above. As long as

the system is initially deeply in the symmetry broken phase,
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FIG. 1. (a) Order parameter φ (solid) and pairing correlations
Fk f (dashed) at the Fermi surface (εk = 0) after an interaction
quench with �U = 0.0, 0.3, . . . , 2.7 (top to bottom). The bold line
corresponds to �U = 2.4. (b) Numerical simulation of the noise
correlation measurement for �U = 2.4: �Ik (t ), as obtained from
Eq. (8) with a short pulse S(τ ) = √

100/πe−100(τ−t )2
centered around

time t .

these anomalous terms capture the leading contribution to the
two-particle Green’s function even beyond mean-field theory
(apart from vertex corrections). We therefore simply evaluate
Eq. (8) using the DMFT solution. The simulated ARPES noise
correlations, shown in Fig. 1(b), directly reveal the presence
of Cooper-pair correlations beyond the vanishing of φ. A
complementary tr-ARPES can detect the vanishing of φ by
the closing of the spectral gap, so that the dephasing of the
superconducting state can be identified. Vertex corrections
to Eq. (8) would complicate a quantitative prediction of the
value of �Ik , but the very different timescales for the two-
and one-particle dynamics should remain a clear signature for
experiment.

In the quench protocol, a strong excitation of the system
simultaneously implies weak final interactions U . To simulate
a strong impulsive excitation at large U , we perform a short
pulse-shaped ramp of the interaction of duration τ , U (t ) =
U0 + �U/2θ (τ − t )[1 + cos(πt/τ )]. Figure 2(a) shows the
resulting φ(t ) (solid lines) and Fk f . The relaxation dynamics
is analyzed in a regime of relatively large U = −3, which is
close to the maximum of the transition temperature Tc(U ) in
the phase diagram, corresponding to the crossover into the
strong-coupling regime of a BEC of preformed pairs. Similar
to Fig. 1(a), amplitude mode oscillations or a melting of
the gap are observed depending on the excitation �U , but
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FIG. 2. (a) Order parameter φ (solid lines) and Cooper-pair
correlations Fk f (dashed lines) for the ramp protocol with different
excitation densities �U = 1.5, 1.8, . . . , 2.7 (from top to bottom).
The bold line shows �U = 2.4. The shaded area highlights ramp
duration period. Inset: Decay rate  obtained by an exponential
fit to φ(t ) (solid red), the momentum-averaged noise

∑
k

√
�Ik (t )

(dashed red), Fk f (solid, blue), and
√

�IkF (t ) (dashed blue) against
�U . (b) Numerical simulation of the noise correlation measurement
�Ik (t ) for energies around the Fermi edge for �U = 2.4.

the larger electron-electron scattering now leads to a rapid
relaxation of both the order parameter φ and Fk f . The decay
rates φ and F of φ and of Fk f are of the same order, as
shown by the solid lines in the inset of Fig. 2(a). (Both φ

and F show a slowdown at the threshold �U ≈ 1.6 for the
melting of the order.) The noise correlations [Fig. 2(b)] allow
one to probe the dynamics of these quantities. In particular,
by fitting an exponential decay exp(−t ) to the simulated

data for
√

�Ik (t ) and the momentum average
∑

k

√
�Ik (t ),

one can closely recover the corresponding rates φ and F

(inset). In the present case, pairing interactions and scattering
are controlled by the same microscopic interaction U , so that
the melting happens on timescales still larger than h̄/�, which
could be resolved in tr-ARPES. In general, however, there is
no fundamental limitation for how fast φ can be quenched to
zero, and the noise correlation measurement, which is inde-
pendent of the spectral information, grants access to the pair
correlations on timescales beyond the energy-time uncertainty
limitations of tr-ARPES.

In conclusion, we have proposed to use the angular corre-
lations in ARPES to characterize time-dependent two-particle
correlations in the solid. The latter can be expected to domi-
nate nonequilibrium states, but are hard to measure with other
techniques. Exemplarily, we showed that the dephasing of the
individual order parameter fluctuations can dominate the fast
decay of superconductivity. Beyond this example, the noise
correlation measurement could be used to probe transient
charge-density-wave fluctuations (with correlations between
momenta that differ by the nesting vector), excitonic corre-
lations, or provide a different view on ultrafast dynamics of
magnetic order [18], and possibly help to reveal fundamental
phenomena such as a nonthermal criticality in solids [42,43].
These possibilities will be explored in future studies. Further-
more, there has been a considerable recent advance in the
theoretical description of collective fluctuations in strongly
correlated materials in equilibrium [44], so that more precise
experimental measures for the two-particle Green’s function
are needed, even though fully irreducible two-particle quanti-
ties are hard to obtain with the current computational means.
Equation (4) shows that even dynamical time- and energy-
dependent two-particle quantities can be extracted from the
noise correlation measurement.

In general, we conclude that the measurement of noise cor-
relations in ARPES, though technically challenging, may give
unique access to two-particle correlations in solids, which
provides information that is indispensable to characterize the
spatiotemporal evolution of nonequilibrium states.
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