
PHYSICAL REVIEW B 99, 235422 (2019)

Mesoscopic effects in the heat conductance of superconducting-normal-superconducting
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We study the heat conductance of hybrid superconducting junctions. Our analysis involves single-channel
junctions with arbitrary transmission as well as diffusive connectors and shows the influence of the supercon-
ducting gaps and phases of the contacts on the heat conductance. If the junction is diffusive, these effects are
completely quenched on average, however, we find that their influence persists in weak-localization corrections
and conductance fluctuations. While these statistical properties strongly deviate from the well-known analogs
for the charge conductance, we demonstrate that the heat conductance fluctuations maintain a close to universal
behavior. We find a generalized Wiedemann-Franz law for Josephson junctions with equal gaps and vanishing
phase difference.
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I. INTRODUCTION

The conductance of heat in hybrid superconducting junc-
tions plays a crucial role in coherent caloritronics and for
quasiparticle cooling. In coherent caloritronics [1,2], the
phase difference across Josephson junctions consisting of
superconductors separated by an insulating (SIS) or a normal-
conducting layer (SNS) is used to tune heat transport coher-
ently. Coherent effects in the heat transport occur also in other
types of hybrid superconducting devices, such as Andreev
interferometers [3,4]. For quasiparticle cooling [5,6] the dif-
ference of gaps across a junction—such as in NS junctions,
where one of the gaps completely vanishes—are used as an
energy filter. With devices getting ever more complex, it is of
crucial importance to understand the impact of the junction
properties on the heat transport characteristics.

In this paper, we analyze the heat conductance of SNS
junctions with an arbitrary phase difference and arbitrary mag-
nitude of the two gaps of the two superconductors (including
the NS limit). We treat both the case of single-channel junc-
tions as well as diffusive junctions, in which the transmission
probabilities of the many transport channels are statistically
distributed. We analyze the average of the heat conductance,
its weak-localization correction, as well as heat conductance
fluctuations, by combining a scattering matrix approach to
heat transport [7] for superconducting junctions [8] with
previously obtained results from random matrix theory [9].

The statistics of normal-conducting diffusive junctions [9],
including the famous weak-localization effects [10,11] and
universal conductance fluctuations [12–15], have been ana-
lyzed more than two decades ago and have been among the
most fundamental properties of mesoscopic devices. Also,
modifications in hybrid devices have been studied [16,17].
However, these statistical properties of the heat conductance
of diffusive junctions have to our knowledge not been ad-
dressed beyond the statistical average [3,18–21]. Indeed, in

fully normal-conducting junctions with energy-independent
transmission probabilities, heat and charge conductances—
both being linearly dependent on the transmission probabil-
ities of the junction channels—are up to a different conduc-
tance quantum the same due to the Wiedemann-Franz law.
This is however completely different for Josephson junctions
where only the linear heat conductance assumes a finite value
[22,23] in contrast to the charge conductance that is undefined
due to the presence of the supercurrent. Furthermore, the
complex energy dependence of the transmission probabilities
of SNS and NS junctions leads to important differences in the
statistics of the heat conductance with respect to the charge
conductance.

Here, we present results for the heat conductance of SNS
or NS junctions, see Fig. 1, which can exceed the heat
conductance of normal conducting junctions by a consider-
able amount, due to the phase difference [22,23] or differ-
ences in superconducting gaps. These effects are completely
quenched in the average heat conductance of a diffusive
junction [20]. The weak-localization corrections as well as

FIG. 1. Sketch of an SNS junction across which a heat current
J flows. The contacts are characterized by different temperatures, TL

and TR, superconducting gaps, �L and �R (one of which can even
be suppressed to 0), and phases, ϕL and ϕR. The normal part of the
junction has length L and supports N scattering channels. In this
paper, we treat the case of N = 1 and the case of a diffusive region
with a nonspecified number of channels.
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the heat conductance fluctuations, both relying on quantum
interference effects, however maintain a dependence on the
phase difference and variations in the gap magnitude of the
contacts. Importantly, despite these nontrivial dependencies,
the heat conductance fluctuations change by less than an order
of magnitude under parameter variation, hence remaining
close to universal. Furthermore, for junctions with equal gaps
and vanishing phase difference we identify a generalized
Wiedemann-Franz law.

SNS junctions with different distributions of transmission
probabilities have been realized with distinct techniques and
materials. Metallic systems can contain diffusive N junctions
of different length, see, e.g., Ref. [24], in break junctions
the transmission of the few contributing channels depends
on specific electronic configurations of the junction [25],
and superconductor-semiconductor junctions [26–28] can be
realized with tunable channel number with possibly statis-
tically distributed transmissions [29]. This variety of SNS
junction realizations makes the experimental verification of
the results predicted here likely.

II. MODEL AND APPROACH

We study an SNS junction as sketched in Fig. 1. The con-
tacts are assumed to be standard BCS superconductors with
a temperature- and phase-dependent order parameter �α =
|�α (T )|exp(iϕα ). The temperature-dependent absolute value
of the gap |�α (T )| is obtained self-consistently with �0,α ≡
|�α (0)| � 1.76kBTcrit,α . We take the gap function to be space-
independent within each segment of the junction, which is
justified when the diffusion constant in the normal-conducting
link is larger than the diffusion constant in the superconductor
[30,31]. The two superconducting contacts α = L, R can have
different gaps �0,L,�0,R (and hence different critical temper-
atures Tcrit,L, Tcrit,R) and they have a possible phase difference,
ϕ = ϕL − ϕR. Different temperatures, TL,R = T ± 1

2δT , lead
to a heat flow between the contacts. Importantly, all of these
quantities characterizing the contacts are separately tunable.
We are not interested in the effect of a bias voltage and
therefore, from here on, take the common electrochemical
potentials as the zero of energy μL = μR ≡ 0. The normal-
conducting junction has length L; the finite width of the
junction leads to a number N of transport channels. In the
diffusive regime, the length of the junction is assumed to
be much larger than the mean free path �, but much shorter
than the localization length N � and the dephasing length.
The assumption of phase-coherent particle transport across
the normal region is reasonable for the low-temperature limit
(temperatures not exceeding the critical temperature of s-wave
superconductors such as aluminum) considered here.

Heat transport across this junction is carried by electron-
and holelike quasiparticles (e, h), which can be transmitted
across the SN interfaces by normal transmission and Andreev
reflection. We here use the Andreev approximation, meaning
that both electrons and holes travel approximately at the Fermi
velocity [32]. In order to describe heat transport, we use a
scattering matrix approach. The scattering matrix SSNS relates
the fluxes carried by quasiparticles of different incoming and
outgoing channels to each other. We assume that Andreev
reflection at the NS interfaces does not mix channels and

diagonalize the channel-mixing normal part of the scattering
matrix using a polar decomposition. See, e.g., Ref. [8] for
the construction and diagonalization of the N -channel scat-
tering matrix. We find that the transmission probabilities Di j

n

for i, j = e, h, characterizing SSNS, each depend on a single
transmission eigenvalue Dn of the normal-conducting junction
only. The transmission probability De

n of channel n is the sum
of the transmission probabilities from electron- and hole-like
quasiparticles into an electronlike quasiparticle channel, De

n =
Dee

n + Deh
n . We find the transmission probability for arbitrary

gaps �L and �R to be given by [20,23]

De
n(E )

= 2DnξLξR
DnξLξR + (2 − Dn)(E2 − |�L�R| cos ϕ)

[(2 − Dn)ξLξR + Dn(E2 − |�L�R| cos ϕ)]2
,

(1)

where ξα =
√

E2 − |�α|2 is the quasiparticle energy in con-
tact α. This transmission probability is generally finite for
energies E > |�|, with |�| := max[|�α (Tα = T )|], and zero
otherwise. As a result, the heat current can be written as a sum
over N transport eigenchannels,

J = 2

h

N∑
n=1

∫ ∞

|�|
dE E De

n(E )[ fL(E ) − fR(E )]. (2)

Here, Fermi functions fα (E ) = [1 + exp(E/kBTα )]−1 deter-
mine the quasiparticle occupation in contact α. The factor 2
in Eq. (2) is due to spin degeneracy [33].

III. HEAT CURRENT AND HEAT CONDUCTANCE

From Eqs. (1) and (2), we can straightforwardly derive the
heat conductance, κSNS = ∂J/∂δT |δT =0, that is of interest for
small temperature gradients δT ,

κSNS = 1

2h

N∑
n=1

1

kBT 2

∫ ∞

|�|
dE

E2

cosh2
(

E
2kBT

)De
n(E )|δT =0. (3)

For superconducting contacts with �0,L = �0,R, we recover
previously obtained results in the single- [34] and multi-
channel regimes [22,23]. Note that results obtained in the
tunneling limit [35–38], which cannot account for the creation
of Andreev bound states, are in equal-gap junctions only valid
for heat currents at relatively large temperature gradients and
the heat conductance is hence in general not straightforwardly
obtained from this.

The heat conductance, Eq. (3) with De
n(E ) from Eq. (1),

is shown in Fig. 2, for a single-channel junction with trans-
mission D1 = D = 0.1 for different phase differences ϕ and
different gap ratios �0,L/�0,R. We choose a normaliza-
tion of κSNS with respect to the value of a fully normal-
conducting (single-channel) device κN = κ0

∑N
n=0 Dn →

κ0D. Here, κ0 = π2k2
B

3h T is the (temperature-dependent) heat
conductance quantum [39], recently measured in electronic
systems [40]. This choice of normalization highlights that,
depending on phase and transmission, the heat conductance
κSNS can exceed the normal-conducting case, as previously
found for �0,L = �0,R in Ref. [23]. Here, we find that dif-
ferent gaps have an important influence on this predicted
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FIG. 2. Heat conductance as function of T/Tcrit, with the critical
temperature of the larger gap Tcrit ≡ TR,crit. Panels (a)–(c) show the
single-channel case with Dn = D = 0.1 for different values of ϕ and
�0,L/�0,R. The grey dashed line at κSNS/κN = 1 serves as a guide for
the eye.

behavior. Independently of the phase difference, κSNS can
exceed κN as soon as one gap is smaller than the other; this
is in particular true for the NS case, shown as a black line,
where one of the gaps completely vanishes. This limit is
also reached for �0,L �= 0, when the temperature exceeds the
critical temperature TL,crit �= TR,crit (visible as a kink, before
the lines start to overlap with the black line of the NS result
in Figs. 2(a)–2(c). For the low-transmission limit (D = 0.1)
considered here, we conclude the following: (i) equal gaps are
favorable for the heat conductance at large phase differences
and (ii) different gaps (in particular the NS limit) maximally
increase the heat conductance, if the phase differences are
small or vanishing. The reason for the increase of the heat

conductance κSNS with respect to κN is an energy-dependent
modulation of the transmission probability De

n(E ), which can
result in De

n(E ) > D in the vicinity of the gap |�|, and
hence at relatively large energies. For the equal-gap case,
this modulation was attributed to a phase-dependent Andreev
bound state [23]. In the opposite limit of one vanishing gap
(NS case) no bound states arise and Andreev reflection above
the gap is responsible for modulations of the transmission
probability [41]. Note that for larger transmissions D > 0.5,
the modulation of the heat conductance κSNS always leads to
a reduction with respect to κN.

In a diffusive conductor, the value of the transmission
probability Dn of the large number N of transmission eigen-
channels has been found to be statistically distributed [42,43]
by the Dorokhov distribution ρ(Dn). The average heat con-
ductance is thus given by

〈κSNS〉 =
∫ 1

0
dDnκ

(n)
SNSρ(Dn), (4)

with ρ(Dn) = N �(2LDn

√
1 − Dn)−1 (5)

and with the single-channel contribution κ
(n)
SNS. Importantly,

the transmission average
∫ 1

0 dDnDe
n(E )ρ(Dn) is energy and

phase independent [20] and simply equals N �/L. Therefore,
we can give the result for the average heat conductance as

〈κSNS〉
〈κN〉 = 2 − 6

π2

[( |�|
kBT

)2

(1 − f (|�|))

+ 2
|�|
kBT

ln f (|�|) − 2Li2(−e|�|/kBT )

]
, (6)

with 〈κN〉 = κ0
N �
L and the dilogarithmic function Li2. This

shows that 〈κSNS〉 in a diffusive SNS junction is fully phase
independent and does not depend on the two gaps any longer,
despite the junction being fully phase coherent (see also
related discussions for the average charge conductance of
normal, phase-coherent but diffusive conductors, for example
in Refs. [44,45]). The average heat conductance 〈κSNS〉/〈κN〉
equals the single-channel result at vanishing phase difference
ϕ = 0 and equal gaps (where De

n = Dn). This is shown in
Fig. 3. The properties of the superconductors only enter
Eq. (6) via the magnitude of the (larger) gap |�| as a function
of temperature [20]. The temperature-dependent behavior of
〈κSNS〉, displayed in Fig. 3, reflects the exponential quasi-
particle suppression at low temperatures and the gap closing
at large temperatures close to Tcrit. The normal-conducting
result is obtained at T � Tcrit. The averaging of effects due to
the phase and gap differences can have severe consequences
both for the field of phase-coherent caloritronics as well as
for quasiparticle cooling with NS structures: the beneficial
effects of the phase and gap difference, which is exploited in
these research fields, are fully suppressed when the junction is
diffusive.

IV. WEAK LOCALIZATION CORRECTION

Due to enhanced backscattering of carriers [10,11] and
the resulting interference between time-reversed paths, the
average quantum conductance is smaller than the classical
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FIG. 3. The average heat conductance 〈κSNS〉/〈κN〉 is gap-ratio
and phase independent and exactly coincides with the transmission-
independent single-channel result κSNS/κN at ϕ = 0 and equal gaps;
see Fig. 2.

one. This effect is known as weak localization. Equivalently
to previous calculations for the (charge) conductance, the
resulting correction to the average of the heat conductance
can be obtained considering the corresponding correction to
the distribution of transmission eigenvalues δρ,

δκSNS =
∫ ∞

0
dxκ (n)

SNSδρ(x). (7)

Here, we use the parametrization Dn = 1
cosh2 x

for the trans-
mission eigenvalues of the normal region, such that one can
write δρ as [46]

δρ(x) =
(

1 − 2

β

)[
1

4
δ(x − 0+) + (4x2 + π2)−1

]
. (8)

The parameter β takes the value β = 1 for time-reversal and
spin-rotation symmetric systems (as the one considered here),
hence we find 1 − 2/β = −1. In the presence of a magnetic
field, β = 2 and the weak-localization correction vanishes.
Since β = 4 in the presence of strong spin-orbit coupling,
one would in this case expect a relative factor −1/2 with
respect to the weak-localization correction of the situation
presented here. This correction to the transmission-probability
distribution, and hence to the heat conductance, is of order
N 0 compared to the previously calculated 〈κSNS〉, which is of
order N . The weak localization correction is hence expected
to be of importance in particular in devices with a rather small
amount of channels, such as in recently developed hybrid
superconductor-semiconductor devices [28,29].

We show results for δκSNS (with β = 1) in Fig. 4; we
normalize with respect to

κref := 〈κSNS〉/(N �/L), (9)

which corresponds to the maximal average heat conductance
per single channel. For equal gaps and vanishing phase dif-
ference, see blue lines in panel (a) and (b), we recover the
known result for the charge conductance G of a normal-
conducting setup δκSNS

κref
= δ〈G〉

G0
= −1/3, with the conductance

quantum G0 = e2/h. The reason for this surprising occurrence
of a generalized Wiedemann-Franz law in this limit, stating

FIG. 4. Weak localization correction to the heat conductance
δκSNS normalized with respect to the (length-independent) average
heat conductance κref per channel, as function of the temperature.
(a) Equal gaps �0,L = �0,R at different phase differences ϕ and
(b) different gap ratios �0,L/�0,R at vanishing phase difference,
ϕ = 0.

that the weak-localization correction to the heat conductance
of the SNS junction δκSNS

κref
and the weak-localization correction

to the charge conductance of a normal conducting junction
δ〈G〉
G0

are equivalent, is the following: Eq. (1) for �0,L = �0,R

and ϕ = 0 yields De
n = Dn for the total quasiparticle trans-

mission above the gap. As a result the transmission of the
normal-conducting region Dn enters κSNS in the same way as it
enters G.

As soon as ϕ �= 0 or �0,L �= �0,R, the weak-localization
correction to the heat conductance deviates from this value.
This is in stark contrast to the previously presented channel
average, where the effect of phase and gap difference is
fully quenched. More specifically, the energy dependence of
the transmission amplitudes, induced by the presence of an
Andreev bound state or by Andreev reflection at different
gaps, leads to a suppression of the weak localization effect,
|δκSNS|

κref
< 1

3 . The suppression is strongest for low temperatures,
where also the energy dependence of De

n(E ), given in Eq. (1),
is most pronounced. In particular in the zero-temperature limit
T/Tcrit → 0, we find δκSNS

κref
→ 0.

V. HEAT CONDUCTANCE FLUCTUATIONS

Finally, we want to address the variance of the heat con-
ductance, which constitutes the heat transport analog to the
well-known charge conductance fluctuations [12–15]. Thanks
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to the eigenchannel decomposition of the full transmission
matrix, leading to Eq. (1), the variance Var[κSNS] can directly
be computed from [9,46]

Var[κSNS] = 1

2π2

∫ ∞

0
dx

∫ ∞

0
dx′

(
dκ

(n)
SNS(x)

dx

)

×
(

dκ
(n)
SNS(x′)
dx′

)
ln

(
1 + π2(x − x′)−2

1 + π2(x + x′)−2

)
,

(10)

using the previously introduced parametrization of Dn(x). Im-
portantly, this term is of order N 0; for the conductance G of a
normal-conducting junction in the diffusive limit, the conduc-
tance fluctuations take the universal value Var[G/G0] = 2/15
for the type of system we are considering here. In particular,
via the Wiedemann-Franz law this directly entails that the
variance of the heat conductance of the normal-conducting
junction, κN = κ0

∑N
n=0 Dn, is given by Var[κN/κ0] = 2

15 . The
variance of the normal-conducting heat conductance,

Var[κN] = 2

15

(
π2k2

B

3h

)2

T 2, (11)

is hence also universal—up to a factor T 2, which is expected
for the heat conductance (having a temperature-dependent
heat-conductance quantum κ0).

Due to the complex energy and phase dependence of
the transmission probability De

n, the fluctuations of the heat
conductance of the diffusive SNS junction Var[κSNS] are
more intricate—only in the limit of equal gap and vanishing
phase difference does the variance equal Var[κSNS/κref] = 2

15 .
Namely, we find that the previously discussed generalization
of the Wiedemann-Franz law applies to the (heat) conductance
fluctuations as well.

In Fig. 5, we show Var[κSNS/κref] as a function of tempera-
ture, both for equal gaps �0,L = �0,R at different phases ϕ, as
well as for ϕ = 0 but different gap ratios �0,L/�0,R. The blue
lines show the universal result in the equal-gap, zero phase
limit. Both panels demonstrate that the heat conductance
fluctuations are sensitive to the gap difference as well as to
the phase difference between the two contacts. Importantly,
despite these nontrivial dependencies leading to a suppression
with respect to 2/15, the heat conductance fluctuations stay
however close to universal. The difference of fluctuation
values is less than an order of magnitude at its biggest dis-
crepancy. In particular, even in the zero-temperature limit, the
fluctuations of the heat conductance, Var[κSNS/κref], approach
a finite, gap-dependent value.

VI. CONCLUSIONS

We have shown an analysis of the phase- and gap-
dependent heat conductance of SNS and NS hybrid junctions.
In particular, this work demonstrates how the phase- and
gap-dependent heat conductance of a hybrid superconducting
junction is impacted by the properties of a diffusive junction.
While the value of the heat conductance in the diffusive limit

FIG. 5. Heat conductance fluctuations normalized with respect
to the (length-independent) average heat conductance per channel
Var[κSNS/κref], as function of the temperature. (a) Equal gaps �0,L =
�0,R at different phase differences ϕ and (b) different gap ratios
�0,L/�0,R at vanishing phase difference, ϕ = 0.

leads to a complete quenching of effects induced by the gap
and phase difference of the superconducting contacts, the
dependence on these parameters persists in weak-localization
corrections and conductance fluctuations. We find that despite
its intricate phase and gap dependence, the heat conductance
fluctuations stay close to universal, similarly to the famous
charge-conductance counterpart.

We expect that experimental verifications of the predicted
phenomena are possible for diffusive metallic [24] and semi-
conducting devices with statistically distributed channel trans-
missions [29], exploiting advanced thermometry as recently
used for caloritronics measurements, e.g., in Ref. [1] and
further developed in Refs. [47,48].
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