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We study surface second-harmonic generation (SHG) from a singular plasmonic structure consisting of
touching metallic wires. We use the technique of transformation optics and relate the structure to a rather
simpler geometry, a slab waveguide. This allows us to obtain an analytical solution to the problem, revealing
rich physical insights. We identify various conditions that govern the SHG efficiency. Importantly, our analysis
demonstrates that apart from the mode-matching condition, the phase-matching condition is relevant even for
this subwavelength structure. Furthermore, we identify a geometric factor which was not identified before. We

support our analysis with numerical simulations.
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I. INTRODUCTION

Transformation optics (TO) is a theoretical tool recently
developed that allows an unprecedented control over light
propagation and confinement [1-3]. TO relies on the form
invariance of Maxwell’s equations under coordinate transfor-
mations to provide the connection between a given electro-
magnetic effect, coded into a geometric transformation, and
the material parameters (g, ) required for its realization [3,4].

Recently, it was shown that most of the complexity as-
sociated with TO schemes can be avoided by using a spe-
cial class of transformations called conformal transformations
(CTs). These are two-dimensional (2D) mappings which have
a very convenient characteristic—they preserve the material
and spectral characteristics of the original system [2,5]. This
enables the description of the optical response of a wide
variety of geometries by cascading conformal transformations
[2,5-8]. The analytic predictions of TO have been found to
be in excellent agreement with numerical results (for sub-
wavelength particles), and verified experimentally by several
groups [9-12]. In addition, CT allowed addressing various
other physical effects such as the moulding of surface plasmon
polariton propagation [13], the emergence of nonlocal effects
in metallic nanostructures [14,15], van der Waals interactions
at the nanoscale [16], graphene [17] and singular [18] meta-
surfaces, and plasmon-exciton interactions [19] and strong
coupling [20].

The most fundamental contribution of CTs is, perhaps, to
establish the equivalence between the (linear) scattering from
isolated particles (supporting localized plasmon resonances)
and light propagation along straight waveguides (supporting
surface plasmon resonances) [5,7,8,21], at least within the
quasistatic approximation. This enables calculation of the
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field distribution in complex structures and especially the
challenging singular geometries by first transforming to sim-
ple, regular solvable geometries, and then transforming back
(see Fig. 1). Such geometries give rise to extremely high
local-field enhancement near the singularities. The CT also
showed that the spectrum of the singular geometry is “in-
herited” from the broadband plasmonic waveguide structure,
thus, resolving the long-standing arguments about the origin
of the broadband spectral response from rough (disordered)
and/or multiscale structures [5,22]. This class of structures
thus allows for breaking the conventional resonance-based
limitations of bandwidth in plasmonic devices.

To date, most of the studies employing TO were limited
to media that have a linear response to the incoming electro-
magnetic field, namely, for low intensities. The only exception
from this is a paper that focused on the general formulation
and provided a single example of third-order nonlinearity
[23]. Therefore, extending TO to various other nonlinear wave
interactions from singular structures is appealing, since both
the high local-field enhancement as well as the unusually wide
bandwidth make the singular structures potentially useful for
such interactions.

Here, we employ TO for a singular nanoparticle configura-
tion that includes nonlinear media [specifically, for second-
harmonic generation (SHG) from metal nanoparticles]. We
demonstrate the strength of our approach via an analytic
solution of the near-field distribution and conversion effi-
ciency, which is found to be in excellent agreement with exact
electrodynamic numerical simulations. Most importantly, we
provide deep insights of the physics underlying frequency
conversion processes.

In particular, we show that the theoretical description of
nonlinear wave mixing from nanoparticles is more com-
plex than one would have expected compared to the metal
waveguides. Indeed, it is well known that in the latter case,
efficient SHG has three requirements: a strong source, phase
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FIG. 1. Schematics of the (a) identical touching wire system and the (b) slab geometry related through conformal transformation.

matching (PM), and mode matching (MM) [24,25]. Yet,
for subwavelength structures, e.g., single nanoparticles or
nanoparticle clusters, it is customary to dismiss the need to
achieve phase matching [26], justified by the claim that the
phase accumulation across the structure is small, so that the
source and generated wave are nearly unaffected by any phase
mismatch. This implies that there is a fundamental differ-
ence between extended structures (such as waveguides) and
particle geometries. However, the intrinsic analogy between
the infinitely extended flat geometry and particle(s) geometry
(see Fig. 1) [2] implies that this is not justified in all cases.
Indeed, the CT map shows that the modes propagating an
infinite distance in the flat geometry are the same modes that
repeatedly circulate around the touching wires (TWs). Thus,
since it is trivial that PM is essential in the flat geometry, then,
it is necessarily as important in the particle geometry. Indeed,
particle-induced wavelength compression makes the accumu-
lated phase substantial despite the short propagation distance
along the circumference and regardless of any detuning. In
that sense, a critical observation is that for the purpose of
frequency conversion, the particle geometry is very different
from a bulk material or homogenized composite of the same
dimensions for which the phase mismatch is not important.

Below, we show explicitly that PM does manifest itself in
small NPs, and connect it to the localized plasmon resonance.
Then, we show, somewhat unexpectedly, that these so-called
three requirements are not sufficient, and that in practice there
is an additional consideration. We discuss how this additional
term modifies the SH response.

The paper is organized as follows: Section II A describes
the identical TW system, SH surface sources and their sym-
metry aspects, and formulates the SHG problem in the TW
frame. To obtain the SHG solution, we follow the route of
conformal transformation to transform TW geometry to a
rather simpler geometry, i.e., slab geometry, and solve for
SHG in Sec. IIB. We then transform the obtained solution
back to the TW geometry in Sec. II C and interpret it. Finally,
we conclude with a discussion and outlook.

II. TOUCHING WIRE SYSTEM AND SURFACE
NONLINEAR SOURCES

A. Formulation and methodology

Consider two identical metallic TWs of radii a with per-
mittivity &,,, touching each other at the coordinate origin of

the x-y plane; they are embedded in a homogeneous dielectric
background of permittivity &, [see Fig. 1(a)]. The TW struc-
ture is assumed to be illuminated by a TM polarized plane
wave at a frequency w by a spatially uniform x-polarized elec-
tric field with amplitude E§. The linear electric-field response
of the structure at the fundamental frequency (FF) E“ can
be evaluated analytically using the technique of conformal
transformation as in [5,27]. First, the TW geometry and the
plane-wave source are transformed to a metal-dielectric-metal
slab structure and a line dipole source, respectively. Then, the
dipole radiation is coupled to plasmonic modes of the slab
system in the momentum space. The dominant contribution
to the linear response arises from the surface plasmon pole
and the contribution from the lossy surface (radiative) waves
was neglected. Having obtained the closed form solution in
the slab frame, the solution was then transformed back to the
TW frame. The analytic solution revealed several interesting
physical phenomena occurring close to the singular (touching)
point. Most notable of them are the unusually wide spectral
response, strong spatial field confinement, and large field
enhancement close to the touching point. The latter effect can
give rise to efficient nonlinear optical phenomena.

In this paper, we consider a second-order process, specif-
ically, second-harmonic generation (SHG). It is well known
that the second-order nonlinear processes are symmetry for-
bidden in centrosymmetric materials. However, due to the
broken symmetry at an interface, the metal-dielectric inter-
face has a nonzero second-order surface tensor )z(éz) [28,29].
Apart from purely surface effects, nonlocality can give rise to
nonlocal bulk nonlinearity which can be mapped to a surface
current source, so that the surface nonlinearity provides a
simple, general model for second-order nonlinear phenomena
in metals [30-33]. We assume that the surface SH polarization
Pf“’ at the metal-dielectric interface is given by

P3% = eox{l | EVEY 8(X* +* F 2ax), (1)

where E¢ and P2 correspond to the normal component
(to the metal-dielectric interface) of linear electric field and
surface SH polarization, respectively. The metal-dielectric
interface of the right (left) wire corresponds to the — (4) sign
in the argument of the Dirac delta function §.

In writing P§“ , we assume that the dominant contribution

(2)
Sl

element; see the justification in Ref. [34]. To obtain ngi,

to the surface nonlinear polarization arises from the y
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we use the analytical expressions of the FF electric field
E¢ derived in Ref. [27]. We note that E£¢ is discontinuous
across the interface, thus leading to an ambiguity in choosing
E? either on the metal or dielectric side of the interface.
Following Sipe et al. [35], we choose E{ on the metal side
of the interface.

In the solution of SH fields, Eq. (1) appears as a source
term in Maxwell’s equations, and can be solved in this form
[36,37]. But in surface SHG, the sources coincide with the
boundary, so alternatively PS2 “ can be incorporated into the
boundary conditions at the metal-dielectric interface [29]. We
shall adopt this convenient approach.

First, note that the SH polarization PS2 * is normal to the
interface, corresponding to an electric dipole layer pointing
normal to the interface. This normal component corresponds
to a perpendicular surface zero-thickness current, or equiv-
alently, to a dipole layer pointing normal to the interface.
Such a component requires a careful treatment and it is not
accounted for in the usual textbook literature. In the presence
of such sources, the boundary condition corresponding to
the tangential component of the SH field Eﬁ“’ is generalized
to account for the discontinuity. This discontinuity across
the interface, denoted as AEﬁ‘”, is given by the generalized

boundary condition AE}® = ——-V P, where V| is the

tangential derivative along the mterface [29,36]. Further, we
note that this generalization reduces to the standard bound-
ary condition when the normal component of Pszfi has zero
gradient along the tangential direction, i.e., for V“Pgﬁ =0.
This generalized boundary condition can be conveniently re-
formulated using the divergence-free magnetic surface current
density J2% [36,38]. In such a case, the generalized boundary
condition takes the form

with J2% = %n x (ViP54), (@
bg

AE[” = —n x J%,

where n is the unit normal to the interface. The magnetic
surface current density generated by the SH polarization Pffj
considered in Eq. (1) for the TW geometry is given by

(2)

Xs, L1l LLL

Jorp(x,y) = (EVEY)S(x* +y* F2ax), (3)

bg

where J; is the out-of-plane (i.e., z) component and further-
more, the only component of the magnetic current J2% and we
have dropped the superscript 2w and the subscript mS of J,ﬁ‘g .
for the sake of brevity. The subscript r () of J; ,;; denotes the
right (left) wire and 9, denotes the tangential derivative along
the interface.

Since our TW structure and the incidence is symmetric, we
now investigate the symmetry relations of the J; ,,; on the left
and right wires. Figure 2 shows various fields (on the metal
side) on the circumference of the TW close to the touching
point. As shown in Fig. 2(a), the linear response E{ has a def-
inite symmetry which is antisymmetric in x and symmetric in
y below the surface plasma resonance frequency. Since E{E¢’
is quadratic in E{, then necessarily EVE{ is symmetric in x
and y [see Fig. 2(b)], as expected. The tangential derivative 0
of EYE? along the circumference of the left and right wires
yields J,,; (3) which is an antisymmetric source in x and
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FIG. 2. Various fields plotted on the circumference of the touch-
ing wires close to the touching point. (a) E{ (below the surface
plasma resonance frequency) is antisymmetric in x and symmetric in
y.(b) EVE? is symmetric in x and y. (¢) J-,; (3) is antisymmetric in x
and y, thus, J,, = —J; ;. All the distributions plotted for a frequency
below SPP resonance at FF.

y. As a consequence, J; ,(x,y) = —J,;(—x, ) [see Fig. 2(c)].
Note that the SH source symmetry described above holds well
for the choice of x gzj_ | . element at any frequency of operation
and all material parameters.

Having understood the SH source and its symmetries, we
now formulate the SH problem for the TW. Since the SH
response is usually weak when compared to the FF response,
we employ the undepleted pump approximation [39]. Further-
more, we also assume the physical dimensions of the wire
a to be much smaller than both the FF and SH wavelengths
such that one can safely employ the quasistatic approximation
[namely, we take the limit (w/c)a < 1]. Since we consider in-
plane TM polarized illumination, it is convenient to formulate
a scalar SHG problem in terms of the SH magnetic field Hg‘f’w
We emphasize that for a quasistatic structure, the magnetic
response is rather weak yet nonzero (see Appendix A for
further discussion). Upon obtaining the SH magnetic field, the
corresponding SH electric fields can then be evaluated using
Ampere’s law.

The SH magnetic field HZ%‘%W can be obtained by solving
the homogeneous Helmholtz equation in each domain accom-
panied by two boundary conditions. However, in the qua-
sistatic limit the Helmholtz equation in each domain simplifies
to the homogeneous Laplace equation given by [40]

V?HX}w = 0. )

Further, the two boundary conditions are as follows. Continu-
ity of H?4y, across the interface is given by

nx (Hbg m) = TW bg Hz TW [ = 0, (5)
where the subscripts bg and m correspond to the dielectric
and metal sides of the interface, respectively. The generalized
boundary condition [see Eq. (2)] in terms of HZZ’%’W and the

magnetic surface density J; ,/; for the TW is given by

H2$w 2
|:Il . V( 2w|bg - Z’T2W|m = —Zl'a)SQJZ‘r/]. 6)
£ ol
bg m
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Invoking the definition of n for the right and left wires, Eq. (6)
can be rewritten as

20 2w
xta y HZ»TW |bg Hz TW|
0y + =0 — =" = DiweogJ, ;1.
< a ay)|: g2 gl Ol

bg

)

We solve the SH problem analytically using conformal
transformation by relating the TW to a much simpler geome-
try, a slab waveguide, as for the linear case [5].

B. Transformation to the slab frame

Consider the conformal coordinate transformation

= % (®)
Here, we use the complex number notation w = x + iy for
the TW coordinates and @ = X + iy for the new coordinate
system (x denotes the complex conjugate). The parameter g in
Eq. (8) is a scaling constant with dimensions of length. The

coordinates of the old and new systems are related by

i gx 5= gy
’ x2+y2'

The touching wire system (in the x-y plane) transforms to
a metal-dielectric-metal slab waveguide (in the X-j plane)
of half width d = g?/2a (see Fig. 1). The permittivity of
the materials remains unchanged under this 2D conformal
transformation [27].

Having transformed the TW system to the slab frame,
we now formulate the SH problem in the slab geometry by
transforming the governing equation (4) and the two boundary
conditions Egs. (5) and (7). First, we note that the magnetic
field is invariant under 2D conformal transformation (see
Appendix B) as it is an out-of-plane component [1,41]. There-
fore, szﬁw(x,y) = HZ’;’I()”C(X, ¥), ¥(x,y)). Now transforming
Egs. (4) and (5) and expressing them in terms of the slab
variables, we arrive at

&)

[0 4 07 |H Y =0, (10)

zsl —

2w _ 2w
HZ,Sl |bg =H

z,sl

(11

m’

respectively.

Before transforming the boundary condition in Eq. (7), let
us examine J; ,;; in the TW frame. We decompose J; ,/; in
terms of amplitude and phase as

4iaa®|y|
Jor(x,y) = R(x,y) exp <ﬁ 5 +y* — 2ax),
xX°+y

(12a)
4iaa®|y|

JZ,I(‘x7 y) = ‘C(xa Y) eXp ( X2 +y2

) 3(x* 4+ + 2ax),
(12b)

where R and L correspond to the amplitude of the SH source
on the right and left wires, respectively (see Appendix C). We

now describe in detail the origin of the functional dependence
of the phase part of J; ,/; in Egs. (12).

Recall that the linear response was analytically obtained
by transforming the TW geometry to the slab [5]. This slab
structure in the quasistatic limit exhibits two surface plasmon
modes. The symmetric mode extends from zero frequency to
the surface plasmon resonance, while the antisymmetric mode
exists above the surface plasmon resonance. The linear solu-
tion involved only the symmetric mode whose dimensionless
(i.e., the product of the propagation constant and slab half
width) propagation constant at FF is given by [42,43]

w 1 <8$ B 82}5’) w
a’=-In{f — when Re(e,) < —Epy- (13)
2 \ep+ep,

Despite transforming the FF solution back to the TW frame,
«a® still continues to act as the propagation constant for the
TW system [44]. As a consequence, the phase of the linear
field E{ on the circumference of the identical TW is given by
exp [2iaa®|y|/(x*> + y*)] [27, Egs. (32)-(37)]. Since the SH
source is obtained upon squaring the linear fields [see Eq. (3)],
the phase of the SH source is exactly twice the FF phase.
Furthermore, as J, ,(x,y) = —J;;/(—x,y), we have R(x, y) =
—L(=x, y).

The CT unfolds the considerably complicated SH source
J.rn to a much simpler one in the slab frame. Specifi-
cally, transforming J,,; (12) to the slab frame yields (see
Appendix D)

Lot = App(E,5) 20 5(% = +a), (14)

where A, and A; are the amplitudes of the magnetic surface
currents in the slab geometry obtained by transforming R and
L, respectively. Thus, A,(X =d,¥)=—A;(X=—d,J) as
R(x,y) = —L(—x,y), the phase part of J, . [see Eqs. (12)]
simplifies to e*@’PV/4 with 20 as dimensionless propagation
constant of the SH source in the slab frame, and the SH
surface source J,, (J;;) on the circumference of the right
(left) wire transforms to a line source placed at the right
(left) interface of the slab. This approach is simpler than
the computing the SH source from the linear fields [27] and
second-order polarization in the slab frame, because in this
case, the appropriately transformed second-order polarization
turns out to be an anisotropic and spatially inhomogeneous
tensor.

The generalized boundary condition (7) now transforms to
the slab frame as (see Appendix D)

42+ 2 Hva H72w
< ;;y >8x|: Z’;la!bg — E;J’” =2iweg A, (X =d, §)
m

Ehe
x 2 gt 3 =d, (15a)
&+, [Hl,  H
g Ehg g5
X (X = —d, §)ere e at x=—d. (15b)

We note that the spatial factor (d*> + 7*) on the left-hand-
side of Eqgs. (15) arises from transforming n - V; this term
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thus encodes information of the original TW geometry [see
Egs. (6) and (7)].

We can now calculate the SHG response in the slab geom-
etry by solving Eq. (10) with boundary conditions in Egs. (11)
and (15) using an ansatz. The mathematical form of our ansatz
for sz,?z is dictated by the governing physical phenomena as
follows:

(1) The ansatz should satisfy the Laplace equation (10) in
all the domains.

(2) Since we are interested in the near field of the nanos-
tructure which is expected to be governed by surface plasmon
waves rather than photonic waveguide modes, the ansatz
should exhibit exponential decay along the transverse coor-
dinate ¥ away from the interfaces at ¥ = +d.

(3) Since the slab structure and SH source have definite
symmetry in the ¥-J plane, the ansatz should also have definite
a symmetry. In fact, the antisymmetric magnetic line sources
at the interfaces (A, = —A;) dictates that the ansatz should
be antisymmetric in ¥.

(4) The longitudinal dependence of the ansatz should be
the same as the SH source, i.e., e*@“I¥1/4 a5 it is specified for
all y.

(5) Having set the propagation constant of the ansatz along
¥ to be o, the dispersion relation gives us the propaga-
tion constant along the transverse direction X as kg pe/m =

2\/ (a®)? — ( %)zegg’f’/m. However, we operate in the quasistatic
regime, i.e., in the limit w/c — 0, therefore k 4/, simplifies
to 2a®, making the transverse propagation constant the same
as that of the longitudinal one in all the regions.

Following the above considerations and assuming that HZZ?I
is variable separable, we arrive at the ansatz

gy < [ € S/, F <d
‘x’ = 0N E (ONE
Wl By eI sgnlgle 24 |3 > d.
The amplitudes Ay and By in Eq. (16) are the slowly varying
amplitudes [45] in ¥ such that the ansatz satisfies Egs. (10)
and (15).
Demanding the continuity of H f’fl across the interfaces [see
Eq. (11)] gives '

By = Ay e* sinh(2a®). (17)

Implementing the transformed generalized boundary condi-
tion at the right and left interfaces [see Eq. (15)] and using
Eq. (17) yields

p —iweoe;g gd (Ar(fc =d, i)) (1s)
sl = P
a®P d? + 37
e
P = cosh(2a®) + —= sinh(2a®). (19)
Em("

Let us now interpret the SH solution (16)—(19). First, we
note that the spatial dependence of the solution (16) has
a striking resemblance to an antisymmetric mode of the
slab [24,25,42,46]. However, potentially unexpectedly (e.g.,
based on an analysis such as coupled mode theory; see e.g.,
[24,25,47]), it does not necessarily correspond to the exci-
tation of a single mode of the structure because the phase
accumulation rate (i.e., the ¥ dependence) is determined by

the source rather than by a propagation constant of a given
(antisymmetric) mode; in the quasistatic limit, these dimen-
sionless propagation constants o>” are given by the roots of
the dispersion relations [42,48]

826()
cosh o®® + % sinha®® =0, (20)
o

which has solutions only for

20
m

—&,¢ < Re(e;) < &j2, (1)
which is above the surface plasmon resonance frequency.

A remarkable aspect of conformal transformation is that
the source exhibits harmonic phase variation along ¥ [see
Eq. (14)], which is preserved in the solution via momentum
conservation. This enables an elegant link to the concept of
phase matching. Indeed, one can appreciate that the absence
of propagation constants of the SH modes from the solution
(16) is in fact expected, since the configuration we study
is analogous to the scattering problem from a Fabry-Pérot
etalon. Indeed, the spatial profile of the electric fields is known
in each domain, and the corresponding unknown amplitudes
are calculated by ensuring the satisfaction of the boundary
conditions. In that procedure, the scattered fields have the
same longitudinal momentum as that of the source (incident
field) and the excitation is resonant only when the source
momentum matches that of a mode of the etalon. Similarly,
a SH mode is resonantly excited in the slab only if the longi-
tudinal momentum component of the SH source matches the
momentum of the (antisymmetric) mode. This can be inferred
by comparing Eq. (20) to P in Eq. (19) where we see that PM
is obtained when 2a® = ?>*. Notably, the expression for 1/P
differs from the standard expression for PM. Both expressions
vanish under the same conditions, but P is more informative
as it includes information about the spatial profiles of all the
modes in the system. Thus, overall, the above reveals the
analogy between a resonant excitation (in the context of a
linear scattering problem) and PM for SHG.

We also note that PM results in the enhancement of the
SH fields as Hf‘;’l diverges for P — 0. Unfortunately, a com-

parison of the expressions of a® [Eq. (13)] and o> [Eq. (20)]
shows that due to material dispersion, the zeros of P cannot be
reached without special means (see, e.g., [24,25]); in practice,
the values taken by P are even greater in the presence of
absorption, as it pushes the poles to the complex plane of the
parameter domain.

An additional condition for efficient SHG usually found in
the literature is the so-called mode matching (MM) condition.
In contrast to PM discussed above, which essentially involves
the spatial overlap of the source and mode in the longitudinal
coordinate, MM refers to the spatial overlap of the mode
and source in the direction perpendicular to the propagation;
maximal overlap is desired to achieve efficient conversion.
For symmetric structures, the overlap integral has a “binary”
interpretation—a symmetric (antisymmetric) source can only
excite the symmetric (antisymmetric) modes. Furthermore,
for the line sources arising from the surface nonlinearity stud-
ied here, the overlap simplifies drastically to the product of
the amplitudes on each of the interfaces. As explained, in our
case, the antisymmetric combination of the SH line sources at
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the interfaces (A, and A;) dictates that the SH ansatz (16)
has to be antisymmetric along the transverse coordinate X.
As a consequence, the condition —8%;” < Re(si‘”) < eizj’ in
Eq. (21) reveals that PM can be achieved only for frequen-
cies above the surface plasmon resonance frequency. Since
the modes occurring above the surface plasmon resonance
frequency are very lossy, the SH efficiency is expected to
be low.

All the above clarifies the role of phase-matching and
mode-matching conditions in the slab geometry for SHG
with surface sources. Apart from the above, we also note an
additional feature in our solution when compared to the usual
slab solution, namely, the term (d? + 7°) in the denominator
of the SH solution (18). As mentioned earlier, it originates
from the transformation of the boundary condition (6) from
the TW frame to the slab frame. Such a term is absent

J

Arw (x, y) exp (4i““w‘y ') sinh (243

HZa) _ x24y? 2y?
ZTw = iaa®
Brw(x, y) exp (4x2+y|2y‘ )sgnlx] exp (
where
—ia)eos,f;’
Arw(x,y) = ———G(x, »)R(1y, Ty), (23)
2°P
Brw(x,y) = Arw(x, y)e*” sinh 2a®, (24)
da(x® +y?)?
V) = , 25
G(x,y) 15 Ol 1 2R (25)
1/(2
= /(2a) ’ 26)
1/(4a?) + y?/(x* +y?)?
2., .2
/x4y @7

O T M) 6

Comparing the spatial dependence of R in Eq. (12a) to
Eq. (23) reveals that R now gains a different spatial depen-
dence denoted by 7, ,; 7y, in Egs. (26) and (27) map every
point in the TW plane (x-y plane) onto the circumference of
the right wire while the circumference of the right wire (i.e.,
when x? +y? = 2ax) is mapped onto itself, i.e., T, = x, T, =
y. This map is a consequence of Eqgs. (16) and (18) as the
amplitude Ay in the slab frame is determined by the spatial
variation of A, atX¥ = d.

We now focus on the spatial variation of H?%,, on the
circumference of the right wire. Since this curve”maps onto
itself, the functional dependence of R(z,, 7,) in Eq. (25) sim-
plifies to R(x, y). Upon invoking x> + y> = 2ax in Eq. (25),
it simplifies G(x, y) to 2x. Thus, H>, is given by

2w . w
HZw(x,y) = —iwege
z,TW*» b, a‘”P

20 [ S0 20
8

4iaa®|y|
X exp m )

)xR(x, y)

when one calculates the SHG of the waveguide geometry in
isolation (as, e.g., in [24,25] and [49, Chap. 4]), meaning that
it is not intrinsic to the waveguide, but rather is a result of
transforming the TW structure. The 1/(d? + 3*) dependence
determines the spatial variation of the SH amplitudes Ay;, By,
[see Egs. (16)—(18)] along ¥ together with the SH source A,;
it suppresses the SH source strength and thereby the strength
of the SH fields for large 7.

C. Transformation back to the TW frame

Our next step is to transform the SH solution H back to

the TW frame. Since H>¢ is preserved under the transforma-
tion, see Apper.ldix B,. sz,?w can be obtained by j.ust rewriting
the slab coordinates in terms of the TW coordinates. Thus,
H?%y, is given by

), when x* 4+ y? + 2alx| > 0,

(22)

—4aa®|x|
x>+y?

), when x2 —|—y2 + 2alx| < 0,

(

and upon using Eq. (12a), the above can be rewritten as

sinh 2
2w . 2w

H72w(x,y) = —iwepe _—
Z, TW bg awr])

) xJ; - (x, ). (28)
This analytic solution is the main result of the paper.

In order to validate our analytical solution, we compare
it with a numerical solution, obtained using a commercially
available finite-element method software package COMSOL
Multiphysics (see Appendix E for further details). Figure 3(a)
shows an excellent agreement between the analytic and nu-
meric solutions of H>%,, on the circumference of the right
wire close to the touching point (8 = 180°). In Fig. 3(b), we
see that this agreement extends even to angles as large as
several tens of degrees away from the touching point. This
validates our analytical solution.

Similar to the linear response, the SH response exhibits
interesting physical phenomena like wavelength compression,
slow light, field enhancement, and energy accumulation close
to the touching point [27], the latter being inhibited by the
absorption. In what follows, we interpret the SH solution of
the TW, and highlight how the terms that appeared in the
solution for the slab manifest themselves in the solution for
the TW geometry and how they affect the above-mentioned
phenomena.

First, the momentum mismatch between the mode and the
SH source is preserved under the transformation, showing
that [unlike previous claims in the literature (e.g., [26])],
the phase-matching condition is relevant even for this sub-
wavelength structure [S0]. Indeed, the link between the TW
geometry and the slab geometry revealed by the coordinate
transformation shows that if PM is important for the slab
geometry, then, it must be important also for the particle
(i.e., TW) geometry. Such an effect is possible due to the
(nonuniform) wavelength compression induced by the (touch-
ing) wires which makes the optical length along the wires
effectively infinite [2,5,27]. We note that such a result is
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FIG. 3. (a) SH solution Hfﬁw on the circumference of the right wire (close to the touching point) as the function of angle 6. The
dashed-dot curve is the analytical solution as evaluated by Eq. (28) and the dotted curve is the numerical solution. The SH wavelength
is chosen to be 500 nm (with wavelength of fundamental harmonic to be 1000 nm) and the other parameters used are a = 5 nm, Epy =

00 =1, g0 = —48.6 + i8.65, £2° = —8.67 +i1.10, x) || = 107 m?/V, and Eg, = 1 V/m. (b) Same as in Fig. 3(a) for a wider angular

> m

range.

nontrivial to reproduce by a multipolar expansion, despite the
deep subwavelength nature of the TW geometry [51]. Second,
MM manifests through the symmetry of the SH sources for
the identical TW system. The J_ ,; is antisymmetric in nature
[see Fig. 2(c)], thus generating an antisymmetric H>%, field.

Apart from the phase-matching, mode-matching, and
stronger SH source requirements, the SH solution also ex-
hibits an additional spatial dependence given by G [see
Eq. (25)]. We coin this term as the geometric factor. The geo-
metric factor stems from transforming 1/(d” + 7) in Eq. (18)
to the TW frame. Recall that 1/(d” 4 77) was obtained from
transforming the generalized boundary condition from TW to
slab frame, however, its signature still remains in the final
solution as we transform only the SH magnetic field back from
the slab to the TW frame leaving out the transformation of
generalized boundary condition (15).

As mentioned, the geometric factor on the circumference
of the TW simplifies to 2x, i.e., it attains small values close to
the touching point (x & 0). Since the magnetic field solution
[see Eq. (28)] is given by the product of the SH source and
the geometric factor, the SH source (and thereby, the SH
response) is further suppressed by the geometric factor close
to the touching point. Therefore, the SH solution decays faster
to the touching point compared with the linear solution.

The origin of the geometric factor can be understood
as follows. In the usual Green’s-function approach, a dis-
tributed source should be integrated over its spatial coordi-
nates along with the Green’s tensor corresponding to the struc-
ture, namely, [ Grw(r, r’ YP>(r')dr’. This integral contains
all the information about the structure (in particular, the modal
structure) and the spatial distribution of the SH source, and the
convolution naturally yields PM and MM. However, prior to

the evaluation of this integral, the final spatial distribution of
the SH solution is not known. The conformal transformation
reveals that the SH solution (22)—(27) has a remarkably simple
form, namely, it is linearly proportional to the SH source,
phase-matching, and mode-matching factors. Additionally,
we encounter the geometric factor which can be thought of
as a simplification of the Green’s-function integral with the
distributed source corresponding to the TW geometry. We
note that such a simplification/factorization of the SH solution
is realizable due the power of conformal transformation by
transforming the seemingly difficult SH problem to the much
simpler system, i.e., the slab frame and thereby, enabling us
to relate the local SH solution in terms of the the local source.
Yet this simplicity pertains only exactly at the metal-dielectric
interface of the TW, and is far more complicated elsewhere.

III. DISCUSSION AND OUTLOOK

Using the technique of conformal transformations, we have
related the SHG in waveguides to the SHG in a far more
complicated geometry—the touching wire dimer. Our ansatz
approach is simpler compared to the treatment of the linear
TW problem with CT, as we avoid the need to transform
to momentum space and perform contour integrations. The
transformation allows us to unfold the hidden symmetries,
separating variables such that the roles of PM and MM be-
come obvious also in the TW frame, making the interpretation
of the final solution quite straightforward.

In particular, this showed the equivalence of phase match-
ing in the slab geometry to tuning to the localized surface
plasmon resonance at the SH for the TW structure. However,
our analysis shows, rather surprisingly, that PM and MM and
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source strength are accompanied by an additional factor. This
additional factor was not identified before and we refer to it as
a geometric factor. Indeed, its presence implies that different
original geometries might give rise to different sources, hence
different geometric factors. This shows that the solution for
the particle geometry exhibits richer physics compared to the
slab. In particular, the revealed complexity demonstrates the
limitations of approaches based on just evaluating the strength
of the source P*®, or just on PM [52].

This work introduces tools and insights into nonlinear
optical wave mixing for nanoscale structures (and on the
treatment of distributed sources on the nanoscale [53-55]).
It differs from many studies by providing a unique ana-
lytic near-field solution rather than on a qualitative descrip-
tion of the (experimentally accessible) far-field pattern, and
by going beyond qualitative symmetry-breaking arguments
[56-59].

The solution approach adopted in this paper can serve
as a means to study and optimize the near-field and the
spectral response of the touching wire dimer. It can also
be used to calculate the SH field distributions analytically
for various other singular nanoparticle structures like asym-
metric touching wires, crescent structures, wedge struc-
tures, circular protrusion from a planar interface, etc. [8].
Additionally, this approach can also be extended to cal-
culate the SH response from nonsingular structures such
as nontouching wires [60] and blunt crescent structures
[61].

The solution approach adopted in this paper is suitable also
for other elements of the surface polarization tensor as well
as for (nonlocal) bulk polarizations (by mapping them to a
surface polarization [30-33]).

Other problems that can be solved with the same approach
are 3D structures [7,62], SHG at other spectral regimes, e.g.,
in the THz regime [63], optical rectification, and more com-
plex nonlinear wave interactions, such as three-wave mixing
[64-66], phase conjugation [67], or even additional effects
such as the role of nonlocality [14,15] on SH and many
more.
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APPENDIX A: EXTRACTING THE MAGNETIC FIELDS IN
THE QUASISTATIC REGIME

The linear electric fields were obtained by setting V x
E® = 0 [5], thus the linear magnetic field was set to zero.
For the quasistatic structures, the electric response dominates.
However, the magnetic response, even though negligible, is
not truly zero. Here we demonstrate on how to extract the
magnetic field from the quasistatic structures.

In general, this magnetic field can be evaluated in two
different ways. One can express the excitation sources in
terms of the magnetic sources and solve for the magnetic re-
sponse. For example, a plane-wave illumination was modelled
using magnetic line currents and the magnetic response for
various quasistatic structures was obtained [68]. Similarly, in
this paper, we formulate the nonlinear polarization in terms
of a surface magnetic current to obtain the SH magnetic
response of the TW system. Alternatively, despite setting
V x E =0, one can employ Ampere’s law to extract the
magnetic field from the evaluated electric fields [40, Sec. 3.2].
In what follows, we extract the linear magnetic field Hpy,
of the TW system under plane-wave illumination using the
latter.

Using Ampere’s law explicitly for our case yields

(Ala)
(Alb)

8"I_IZG,JTW()C7 y) = iwgogzug/mE;,)TW(xv y),

8yHZa,)Tw(x’ y) = —iwt‘?osz)g/mEffTw(X, y),

with &j,, ~considered in the appropriate domains. E 1y, and
E’rw 10 Egs. (Ala) and (Alb) correspond to the linear
electric-field solutions of the identical TW system in different
domains as obtained by Lei et al. [27,69]. Upon integrating
Egs. (Ala) and (A1b) and determining the constants of inte-
gration we arrive at

when x? 4+ y? +2|x|a > 0,
(A2)
when x?+y? +2|x|a < 0,

with N = —2miwegaEf).

Alternatively, one can also arrive at magnetic field Hry
by obtaining the magnetic field in the slab geometry and then
transforming to the TW frame. The out-of-plane component
of the magnetic field is preserved under the 2D conformal
transformation (see Appendix B) [68]. We have verified that
both the methods are consistent.

Ne? —2aa®|x| 2iaa®y|
(s;;;+:f);)sgn[y] €xXp ( x24y? ) €xXp ( x24y? )’

(

Figure 4 shows the comparison between the analytical and
numerical solutions of H1y, on the circumference of the right
wire of TW system. The numerical solution was obtained
using COMSOL Multiphysics by solving for electrodynamic
response from TW under plane-wave illumination. We find
that the analytical solution is in excellent agreement with the
numerical solution.
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FIG. 4. Linear magnetic field H, as the function of angle 6
on the circumference of the right wire. The analytical solution [as
evaluated by Eq. (A2)] and the numerical solution are shown in blue
and red curves, respectively, at 500 nm. The other parameters are
a=5nm, es = —8.3 +0.29i, 8[”71, =1l,and Ej, =1 V/m.

APPENDIX B: TRANSFORMATION OF THE MAGNETIC
FIELD

Here, we derive the transformation rules of the magnetic
field under 2D conformal transformation. It is important to
note that the transformation considered here is completely in
plane, i.e., 2D, thus, the out-of-plane coordinate z remains
unaffected. Following the TO formulas for a vector quantity
[1], the magnetic fields in the TW frame Hrw and the slab
frame Hy; are related as

H tw(x,y) A A 0\ (Hyq(X,§)
HytwC,y) | = A A O | Hyu(x 5|, (Bl
HZ,TW(xs y) 0 0 1 Hz,sl x, %)

where A;; is the Jacobian of the transformation. Equating the
z components in Eq. (B1) we arrive at

H29y,(x,y) = H2 (% (x, y), §(x, ). (B2)

Thus, we have obtained that the z component of the magnetic
field is invariant under the transformation [68]. This conclu-
sion holds true for both FF and SH magnetic fields.

It also follows from Eqgs. (B1) and (B2) that any vector
pointing normal to the x-y plane or the -y plane, for ex-
ample, SH source J_,/, is preserved under 2D conformal
transformation.

APPENDIX C: AMPLITUDES OF SH SOURCE—R AND L

The amplitudes of the SH sources R and L for the TW
as defined in Egs. (12) can be evaluated as follows. The FF
response E¢ at the metal-dielectric interface on the right and
left wires (on the metal side) is given by [27]

w lleile"l —a®
ELO) = ’C[a T ey P (1 + el )]

iL(6)) —a?
TG (1 - £<e/>>}’ (C1o)

(Cla)

EY (6) = /C[

respectively. Other variables in Egs. (C1) are defined as

ma’sp
_ 8 %)
k= (s‘“ +&® )EO"’
m bg
6, = tan~! < 4 ),
xX—a

where {(x,y) € R|x* +y* —2ax =0}, (C2)

0, :tan1< Y )
xX+a

where {(x, y) € R |x* + y* + 2ax = 0},

efia’ Vo, €[0,m),
e Yo e [m,2n).

£@) = { (C3)

The variable 6, (6;) in Eq. (C2) [Eq. (C3)] corresponds to the
angular coordinate on the circumference of the right (left) wire
of radius a centered at x = a (x = —a). The SH source (3) on
the right (left) wire in terms of Ej_”r (Ei“’l) is given by

2

X ®
1.6, = 2L 5, [E2 0] (C4a)
agy,
()
X ®
Ja(6) = "ok aa[EC,6D], (C4b)

bg

respectively. In writing Eqs. (C4) we have used the fact that
the tangential derivative 9 on the right (left) wire is given by
195, (13g). Rewriting J., and J.; [in Eqs. (C4)] in (x, y) and
invoking the decomposition of J, ,,; from Eq. (12) gives us R
and L as

—4iaa®|y|
R(X,y) = z,r(xv )’)GXP< x2+y2
where{(x, y) € R|x* +y* — 2ax = 0},
—dian®|y|
L(x,y) = Jz,l(x’)’)eXp( x2 +y2 >’

where{(x, y) € R|)c2 +y2 + 2ax = 0},

respectively.

APPENDIX D: TRANSFORMATION OF THE
GENERALIZED BOUNDARY CONDITION
TO THE SLAB FRAME

Here, we compute the transformation of the generalized
boundary condition (7) from TW to slab frame. In what fol-
lows, we first compute the transformation of the left-hand side
of Eq. (7) followed by its right-hand side. The magnetic field
sz,%w can be replaced by HZZ‘;)I (see Appendix B). Replacing
the spatial coordinates and the derivatives of the TW frame by
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that of the slab ones shows that the left-hand side of Eq. (7)
transforms as

HZC;)I H2o
(Fids + Bds)| —5.% — —”l|m ; DD
Ehe g2
where
. +(¥2 — §%) — 2dx . j:251()?:Fal)
1= > ) 2=
g g

We now compute the transformation of the right-hand side
of Eq. (7). The magnetic current J, ,/; is a vector normal to
the x-y plane, thus, it is preserved under the transformation.
Invoking the decomposition of J ,; from Eqgs. (12) and rewrit-
ing it in terms of the slab variables gives

Jor = AF,5)HN§(5 — d),
Jop = NE,5)eH 0 5% 4 d).

(D2a)
(D2b)

In writing the above expressions, we have relabeled R and £
in slab geometry by

AR ) = R<)~ng2—+xyz )%) (D3a)
AR §) = ﬁ(% %) (D3b)

respectively. Since the conformal transformation (8) pre-
serves the symmetry relation between R and £, we have
A,FE=d,y)=—A;(X = —d, ). It can seen from Eq. (D2a)
[Eq. (D2b)] that the surface source J; , (J; ;) on the circumfer-

ence of the right (left) wire transforms as the source placed at
right (left) interface of the slab geometry.

Thus, by combining Egs. (D1) and (D2), we arrive at the
transformed generalized boundary condition given by

N - - 2w 1)
(:I:()c2 — yZ) - 26[)6)8~ |:Hz,sl |bg . sz,sl |m:|

2 2w 2w
& Ebg En

= —2iweg A, (% = £d, §) "M% £ d). (D4)

APPENDIX E: NUMERICAL SIMULATIONS

The numerical solutions are obtained using the commer-
cially available finite-element method software package COM-
SOL Multiphysics 3.5a. We have used harmonic propagation
analysis in the radio-frequency module to obtain the SH
electrodynamic response of the TW system. The FF analyt-
ical expressions were used to compute the SH source J, ,/
(3) and were given as an input to the COMSOL 3.5a solver.
Specifically, the SH source J; ,/; was inserted as a source in the
“boundary setting—equation system” node. The region close
to the touching point was resolved with mesh sides below
10~* nm to sample the rapidly oscillating J.ryi accurately
and to tackle the geometric singularity. A perfectly matched
layer was used to suppress the reflections from the boundaries
of the simulation domain. The convergence of the numerical
solution as a function of mesh size and size of the simulation
domain was verified. Despite the availability of the latest
versions (COMSOL 5.3a), we were forced to resort to the old
version COMSOL 3.5a due to its lower sensitivity to the ill
conditioning associated with the extremely fine mesh near the
touching point. A detailed account concerning the sensitivity
of COMSOL 5.3a to the small mesh and evaluation of the linear
and SH response is presented in Ref. [49, Appendix D].
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