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We analyze the possibility of emergent quantum multicritical points (MCPs) with enlarged chiral symmetry,
when strongly interacting gapless Dirac fermions acquire a comparable propensity toward the nucleation
of Kekulé valence-bond solid (KVBS) and charge-density-wave (Nb = 1) or s-wave pairing (Nb = 2) or
antiferromagnet (Nb = 3) in a honeycomb lattice, where Nb counts the number of bosonic order-parameter
components. Besides the cubic terms present in the order-parameter description of KVBS due to the breaking
of a discrete Z3 symmetry, quantum fluctuations generate new cubic vertices near the high-symmetry MCPs.
All cubic terms are strongly relevant at the bare level near three spatial dimensions, about which we perform a
leading-order renormalization group analysis of coupled Gross-Neveu-Yukawa field theory. We show that due
to nontrivial Yukawa interactions among gapless bosonic and fermionic degrees of freedom, all cubic terms
ultimately become irrelevant at an O(2 + Nb) symmetric MCP, at leas near two spatial dimensions, where
Nb = 1, 2, 3. Therefore, MCPs with an enlarged O(2 + Nb) symmetry near KVBS ordering are stable.

DOI: 10.1103/PhysRevB.99.241103

Introduction. Gapless Dirac fermions constitute an ideal
arena to explore the effects of electronic interactions and
emergent quantum critical phenomena of itinerant systems.
Typically at low enough temperatures and for sufficiently
strong interactions, nodal Dirac fermions become susceptible
toward a gap opening (mass generation), leading to a maximal
gain of the condensation energy. The effective field theory
describing the associated quantum phase transition assumes
the form of a Gross-Neveu-Yukawa (GNY) model, which,
besides capturing the dynamics of fermionic and bosonic
(order-parameter) fields, also accounts for the Yukawa cou-
pling between them [1]. Traditionally, the GNY theory is
analyzed using a perturbative ε expansion, controlled by a
parameter ε = 3 − d , measuring the deviation from the upper
critical three spatial dimensions. Close to the quantum phase
transitions, the notion of sharp fermionic or bosonic excita-
tions becomes moot, and the system accommodates a strongly
coupled relativistic (due to an emergent Lorentz symmetry
[2–4]) “soup” of these degrees of freedom, constituting a
non-Fermi liquid.

Such rich field theory predictions recently became rele-
vant in the context of condensed matter physics due to the
possible realization of symmetry protected emergent Dirac
excitations from concrete lattice models as, for example, in
honeycomb [5] and π -flux square [6] lattices. The associated
quantum phase transitions are succinctly captured by minimal
Hubbard-like models, containing only the finite-range com-
ponents of the Coulomb interaction [7–13]. The simplicity of
these lattice models also permits numerical demonstrations of
quantum criticality using, for example, quantum Monte Carlo
simulations [14–21], besides field theoretic analyses [22–31].
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An intriguing outcome in this context is the following. When
Dirac quasiparticles acquire a comparable propensity toward
the formation of more than one (typically two) competing
phases, respectively breaking O(N1) and O(N2) symmetries,
such that the corresponding order parameters can be rotated
into each other by the generators of the emergent chiral
symmetry, then it is conceivable to find a stable itinerant mul-
ticritical point (MCP), possessing an enlarged O(N ) symme-
try, where N = N1 + N2, but N � 5 in graphenelike systems,
described by an eight-component Dirac spinor [32–35]. In
particular, emergent MCPs with O(N ) symmetry with 3 �
N � 5 lack any analog in pure bosonic systems [36] and can
only be found in strongly interacting Dirac materials.

For the honeycomb lattice model, this observation supports
scenarios with MCPs of the following symmetries: (a) O(3),
arising from the competition between Kekulé valence-bond
solid (KVBS) or s-wave pairing and charge-density-wave,
(b) O(4), where KVBS and s-wave pairing form a chiral
supervector, and (c) O(5), involving antiferromagnet and
KVBS or quantum spin Hall insulator and s-wave pairing.
But, the emergent symmetry at an MCP becomes a subtle
issue when one of the competing phases is the discrete three-
fold rotational (Z3) symmetry breaking KVBS [37–39], since
the corresponding cubic term in the bosonic order-parameter
theory is strongly relevant near d = 3 [40,41] and responsi-
ble for first-order transitions [42,43]. Therefore, a question
arises regarding the ultimate stability of the MCPs possessing
a seemingly putative enlarged O(2 + Nb) symmetry, with
Nb = 1, 2, 3, respectively, for charge-density-wave, s-wave
pairing, and antiferromagnet, in the vicinity of a KVBS or-
dering. This is the question we address in this Rapid Commu-
nication, and arrive at the following conclusions.

We show that when KVBS order, described by a two-
component order parameter � = (�1,�2), is coupled to an
O(Nb) symmetry breaking field (χ), a new cubic vertex �1|χ|2
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BITAN ROY AND VLADIMIR JURIČIĆ PHYSICAL REVIEW B 99, 241103(R) (2019)

FIG. 1. Generation of three coupling constants, namely, λ13, λ23,
and u3, appearing in LMix [see Eq. (5)], from the leading-order
quantum corrections. Yukawa couplings from Eq. (2) yield λ13 and
λ23 (top row), which in turn give rise to the cubic coupling u3 (bottom
row), when combined with u1 and u2 (cubic vertices for the Kekulé
valence-bond ordering) [see Eq. (3)]. Dashed, wavy, and red lines
respectively represent �1, �2, and χ bosonic fields, and solid lines
to Dirac fermions.

gets generated near a MCP through quantum corrections,
besides �3

1 and �1�
2
2 vertices (see Fig. 1). However, due to

the Yukawa coupling between gapless fermions and bosons,
all the cubic terms ultimately become irrelevant close to the
O(2 + Nb) symmetric MCPs at least near d = 2 (see Fig. 2).
Therefore, MCPs with an enlarged O(2 + Nb) symmetry near
KVBS ordering are stable, and control continuous quantum
phase transitions from an interacting Dirac liquid to (1) O(Nb)
and (2) O(Nb + 2) symmetry breaking insulators, (3) KVBS,
as well as (4) the direct transition between KVBS and an
O(Nb) symmetry breaking insulator.

Effective field theory. We begin the discussion by intro-
ducing the GNY model in the presence of all symmetry al-
lowed cubic terms close to an O(2 + Nb) symmetric quantum
MCP. The corresponding imaginary time (τ ) action reads as
S = ∫

dτdd rL, with L = L f + Lb f + Lb and r = (x1, . . . , xd )
is the spatial coordinate. The dynamics of massless Dirac
fermions is captured by

L f = �†(τ, r)

⎡
⎣∂τ − i

d∑
j=1

	 j∂ j

⎤
⎦�(τ, r), (1)

where 	 j’s are mutually anticommuting eight-dimensional
Hermitian matrices, and �† and � are independent eight-
component Grassmann variables. The following discussion is,
however, impervious to specific matrix and spinor represen-
tations. The coupling between massless Dirac fermions and
bosonic order-parameter fields reads

Lb f =
2∑

j=1

g j� j�
†Mj� + g3

Nb∑
k=1

χk�
†M2+k�, (2)

where X ≡ X (τ, r) for X = �†, �,�,χ. Mutually anticom-
muting eight-dimensional Hermitian mass matrices Mj’s sat-
isfy {	i, Mj} = 0, with Nb � 5 − d . The O(2 + Nb) chiral
rotations among the mass matrices are generated by Gi j =

[Mi, Mj]/(2i), where i, j = 1, . . . , Nb + 2. Note Gi j’s are also
the generators of the chiral symmetry for massless Dirac
fermions as [	i, Gjk] = 0.

The pure bosonic part of theory can be decomposed ac-
cording to Lb = LKek + LNb

Sym + LMix, with

LKek =
2∑

j=1

[
1

2
(∂μ� j )

2 + m2
j�

2
j

]
+ u1

3!
�3

1 + u2

2!
�1�

2
2

+
2∑

j=1

λ j

4!
�4

j + 2λ12

4!
�2

1�
2
2, (3)

LNb
Sym =

Nb∑
j=1

[
1

2
(∂μχ j )

2 + m2
3χ

2
j + λ3

4!

(
χ2

j

)2
]
, (4)

LMix =u3

2!
�1

Nb∑
j=1

χ2
j +

⎛
⎝ 2∑

j=1

2λ j3

4!
�2

j

⎞
⎠ Nb∑

k=1

χ2
j . (5)

Therefore, the effective field theory contains 12 coupling
constants. Even though three coupling constants appearing in
LMix are absent at the bare level, u3, λ13, and λ23 get generated
through quantum corrections (see Fig. 1), and thus have to be
included from the outset.

Near a pure KVBS ordering, LNb
Sym = LMix = 0 and g3 = 0.

In addition, u1 = −u2, g1 = g2, and λ1 = λ2 = λ12. However,
such a symmetry is broken when the system acquires a compa-
rable propensity toward the formation of an O(Nb) symmetry
breaking phase. Nevertheless, the above effective field theory
enjoys a hidden O(Nb + 1) symmetry, which we identify by
constructing a composite bosonic field according to (�2,χ),
and setting g2 = g3, u2 = u3, λ2 = λ3 = λ23, and λ12 = λ13.
The effective field theory then describes a Z2 ⊗ O(Nb + 1)
symmetric GNY model for massless Dirac fermions in the
presence of cubic terms and contains seven coupling con-
stants. The renormalization group (RG) flow equations also
reflect this symmetry, about which more in a moment. Antic-
ipating the outcome, we set the Fermi (vF ) and bosonic (vB)
velocities to be equal (due to an emergent Lorentz symmetry
at an MCP) [3], and vF = vB = 1 for simplicity.

ε expansion. The bare (engineering) scaling dimension of
the fermionic and bosonic fields, respectively, D[�] = d/2
and D[�] = D[χ] = (d − 1)/2, follow from the correspond-
ing noninteracting parts of the action, the scaling dimension of
momentum D[k] = 1 and imaginary time D[τ ] = −1. Conse-
quently, the scaling dimension of all three Yukawa couplings
and six four-boson couplings is D[{g2}] = D[{λ}] = 3 − d ,
and that for the bosonic mass parameters (controlling the tran-
sition from a Dirac semimetal to ordered phases) D[{m2}] = 2
[44]. Our focus here is restricted on the critical hyperplane,
defined by {m2} = 0. Therefore, in the absence of any cubic
terms, the GNY model near fermionic MCPs can be addressed
in terms of a perturbative ε expansion about three spatial
dimensions, with ε = 3 − d [32–35].

On the other hand, the scaling dimension of all three cubic
terms is D[{u}] = (2 + ε)/2, implying that they are strongly
relevant perturbations at the bare level in d = 3 [40,41].
Therefore, the entire theory cannot be controlled in terms
of a single expansion parameter ε. Alternatively, one may
pursue a double ε expansion, with D[{g2}] = D[{λ}] = ε1 and
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FIG. 2. Scaling of the eigenvalues (measured in units of ε) of the stability matrix M [see Eq. (8)], with ε = 3 − d , near O(2 + Nb)
symmetric multicritical points close to a Kekulé valence-bond solid and (a) charge-density-wave (Nb = 1), (b) s-wave pairing (Nb = 2), and
(c) antiferromagnet (Nb = 3) orderings. Here, Nf is the number of four-component spinors and for graphenelike systems Nf = 2. Close to two
spatial dimensions (as ε → 1) all cubic terms become irrelevant (since all eigenvalues of the stability matrix are then negative), implying the
ultimate stability of O(2 + Nb) symmetric multicritical points. The regime of stability of the multicritical points (the shaded region) increases
with the increasing number of the bosonic order-parameter components (Nb). For any Nb, the scaling of 12 eigenvalues collapses onto seven
curves, stemming from the hidden Z2 ⊗ O(Nb + 1) symmetry of the theory (see text). This feature is also insensitive to the choice of Nf (not
shown here explicitly).

D[{u}] = ε2/2, where ε1 = 3 − d and ε2 = 5 − d , somewhat
similar to the ones employed in interacting and disordered
systems [45–47]. However, such a double ε expansion does
not yield any additional control over the perturbative analysis.
So, we abandon it for the rest of the discussion. Nonethe-
less, the cubic vertices receive perturbative corrections, and
the question we seek to answer in the rest of this Rapid
Communication is whether these corrections (in particular,
the ones arising due to the Yukawa couplings) can provide
sufficiently negative scaling dimensions to the cubic vertices
to turn them irrelevant near the fermionic MCPs, located at

{g2} ∼ ε, {λ} ∼ ε, and {u} = 0, at least when ε → 1 or as
d → 2.

RG analysis. To answer this question, we here restrict
ourselves to the leading-order ε expansion for {g} and {λ},
and account for one-loop corrections to {u}. To this end, we
integrate over the Matsubara frequency −∞ � ω � ∞ and
the fast Fourier modes, living within a thin Wilsonian momen-
tum shell �e− � |k| � �. We perform the matrix algebra in
d = 2 and subsequently carry the momentum integral in di-
mension d = 3 − ε. The resulting coupled RG flow equations
are

dg2
1

d
= εg2

1 − (2Nf + 3)g4
1 + g2

1

(
g2

2 + Nbg2
3

) − 1

6

(
u2

1 + u2
2 + Nbu2

3

)
g2

1,

dg2
2

d
= εg2

2 − (2Nf + 3)g4
2 + g2

2

(
g2

1 + Nbg2
3

) − 1

3
u2

2g2
2,

dg2
3

d
= εg2

3 − (2Nf + 4 − Nb)g4
3 + g2

3

(
g2

1 + g2
2

) − 1

3
u2

3g2
3,

du1

d
= 2 + ε

2
u1 − 3Nf g2

1u1 + 1

4

[
11u3

1 + 12u3
2 + 12u3

3 − u1
(
u2

2 + Nbu2
3

)] − 1

2
[3u1λ1 + u2λ12 + Nbu3λ13],

du2

d
= 2 + ε

2
u2 − Nf

(
g2

1 + 2g2
2

)
u2 + u2

12

[
7u2

2 + 12u1u2 − u2
1 − Nbu2

3

] − 1

3
[3u2λ2 + (u1 + u2)λ12 + Nbu3λ23],

du3

d
= 2 + ε

2
u3 − Nf

(
g2

1 + 2g2
3

)
u3 + u3

12

[
(8 − Nb)u2

3 + 12u1u3 − u2
1 − u2

2

] − 1

3
[(Nb + 2)u3λ3 + (u1 + u3)λ13 + u2λ23],

dλ3

d
= ελ3 − 4Nf g2

3

(
λ3 − 6g2

3

) − 1

6

[
(Nb + 8)λ2

3 + λ2
13 + λ2

23

] + u2
3

[
34

3
λ3 + 4λ13

]
− 24u4

3,

dλ1

d
= ελ1 − 4Nf g2

1

(
λ1 − 6g2

1

) − 1

6

(
9λ2

1 + λ2
12 + Nbλ

2
13

) + 4
(
3u2

1λ1 + u2
2λ12 + Nbu2

3λ13
)

− 1

3

(
u2

1 + u2
2 + Nbu2

3

)
λ1 − 12

(
u4

1 + u4
2 + Nbu4

3

)
,

dλ2

d
= ελ2 − 4Nf g2

2

(
λ2 − 6g2

2

) − 1

6

(
9λ2

2 + λ2
12 + Nbλ

2
23

) + u2
2

[
34

3
λ2 + 4λ12

]
− 24u4

2,
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dλ12

d
= ελ12 − 2Nf

(
g2

1 + g2
2

)
λ12 + 24Nf g2

1g2
2 − 1

6

[
3λ12(λ1 + λ2) + 4λ2

12 + Nbλ13λ23
]

+ 1

6

(
11u2

1 + 33u2
2 + 24u1u2 − Nbu2

3

)
λ12 + 6u2

2(λ1 + λ2) + 2Nbu2
3λ23 − 24

(
u4

2 + u2
1u2

2 + u1u3
2

)
,

dλ13

d
= ελ13 − 2Nf

(
g2

1 + g2
3

)
λ13 + 24Nf g2

1g2
3 − 1

6
[λ13(3λ1 + (Nb + 2)λ3 + 4λ13) + λ12λ23] − λ13

6

[
u2

1 + u2
2 + (Nb + 2)u2

3

]

+ 2
[
(Nb + 2)u2

3λ3 + u2
1λ13 + u2

2λ23 + 3u2
3(λ1 + λ13) + 2u1u3λ13

] − 24
(
u2

1u2
3 + u1u3

3 + u4
3

)
,

dλ23

d
= ελ23 − 2Nf

(
g2

2 + g2
3

)
λ23 + 24Nf g2

2g2
3 − 1

6

[
3λ2λ23 + (Nb + 2)λ3λ23 + 4λ2

23 + λ12λ13
]

− 1

3

(
u2

2 + u2
3

)
λ23 + [

2
(
u2

2λ13 + u2
3λ12

) + 3(u2 + u3)2λ23
] − 24u2

2u2
3, (6)

in terms of dimensionless coupling constants, defined
as X�−ε/(8π2) → X , where X = {g2}, {λ} and
{u}�− 2+ε

2 /(8π2) → {u}. Here, Nf is the number of
four-component fermion flavors, and hence for graphenelike
systems Nf = 2. The details of the RG calculation are
presented in the Supplemental Material [48]. The underlying
Z2 ⊗ O(Nb + 1) symmetry of the GNY theory can be
appreciated in the following way. If we set g2 = g3, u2 = u3,
λ2 = λ3 = λ23, and λ12 = λ13, then RG flow equations of the
following couplings are identical: (1) g2 and g3, (2) u2 and u3,
(3) λ2, λ3, and λ23, and (4) λ12 and λ13. It is quite challenging
to find all possible solutions of the above 12 coupled RG
flow equations, so we instead focus on the specific and
relevant case, the O(2 + Nb) symmetric MCP, located at
g2

1 = g2
2 = g2

3 = g2
∗, λ1 = λ2 = λ12 = λ3 = λ13 = λ23 = λ∗,

and u1 = u2 = u3 = u∗, where

(
g2

∗, λ∗, u∗
) =

(
ε, 3

H (Nf , Nb)

10 + Nb
ε, 0

)
1

2(Nf + 1) − Nb
, (7)

and H (x, y) = 2 − 2x − y+[4x2+(y − 2)2+4x(38+5x)]1/2.
To analyze the stability of such fixed points, we compute

the stability matrix (M), defined as

Mi j ({C}) = d

dCj

(
dCi

d

)
, (8)

and its eigenvalues in its vicinity. Here, {C} is the set of
12 coupling constants, and thus i, j = 1, . . . , 12. The results
are displayed in Fig. 2. Sufficiently close to two spatial
dimensions (as ε → 1), all 12 eigenvalues of the stability
matrix are negative for any value of Nf and Nb. Hence, all
cubic terms (namely, u1, u2, and u3) become irrelevant in
close vicinity of the O(2 + Nb) symmetric MCPs, indicating
their stability in two dimensions. Note that the irrelevance
of the cubic terms is solely introduced by nontrivial Yukawa
coupling between gapless bosonic and fermionic degrees of
freedom. Hence, such a quantum MCP can only be realized
in strongly interacting Dirac systems. We also note that with
increasing number of order-parameter components Nb, the
regime of stability (the shaded region in Fig. 2) of the MCPs
increases [49]. The fact that the MCPs are stable over a range
of ε (see Fig. 2) suggests that their stability in the presence of
cubic couplings is possibly nonperturbative in nature. Only
the range of ε, over which the MCPs are stable, can be
renormalized at each order in a perturbative expansion.

We should also mention that a leading-order ε expansion in
a purely bosonic system suggests a putative O(3) symmetric
MCP, which, however, loses stability once the higher-order
corrections are taken into account [36]. On the other hand,
there exists neither O(4) nor O(5) symmetric MCP in a purely
bosonic theory. Therefore, the appearance of O(2 + Nb) sym-
metric quantum MCPs, with Nb = 1, 2, 3, and their stability
against the cubic perturbations, when the system resides at
the brink of Kekulé ordering in a honeycomb lattice, are
purely fermion driven phenomena in Dirac materials. Also,
a pure Kekulé O(2) quantum critical point (in the absence
of the χ field) is stabilized due to gapless Dirac fermions
[40,41,49–51].

Besides the O(2 + Nb) symmetric MCP, there exist two
more interacting fixed points, possessing O(2) and O(Nb)
symmetries. Respectively, they control the transitions from
a Dirac semimetal to KVBS and O(Nb) symmetry breaking
phase. The cubic terms are irrelevant at these two fixed points.
However, they ultimately become unstable toward the MCP.
We could not find (numerically) any fixed point at finite {ui},
when ε is close to 1.

Discussion. To summarize, we address the stability of
quantum MCPs with enlarged O(2 + Nb) symmetry, when
a correlated Dirac liquid, realized on a honeycomb lattice,
acquires a comparable propensity toward the nucleation of
KVBS and charge-density-wave (Nb = 1) or s-wave pairing
(Nb = 2) or antiferromagnet (Nb = 3). We show that quantum
corrections generate new cubic vertices (see Fig. 1) near such
MCPs, besides the ones for KVBS due to the breaking of dis-
crete Z3 rotational symmetry in a honeycomb lattice. All cubic
terms are strongly relevant at the bare level and responsible
for a generic first-order transition in pure bosonic systems
[42,43]. However, due to nontrivial boson-fermion Yukawa
couplings, they all become irrelevant near high symmetric
MCPs, close to two spatial dimensions (see Fig. 2). Therefore,
O(2 + Nb) symmetric quantum MCPs are expected to be
stable in honeycomb Dirac systems. At this MCP the bosonic
and fermionic anomalous dimensions are respectively given
by ηb = 2Nf g2

∗ and η� = (2 + Nb)g2
∗/2, and the correlation

length exponent is

ν = 1

2
+ Nf

2
g2

∗ + 4 + Nb

24
λ∗.

Together, they determine the universality class of continuous
transitions from a Dirac semimetal to (a) KVBS, (b) O(Nb)
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and (c) O(2 + Nb) symmetry breaking orders, and (d) the
direct transition from KVBS to an O(Nb) symmetry breaking
order through itinerant MCP.

Our results should be germane in the context of recent
quantum Monte Carlo simulations on correlated Dirac liquids,
in the presence of competing orderings [52,53]. So far, the
emergence of high symmetry has only been reported slightly
away from the itinerant MCP. We hope that our results will
motivate future works to explore symmetry enlargement in
proximity to the MCP and KVBS ordering. In addition, our
results can also be relevant for slow (due to sufficiently small

Fermi velocity) and strongly interacting (due to substantial
bandwidth suppression) Dirac fermions in a twisted bilayer
graphene near magic angle (MA-TBLG) [54,55], and in cor-
related organic Dirac material pressured α-(BEDT-TTF)2I3

[56]. A recent experiment reported the existence of an insulat-
ing phase near the charge-neutrality point in the former system
[57]. With the application of suitable nonthermal tuning pa-
rameters (for example, pressure, strain, twist angle, etc.) it is,
at least in principle, conceivable to drive such a Dirac insulator
through a quantum MCP, where the present discussion can be
pertinent [58].

[1] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena
(Oxford University Press, Oxford, U.K., 2002).

[2] M. M. Anber and J. F. Donoghue, Phys. Rev. D 83, 105027
(2011).
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