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Effect of resonant impurity scattering of carriers on the Drude-peak broadening
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An explanation is proposed for the recently observed in optical spectra of monolayer graphene giant increase
in the Drude-peak width under applied uniaxial strain. We argue that the underlying mechanism of this increase
can be based on resonant scattering of carriers from inevitably present impurities such as adsorbed atoms that can
be described by the Fano-Anderson model. We demonstrate that the often neglected scalar deformation potential
plays the essential role in this process. The conditions necessary for the maximum effect of the giant Drude-peak
broadening are determined. It is stressed that the effect is strongly enhanced when the Fermi level gets closer to
the Dirac point. Our theoretical analysis provides guidelines for functionalizing graphene samples in a way that
would allow to modulate efficiently the Drude-peak width by the applied strain.
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I. INTRODUCTION

It is not surprising that after 14 years from the discovery of
graphene there is a shift from the fundamental toward the ap-
plied research. Despite the fact that the electronic subsystem
of graphene is well understood in the tight-binding approx-
imation, some fundamental issues of its physics still remain
unresolved. A curious mixture of fundamental and applied
physics that explores possibilities to use strain for controlling
physical properties of graphene was recently coined out as
straintronics [1–4].

Carbon atoms in the monolayer graphene constitute a
honeycomb lattice due to sp2 hybridization of their orbitals.
These in-plane hybridized orbitals form σ bonds that are
responsible for outstanding mechanical strength and stiffness
of graphene, which is able to sustain elastic deformations in
excess of 20% [5]. The graphene’s electronic, e.g., transport
and optical (see the review in Ref. [6]) properties are among
the most desired to control for both fundamental physics and
technology. These properties are governed by the electrons
in the valence and conduction bands. The latter are formed
by the remaining 2pz orbitals (making π bonds), which are
arranged perpendicular to the graphene sheet. Since there is no
significant mixing between states belonging to 2pz and 2sp2

bands, the electronic properties in vicinity of the Fermi energy
can be well described by a tight-binding model with only one
orbital per atom. Then, the impact of the deformation on the
electronic properties can be modeled by taking into account
the strain dependence of the hopping parameters as well as
onsite energies of these orbitals.

The uniaxial stretch is the simplest strain configuration for
theoretical and experimental study. The optical conductivity
of uniaxially strained graphene was studied theoretically in
Refs. [7–11]. The main result of these works is the anisotropic
renormalization of the interband conductivity as a function

of magnitude and direction of strain. These simple enough
predictions seem to be in agreement with the measurements
[12] of transparency in the visible range in large-area chemical
vapor deposited (CVD) monolayer graphene prestrained on
a polyethylene terephthalate (PET) substrate. The uniaxial
strain of the order of 0.5% results in a transparency change
of 0.1%.

The production of monolayer 30-in graphene films [13]
has opened a route to various practical applications. However,
CVD graphene exhibits low carrier mobility compared to
exfoliated graphene. This indicates that the carrier scattering
in the former case is more substantial. A recent experimental
study of the far-infrared transmission spectra of large-area
CVD monolayer graphene on a PET substrate [14] revealed
a new rather strong effect that has not been theoretically
expected. It was found that the Drude-peak width increases
by more than 10% per 1% of applied uniaxial strain, while
the Drude weight and, therefore, the Fermi energy remain
unchanged. To exclude the effect of relaxation of wrinkles and
folds, directly seen by atomic-force microscopy, the actual
strain was measured using the Raman spectroscopy. Possible
sources of electron scattering in graphene that may be respon-
sible for the observed effect were theoretically analyzed in
Ref. [14]. They include short-range point defects, long-range
charged impurities, acoustic phonons, surface phonons in the
substrate and grain boundaries. It was suggested that while the
effect of surface phonons in the substrate cannot be excluded,
the dominant increase of the width is due to scattering from
charged impurities related to the reduction of the effective
graphene-PET distance.

Another infrared spectroscopy study of carrier scattering
of large-area CVD monolayer graphene on SiO2/Si substrate
was recently done in Ref. [15]. The optical carrier scattering
rate as a function of the carrier density was studied, although
its strain dependence was not investigated.
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The purpose of this work is to put more emphasis on the
role of short-range impurities in the Drude-peak broadening.
For this task, the point defects are assumed to be either
chemically substituted carbon atoms, including their absence,
i.e., vacancies, or adsorbed atoms or molecules on a graphene
sheet. They originate both as by-products of a fabrication
method and from exposure to an environment.

A significant amount of work done on the electron trans-
port in graphene had shown that it is strongly affected by
the resonance impurity states (see, e.g., Refs. [16,17] and the
reviews in Refs. [18,19]). The corresponding partial scattering
rate of carriers is significantly enhanced in a vicinity of the
impurity resonance energy [20–22]. At that, the resonance
energy itself strongly depends on the behavior of the unper-
turbed density of states (DOS). Thus, we expect that even
small variation of the DOS caused by strain may result in a
large change of the Drude-peak width.

The paper is organized as follows. In Sec. II we present
model Hamiltonians that correspond to graphene with point
defects. In Sec. III we describe modification of the basic
parameters of the model under mechanical strain, and discuss
its main implications. In Sec. IV we discuss the formalism
employed for the impurity effect study and present analytical
expressions for the main quantities that we consider in this
paper. The results are provided in Sec. V. In Sec. V A,
we present results for the Lifshitz model. In particular, we
discuss the Born approximation as a weak scattering limit.
In Sec. V B, we analyse the Fano-Anderson model. In Con-
clusions, Sec. VI, we give a concise summary of the obtained
results.

II. MODELS

We start with the Hamiltonian

H = Hhost + Himp, (1)

where Hhost is the Hamiltonian for electrons in strained
graphene and Himp is the impurity Hamiltonian. In turn, the
Hamiltonian Hhost of strained graphene consists of the two
terms

Hhost = Hhop + Hpot. (2)

The conventional tight-binding Hamiltonian Hhop for π or-
bitals of carbon reads as

Hhop = −
∑
〈i, j〉

ti j (ĉ
†
A,iĉB, j + ĉ†

B, j ĉA,i ), (3)

where i, j run over N/2 lattice cells, indices A and B enu-
merate the sublattices, operator ĉ†

α,i (ĉα,i) creates (annihilates)
an electron at the corresponding lattice site, 〈i, j〉 denotes
summing over nearest neighbors, ti j is the strain-dependent
hopping amplitude. Details on how deformation is included in
the Hamiltonian and its expansion in the vicinity of the Dirac
point are presented in Sec. III below.

The potential term is

Hpot =
∑
i,α

Uαiĉ
†
αiĉαi, (4)

where α = A, B and Uαi is the onsite deformation-dependent
potential. Uαi consists of the strain-independent part ED,

which determines the energy of the Dirac point in unstrained
graphene, and the strain-dependent part, which can be related
to the interaction of the electrons with long-wavelength acous-
tic phonons [23].

In our description we assume that there is no mixing
between the spin states, so the spin label can be omitted. The
corresponding twofold degeneracy is taken into account when
appropriate.

Graphene with point defects, in particular impurities that
chemically substitute the carbon atoms or vacancies, can be
modeled as a substitutional binary alloy with a diagonal disor-
der. In this simple model, the hopping integrals for the carbon-
defect and defect-defect hoppings do not differ from the clean
graphene case. The corresponding impurity Hamiltonian Himp

in this description, widely referred to as the Lifshitz model
[24], reads as

HL = VL

∑
l,α

η
αl ĉ

†
αl ĉαl , (5)

where l = 1, . . . , N/2 runs over the lattice cells with two
atoms per cell, VL is the impurity potential, and ηαl is unity
on the sites occupied by the impurities and zero otherwise. In
the model we use, the impurity potential VL is the same for
every site occupied by an impurity.

The impurities are supposed to be distributed between
lattice sites without any correlation. Accordingly, ηαl equals
one with the probability c and zero with the probability
(1 − c). Thus, the probability c corresponds to the impurity
concentration per site and does not depend on the strain. For a
large system with N sites, the total amount of impurities goes
to cN .

To describe adsorbed atoms or molecules on the graphene
sheet, we employ the Fano-Anderson impurity model [25].
It introduces a possibility for an electron to transfer to an
additional energy level that belongs to the adsorbed impurity
bound to a host atom. The impurity part of the Hamiltonian
Himp describing the adatoms and their interaction with the host
reads as

HFA =
∑
l,α

ηαl
[
U imp

αl d†
αl dαl + (thybd†

αl cαl + t∗
hybc†

αl dαl )
]
. (6)

Here, index l = 1, . . . , N/2 spans over the lattice cells, the
parameter ηαl is used in the same sense as in Eq. (5), thyb is
the hopping integral between the adatom and the host, U imp

αl is
the potential on the adatom site, d†

α,l and dαl are the creation
and annihilation operators for this level.

III. UNIAXIALLY STRAINED GRAPHENE

Let us recapitulate the main results necessary for the
description of uniaxially strained graphene and discuss a
possible role played by the deformation potential term. We
choose the coordinate system so that the zigzag direction
of the honeycomb lattice is parallel to the Ox axis (similar
to Refs. [1,3,7–9,26]). The tensile stress, T = T cos θex +
T sin θey, can be applied at an arbitrary angle θ to the Ox
axis [ex,y are the unit vectors in the Ox(y) directions]. In the
following, we will also refer to the principal coordinate system
Oxθyθ in which T is aligned along the Oxθ axis: T = T eθ

x .
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Since we consider uniform planar strain, the components
of two-dimensional strain tensor ε̄ are position independent.
Accordingly, the displacement vector u(x) reads as u(x) =
ε̄ · x. Thus, the actual position of an atom x′ = x + u(x) can
be written as x′ = (Ī + ε̄) · x, where Ī is the unit 2 × 2 tensor.

It turns out that the planar deformation of the hexagonal
crystal in the basal plane is determined by two independent
stiffness (compliance) tensor components; in other words, it
behaves as an isotropic planar solid [27]. Therefore, as we will
find, the DOS is independent of the direction of the applied
strain.

In the principal coordinate system Oxθyθ , the only nonzero
deformations are the longitudinal deformation εθ

xx = T Sxxxx,
and Poisson’s transverse contraction εθ

yy = T Sxxyy. Here, Sxxxx

and Sxxyy are the two independent nonzero components of
the compliance tensor. Accordingly, the strain tensor can be
expressed in terms of the strain ε ≡ εθ

xx and the Poisson’s ratio
ν = −Sxxyy/Sxxxx as follows:

ε̄θ = ε

(
1 0
0 −ν

)
. (7)

A positive value of ε means the strain is tensile, while a neg-
ative value corresponds to compressive strain. In the original
lattice coordinate system the strain tensor reads as

ε̄ = ε

(
cos2 θ − ν sin2 θ (1 + ν) cos θ sin θ

(1 + ν) cos θ sin θ sin2 θ − ν cos2 θ

)
. (8)

As pointed out in Ref. [26], when the stress is induced
on graphene by mechanically acting on the substrate, the
relation between strain and stress is given by the material
parameters of the substrate, rather than the intrinsic properties
of graphene. The relevant tuning parameter in this case is the
tensile strain ε. Furthermore, a small Poisson’s ratio (ν = 0.16
in graphite [26]) may possibly be even smaller in graphene on
substrate [14].

As we stretch the sample, its area increases from NS0

to NSε. Here, Sε is the unit-cell area of uniformly strained
graphene, which is related to the unit-cell area of the pristine
graphene, S0 = 3

√
3a2/2, by the relation

Sε = S0(1 + trε̄) = S0[1 + (1 − ν)ε]. (9)

Specific quantities per unit area, such as carrier density, im-
purity density, the density of states, etc., are affected by this
change, even though the total number of charges or impurities
might have remain unchanged under the strain. Thus, it is
preferable to count such quantities per number of atoms. For
example, we specified the quantity of impurities by means of
the impurity concentration c, i.e., a ratio of the number of the
impure sites to the total number of sites. Obviously, it does
not change with the deformation, although the density of point
defects per unit area npd,ε = c(2/Sε ) changes.

A. Hopping Hamiltonian

The Hamiltonian Hhop (3) contains the hopping integrals
ti j . In the absence of deformation, ti j are independent of
position of the neighbors. Thus, |ti j | = const = t0 for every
pair of nearest neighbors 〈i, j〉. The value t0 ≈ 2.7 eV is
usually chosen [28] to match the tight-binding band structure
to results obtained from the first-principles calculations.

The uniform uniaxial deformation preserves the transla-
tional symmetry, but breaks the rotational symmetry of the
honeycomb lattice. In the absence of deformation, the nearest-
neighbor vectors that connect an A atom to the three B
neighbors are δ0

1 = a0(0, 1), δ0
2 = a0(

√
3/2,−1/2), and δ0

3 =
a0(−√

3/2,−1/2), where a0 = 1.42Å is the distance between
the nearest carbon atoms in undeformed graphene lattice. Due
to the uniform strain, the three nearest B sites change their
positions with respect to the A sites, so that the new vectors are
δε

n = (Ī + ε̄)δ0
n. Whereas |δ0

1| = |δ0
2| = |δ0

3| = a0, the vectors
δε

n differ in their lengths in a general case. Accordingly, there
are three separate hopping integrals tn (n = 1, 2, 3). Each one
can be represented as a function of the distance between
the neighbors, i.e., |δε

n|. For a small deformation, we can
use the first-order expansion in strain [3]:

tn ≈ t0 − βt0
a2

0

δ0
n · ε̄ · δ0

n. (10)

Here, β = (−∂ ln t/∂ ln |δε
n|)||δε

n|=a0 is the dimensionless
Grüneisen parameter. The values for this parameter vary be-
tween 2 and 4 across the literature; we will use β = 3 for our
studies.

The effective Hamiltonian describing uniformly strained
graphene in the momentum representation can be obtained
similarly to the case of pristine graphene [2,3,9,29,30]. To
derive a correct dispersion relation for electronic excita-
tions near the Dirac points, one has to account for their
shift in the k space [30] from the initial positions K0

± =
( ± 4π/(3

√
3a0), 0) in the undeformed graphene to the

new positions at KD
± = (1 − ε̄)K0

± ± Aps [30]. Here, Aps =
(β/2a0)(εxx − εyy,−2εxy) is the strain-induced vector poten-
tial [23]. Thus, the momentum representation of the hopping
Hamiltonian (3) at KD

+ point reads as

Hhop(q; KD
+) = h̄v0σ · [1 − (β − 1)ε̄] · q, |q|a0 	 1 (11)

where Pauli matrices σ = (σ1, σ2) act in the sublattice space,
v0 = 3t0a0/(2h̄) is the Fermi velocity in the pristine graphene,
and q is the wave vector measured from the shifted Dirac
point KD

+. The corresponding Hamiltonian for KD
− point can

be written by substituting σ → σ∗ = (σ1,−σ2). The effect
of strain in Eq. (11) is taken into account both via the β-
independent term caused by the deformation of the unit cell
of graphene lattice, and the β-dependent term caused by the
changes in the hopping parameters (10). Both contributions
have the same order of magnitude.

In the absence of strain, the conical Dirac spectrum reads as
E (q) = ±h̄v0|q| + ED. Here, ED is the strain-independent part
of the potential Uαl defined below Eq. (4). The corresponding
low-energy DOS per spin and unit area of unstrained graphene
is ρ0(E ) = |E − ED|/(π h̄2v2

0 ).
For the uniaxially strained graphene, the spectrum distorts

into elliptical cones E (q) = ±h̄
√

v2
‖q2

‖ + v2
⊥q2

⊥ + ED, where

q‖ (q⊥) is the wave-vector component parallel (perpendicular)
to the direction of applied strain. The corresponding compo-
nents of the anisotropic Fermi velocity are v‖ = v0[1 − (β −
1)ε] and v⊥ = v0[1 + ν(β − 1)ε] [3].

The only effect of the Dirac cone distortion on the DOS
of the strained graphene (per spin and unit area) ρε(E ) is the
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renormalization of its slope [3,11,31,32]

ρε(E ) = v2
0

v‖v⊥
ρ0(E ) ≈ [1 + (β − 1)(1 − ν)ε]

|E − ED|
π h̄2v2

0

.

(12)

It is theoretically predicted that for large strain, ε � 23%,
a gap in the quasiparticle spectrum opens [7,26]. Here, we
assume that the strain is small enough, and do not consider
such qualitative changes in the spectrum.

In what follows, it is more convenient to consider the DOS
per one atom:

Dε(E ) = Sε

2
ρε(E ) = |E − ED|

W 2
ε

, |E − ED| 	 Wε. (13)

The slope of this function, as follows from the normalization
condition for the total number of states

∫ ED+Wε

ED−Wε
Dε(E )dE = 1,

equals to the reverse square of the strain-dependent effective
bandwidth

Wε = W0

√
1 − β(1 − ν)ε. (14)

Here, W0 = (
√

3π )1/2t0  2.33t0 is the effective bandwidth in
the absence of strain. It is essential that, in contrast to the
Hamiltonian (11) and the DOS per unit area (12), the DOS
(13) does not depend on size or shape of the unit cell, and
depends only on the values of hopping integrals.

In Fig. 1 we illustrate how the strain modifies the DOS of
clean graphene. In particular, Fig. 1(a) shows only the effect
of hopping integral modification, whereas Fig. 1(b) adds the
effect of the deformation potential. The latter will be discussed
in Sec. III B.

We note that the bandwidth W0 ≈ 6.3 eV for t0 = 2.7 eV
in the model with the triangular DOS is noticeably less than
the graphene bandwidth, which is equal to 3t0 ≈ 8.1 eV in the
tight-binding approximation. As it was discussed above, ν �
0.16. However, in what follows we will simply assume that
ν = 0. If necessary, actual value of ν can be easily restored by
replacing ε → ε(1 − ν).

B. Deformation potential

In addition to the outcome of the hopping integral reduc-
tion, we have to take into account the effect of strain on the
potential term (4) in the host Hamiltonian (2). To fulfill this
task, the conventional description by the deformation potential
(see, e.g., Ref. [23]) is employed here. For uniaxial strain, the
potential energy does not depend on the lattice site. Thus, the
Hamiltonian (4) acquires the form

Hpot =
∑
i,α

(α trε̄εε + ED)c†
αicαi. (15)

Here, α is the deformation potential. In the momentum rep-
resentation [cf. Eq. (11)], Hpot can be expressed as (αε + ED)
multiplied by the 2 × 2 unit matrix σ0, which is justified by
the symmetry between sublattices. Accordingly, Hpot is also
referred to as the scalar potential [1,2].

The presence of the uniform deformation potential due to
the uniaxial strain shifts the whole distorted conical spectrum
along the energy axis, so that the Dirac point energy defined

FIG. 1. The influence of uniaxial strain on the DOS, Dε (E ).
(a) Only the hopping term is taken into account. The triangular DOS
of unstrained (strained) graphene is shown by the red (blue) lines.
The unperturbed bandwidth is W0 and the position of the Fermi level
EF corresponds to the hole-doped sample. The tensile ε > 0 strain
results in the decrease of effective bandwidth Wε < W0. Since the
number of carriers is fixed, the position of the Fermi level Eε

F > EF

shifts to the right in the hole-doped case. (b) Both the hopping
term and deformation potential are included. The latter results in
the shift of the Dirac point from ED to the position Eε

D = ED + αε.
The position of the Fermi level shifts to the value Eε

F as described
by Eq. (19). For a doped strained graphene the work function W =
Wε

D + Wε
F .

as E (q = 0) moves from ED to

Eε
D = ED + αε, (16)

which can be clearly seen in Fig. 1(b). Accordingly, the
difference E − ED [see, e.g. the DOS (13)] should be replaced
by E − Eε

D, where it applies.
Theoretical values of the deformation potential α recited

in the review [2] are rather inconsistent between sources and
vary in a fairly wide range from 0–20 eV. One can estimate
the value of α from the ab initio calculations [33], which show
that a 12% uniaxial strain results in increase of the work func-
tion Wε

D by 0.3 eV. In the undoped graphene, Wε
D is defined

as the difference between the local vacuum energy level Evac

and the Dirac point energy Eε
D, viz., Wε

D = Evac − Eε
D. Thus,

Wε
D = Evac − ED − αε = W0 − αε, where W0 is the work

function for undoped and unstrained graphene. Accordingly,
the deformation potential α = −dWε

D/dε ≈ −2.5 eV.
It was demonstrated in Ref. [34] that the work function

varies in one-to-one correspondence to the position of the
Fermi level in monolayer graphene. This relation was verified
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down to the nanometer scale, where due to inhomogeneities
of the sample the local Dirac point also changes its position.
Such behavior is in a striking contrast with the surface
pinning of the Fermi level in the most of three-dimensional
semiconductors.

The measurements done in Ref. [35] showed that the work
function of uniaxially strained graphene increases by 0.16 eV
under a 7% strain, i.e., with the relative rate dW/dε =
2.17 eV. For a doped strained graphene the work function can
be expressed as W = Wε

D + Wε
F , viz., a sum of the energy

intervals between the local vacuum energy level and the Dirac
point Wε

D defined above, and the Dirac point and Fermi level
Wε

F = Eε
D − Eε

F, as shown in Fig. 1(b). Accordingly, the rate
of change of the work function is

dW
dε

= −α − dE ε
F

dε
, (17)

where E ε
F = Eε

F − Eε
D is the Fermi energy counted with respect

to Dirac point Eε
D. At that, the quantity E ε

F is also strain
dependent.

Let us estimate the position of the Fermi level E ε
F with

respect to the Dirac point in the CVD graphene samples
studied in Ref. [35]. Using the DOS of the pristine graphene
(13) one can obtain the relationship between the number
of carriers per atom Nc (Nc > 0 for the electron doped and
Nc < 0 for the hole doped) and Fermi energy of noninteracting
Dirac fermions [36] in uniaxially strained clean graphene

Nc = sgn
(
E ε

F

)(
E ε

F

)2

W 2
ε

. (18)

Then, assuming that the number of carriers per atom Nc is
fixed, we arrive at the following expression for the strain-
induced shift of the Fermi energy with respect to the Dirac
point:

E ε
F = (EF − ED)

√
1 − βε, (19)

where EF is the Fermi energy of unstrained graphene. Since
the slope of the DOS (12) increases, the Fermi level goes
toward the Dirac point to accommodate the same number of
carriers. To illustrate this behavior, we show the aforemen-
tioned shift in Fig. 1(a). The position of the Dirac point in
Fig. 1(a) is assumed to be independent of strain and hole
doping, (EF − ED) < 0, is considered.

Taking the given above estimate α ≈ −2.5 eV, one finds
from Eq. (17) the value of the derivative dE ε

F/dε ≈ 0.33 eV.
Now, using Eq. (19) we obtain that EF − ED = −0.22 eV (hole
doping) for β = 3. This value is surprisingly close to the
absolute value |EF − ED| = 0.23 eV extracted from the optical
spectroscopy measurements in CVD graphene [14].

Thus, when the number of carriers in a graphene sample
is fixed, not only the Dirac point moves to the left, but also
the interval |E ε

F | = |Eε
F − Eε

D| diminishes under the strain, as
it is shown in Fig. 1(a). Contrary to that, the spectroscopic
measurements [14] indicate that the Drude weight and the cor-
responding quantity |E ε

F | (see Sec. IV C below) are essentially
strain independent. This observation can be easily understood
since for the fixed number of carriers 1% strain yields the
decrease of the interval |E ε

F | by a mere 3.5 meV, which is
well within the experimental error of Ref. [14]. Whereas if

the position of the Fermi level Eε
F is assumed to be fixed, the

strain-induced shift of the Dirac point would result in 25 meV
decrease of the Drude weight for 1% strain and hole doping,
which does not show up.

In what follows, we consider two cases: (i) |E ε
F | = const

that corresponds to the constant Drude weight observed in the
experiment in Ref. [14] and (ii) the isolated sample with fixed
number of carriers, taking into account the small drift of the
value |E ε

F | described by Eq. (19).

C. Strain effect on impurities

In addition to the change of the host lattice parameters that
takes place under a strain, we have to take into account the
analogous change of parameters describing an impurity. In
the Lifshitz model, it is natural to assume that the impurity
potential VL is also strain dependent. Thus, one has to add
a term similar to the scalar potential described in Eq. (15),
with a distinct parameter α′ signifying the strain effect on
impurity sites. In our treatment of the Lifshitz model, we
will neglect this discrepancy, and use the same value of the
deformation potential for both host and impurity sites as a
zero-order approximation.

Nonetheless, we will examine the role of the deforma-
tion potential more carefully in our treatment of the Fano-
Anderson model (6). To do this consistently, one has to specify
how the impurity hopping parameter thyb and the potential
on the impurity U imp

αl change under the strain. To our best
knowledge, there are no reliable data on strain dependence of
these quantities. Thus, we cannot justifiably estimate the rate
of change of the impurity parameters thyb and U imp

αl under a
strain in the same way as we did for the host atoms.

Still, we intend to consider the strain dependence of the
Fano-Anderson model parameters in the following way. We
will assume that the hopping parameter thyb does not change
under the strain. To describe the change of the impurity
potential, we will use the linear law similar to the one used
for the host potential [cf. Eq. (15)]:

U imp
αl = ED + E0 + αimpε. (20)

Here, E0 is the difference between the host site and impurity
site potential for zero strain, and αimp is a deformation poten-
tial for impurities which in general differs from α.

IV. METHODS

As we mentioned in Sec. III B below Eq. (17), it is
rather convenient to count the Fermi energy from the strain-
dependent Dirac point Eε

D. Thus, we introduce the notation

E = E − Eε
D (21)

and use it in what follows.

A. Diagonal element of the host Green’s function

The diagonal element of the host Green’s function (GF)

ĝε(E ) = [
Î
(
E + Eε

D

) − Ĥhost
]−1

(22)

in the site representation is necessary to proceed with the
calculations. Here, Ĥhost is the Hamiltonian (2) written in
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the form of N × N matrix and Î is the unit N × N matrix,
respectively. Since the inversion symmetry is preserved, the
diagonal matrix elements of the GF are identical on both
sublattices, ĝlAlA(E ) = ĝlBlB(E ).

The imaginary part of the diagonal element of the retarded
GF, gε

0(E ) = ĝlAlA(E + i0), is related to the DOS per atom as
follows:

Imgε
0(E ) = −πDε(E ). (23)

Its real part can be restored using the Kramers-Kronig relation
[22]. For low energies E defined by Eq. (21) the final expres-
sion for the diagonal part of the host Green’s function acquires
the following form:

gε
0(E ) = E

W 2
ε

ln

(
E2

W 2
ε

)
− i

π |E |
W 2

ε

, |E | 	 W0. (24)

B. Consideration of Lifshitz and Fano-Anderson models

Dealing with the impurity problem, one may rely on the
conventional analytic approach developed for a substitutional
binary alloy [37,38] (see also review [19] and Ref. [39], where
graphene was studied). Let us treat the case of the Lifshitz
model first.

A perturbed GF for the Lifshitz model can be defined for
each arrangement of impurities as follows:

Ĝε(E ) = [
Î
(
E + Eε

D

) − Ĥhost − ĤL
]−1

. (25)

The averaged over impurity distributions GF of the disordered
system Ĝ(E ) = 〈Ĝ(E )〉 is related to the host GF by the Dyson
equation

Ĝε = ĝε + ĝε�̂Ĝε, (26)

where �̂ is the self-energy operator with the index ε sup-
pressed for brevity. We omit scatterings from pairs and larger
groups of impurities, i.e., neglect cluster effects. The self-
energy is diagonal in this approximation, i.e., �̂ = � Î. Thus,
the solution of the Dyson equation can be expressed as

Ĝε(E ) = ĝε[E − �(E )], (27)

which corresponds to the renormalization of the host GF.
In this work we employ two approximations for the so-

lution of Eq. (26). The first one is the average T -matrix
approximation (ATA) [40]. In this approximation, the self-
energy function acquires the form

�ATA(E ) = cVL

1 − (1 − c)VLgε
0(E )

(28)

with gε
0(E ) given by Eq. (24).

Apart from the ATA, we employ the coherent-potential
approximation (CPA) [37]. In this approximation, the self-
energy is expressed as a solution of the following equation:

�CPA(E ) = cVL

1 − [VL − �CPA(E )]gε
0[E − �CPA(E )]

. (29)

It can be shown [41] that for the Fano-Anderson model,
the host part of the Green’s function has the same form as in
the Lifshitz model, with the impurity potential VL replaced by

the energy-dependent effective potential

Vε(E ) = |thyb|2
E − E0 + α ε

, (30)

where α = α − αimp is the difference between the deforma-
tion potential on host and impurity atoms. To obtain the ex-
pressions for the self-energy analogous to (28) and (29) for the
Fano-Anderson model, one should substitute the impurity po-
tential VL by the effective potential Vε(E ) defined in Eq. (30).

C. Relationship between the Drude width and
the impurity scattering rate

Let us now discuss the link between the self-energy � and
the parameters extracted from the spectroscopy measurements
[14,15]. We assume that the Drude peak in ac conductivity has
the Lorentzian shape, viz.,

Reσ (ω) = D(EF)

π

�opt (EF)

ω2 + �2
opt (EF)

. (31)

Here, D is the Drude spectral weight and �opt = 2�tot is the
Drude-peak width (with �tot being the total single-particle
scattering rate). One of the advantages of the infrared spec-
troscopy, as compared to the dc transport measurements, is
that it allows to extract both the Drude spectral weight and
the Drude-peak width. The uniaxial strain makes the Drude
weight anisotropic [10] and sensitive to the anisotropy of the
Fermi velocity [see below Eq. (11)]. However, presence of a
substrate does not allow to measure the intrinsic dichroism
of graphene [14]. Thus, in Ref. [14], the averaged over strain
directions Drude weight was considered. In the absence of
impurities, this weight is merely proportional to the Fermi
energy counted with respect to the Dirac point

D
(
E ε

F

) = e2

h̄2

∣∣E ε
F

∣∣ (32)

that allows one to find out the absolute value of E ε
F and its

strain dependence [14].
In the general case, the simple relationship (32) is violated

by the presence of defects. However, when the concentration
of defects is small, |�(EF)| 	 |EF|, another rather simple
equation for the Drude weight, which involves the quasipar-
ticle self-energy, is valid [42]:

D(EF) = e2

h̄2 [EF − Re�(EF)], |�(EF)| 	 |EF|. (33)

As discussed in Sec. V, in this work we restrict ourselves
to a small impurity concentration c � 4 × 10−4. In this case,
|�(EF)| � 10 meV, which is indeed much less than the value
|EF| ∼ 0.23 eV reported for CVD graphene [14]. Further-
more, the variation of Re�(EF) under the strain is of the
order of a few millielectronvolts, so that in the case when
E ε

F is fixed, one can also assume that the Drude weight also
remains practically constant. This situation breaks down for
high-impurity concentrations, when Eq. (33) is not applicable
(see Ref. [42]) and fixing the value of EF does not imply that
the Drude weight remains constant.

According to Matthiessen’s rule, the total single-particle
scattering rate is �tot = ∑

i �i, where �i are the contributions
from different sources of scattering, e.g., short-range point
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defects, long-range charged impurities, acoustic phonons, sur-
face phonons in the substrate, and grain boundaries. Each of
these contributions may be strain dependent. In this work we
restrict ourselves to the effect of resonant impurity scattering
on the Drude-peak width

�opt,ε(EF) = 2�ε(EF) = −2Im �(EF) (34)

as a function of strain ε and Fermi energy EF. The effect of
small strain on the scattering rate and the Drude-peak width
can be characterized by the relative gain

κ = ∂ ln �ε

∂ε

∣∣∣
ε=0

. (35)

V. RESULTS

A. Lifshitz model

In this section, we present results obtained for the Lif-
shitz model. It is instructive to begin our consideration with
discussion of the correspondence between our approach and
an estimate of the scattering rate from point defects done in
Ref. [14].

1. Weak-scattering regime

The Born weak-scattering approximation follows from the
ATA equation (28) for small VL. For �Born = −Im �(EF) it
gives

�Born = −cV 2
L Imgε

0(EF) = πcV 2
L Dε(EF). (36)

Since we assumed that the impurity potential VL is inde-
pendent of strain, one obtains that κBorn = β. This result is
substantially larger than the estimate done in Ref. [14], that
gave κ

′
Born ≈ 0.3. This disagreement can be understood from

the fact that the potential used in the continuum descriptions
of point defects V (r) = Vpd,εδ(r) contains the constant Vpd,ε

that was assumed in Ref. [14] to be independent of strain. This
assumption would indeed result in κ

′
Born = β − 2. However,

since VL is assumed to be independent of strain, the energy
density Vpd,ε depends on the strain as Vpd,ε  Vpd,0(1 + ε),
with Vpd,0 being the corresponding energy density without
strain. This strain dependence of Vpd,ε allows to recover our
estimate κBorn = β. As it can be seen from the above, in the
weak-scattering limit the self-energy is a slowly varying linear
function of energy.

2. Large impurity perturbations

As was shown in Ref. [20], in the Lifshitz model a
resonance state appears for large impurity potentials. It is
known that in vicinity of the resonance energy scattering from
impurities significantly increases. Thus, we examine below
the case of strong impurity potentials.

Since we consider the hole-doped regime EF < 0, which
was studied in the experiments [14,35], we are mostly in-
terested in those impurities that induce resonance states with
energies located below the Dirac point. We note that the case
of electron-doped sample EF > 0 can be treated in the same
fashion, but a resonance with the positive energy is necessary
to enhance the corresponding scattering rate.

The presence of the impurity resonances was numerically
confirmed by ab initio calculations [16,17,43] and observed

FIG. 2. The real and imaginary parts of the self-energy function
�(E ) in vicinity of the Dirac point in the Lifshitz model. The model
parameters are VL = 6.3t0, c = 4 × 10−4. The convex and concave
curves correspond to Re�(E ) and Im�(E ), respectively. Blue lines
and black lines were computed in the CPA approximation, while gray
lines were obtained in the ATA approximation. The dashed and the
solid lines correspond to the results for zero strain, while the dotted-
dashed and dotted lines are for ε = 5%.

in experiments [44]. The examples of such impurities are the
adsorbed atoms H and F, hydroxyl groups OH−, etc. The
energy of the resonance depends on the sort of the impurity.
For example, according to Ref. [43] the resonances formed
by H, F, and OH− are predicted to have energies −0.07,
−0.38, and −0.25 eV, respectively. However, there is a sig-
nificant inconsistency between values of the resonance energy
obtained by different methods. For example, the H resonance
energy is considered to be in ±0.03 eV interval in Ref. [17], at
−0.07 eV in Ref. [43], and at 0.20 eV in Ref. [44]. In our anal-
ysis, we will not restrict ourselves to a particular sort of impu-
rity. Instead, we will pick a resonance energy to demonstrate
the proposed mechanisms of the scattering rate enhancement
most vividly, albeit using the mentioned results as a guide.

In Fig. 2 we present results for the real and imaginary parts
of the self-energy function �(E ) for 0 and 5% strain. We
remind that to compare results for different values of strain,
we present them as functions of the relative energy E defined
by Eq. (21), so that for arbitrary strain the Dirac point energy
is located at the origin E = 0. The impurity perturbation VL =
6.3t0 is chosen to give a minimum in Im�(E ) approximately
at −0.35 eV. Such impurity perturbation can be attributed to
the fluorine impurities. The impurity concentration is chosen
to be c = 4 × 10−4. The self-energy function was calculated
both in the ATA [Eq. (28)] and the CPA [Eq. (29)] approxima-
tions, respectively. One can see that both approximations give
rather similar results for the given choice of the parameters.
We observe a peak in the real part and a dip in the imaginary
part of the self-energy below the Dirac point E = 0. A more
careful examination reveals that the real part has an inflection
point at the same energy in which the minimum of Im�(E )
is located. As the strain is applied, the inflection point and the
dip get closer to the Dirac point.

To identify the described above features in the self-energy
function, we now investigate the ATA approximation (28)
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analytically. Neglecting the concentration c near the unity in
the denominator, we obtain the imaginary part of the self-
energy function in the following form:

Im�(E ) ≈ −cV 2
L π |E |/W 2

ε[
1 − VLE

W 2
ε

ln
(

E2

W 2
ε

)]2 + [
πVLE
W 2

ε

]2 . (37)

This fraction rapidly decreases as the first term in the denom-
inator vanishes at some energy Er, which is yielded by the
Lifshitz equation

1 − VLEr

W 2
ε

ln

(
E2

r

W 2
ε

)
= 0. (38)

As the perturbation |VL| increases, the value Er converges to
the position, where the function Im�(E ) has the minimum
that corresponds to the maximum in the full DOS, which
includes the effect of impurities. Thus, the energy Er marks
the position of the impurity resonance in the Lifshitz model.
We will refer to Er as the resonance energy, even though for
moderate values of VL it slightly deviates from the minimum
in the self-energy.

In the Lifshitz model, the location of the resonance relative
to the Dirac point is opposite to the sign of the impurity
perturbation: sgn(Er ) = −sgn(VL). This property is inherent
in general spectra consisting of two symmetric bands touching
each other in a finite number of points [22].

The resonance energy shifts with varying the impurity
perturbation VL. To determine the direction of this shift, we
took a partial derivative over VL of the Lifshitz equation (38):

∂Er

∂VL
= 1

2

(
Wε

VL

)2[
ln

Wε

|Er| − 1

]−1

. (39)

This expression is positive for |Er| < Wε/e, where e is the
base of the natural logarithm. As long as we consider strong
potentials, one can see that as |VL| increases, the resonance
energy shifts toward the Dirac point energy in either Er > 0
or Er < 0 case.

A similar shift of the resonance energy occurs when uniax-
ial strain is applied. As we stretch the sample, the bandwidth
Wε decreases [see Eq. (14)]. The bandwidth acts as a scaling
parameter in the solution of the Lifshitz equation (38). Indeed,
this solution can be written in the form Er/Wε = f (VL/Wε ),
where f (x) is a function of the dimensionless potential VL/Wε.
The latter determines the position of the resonance in units
of Wε. As discussed below Eq. (39), the resonance is getting
closer to the Dirac point for stronger impurity potentials. The
decrease of the bandwidth leads to the two consequences, viz.,
trivial rescaling of Er and an increase of VL/Wε. Both of them
result in the decrease of the absolute value of the resonance
energy Er .

To verify this result, we have also obtained an exact
solution of the Lifshitz equation (38). The solution can be
written in terms of the Lambert function which is defined as
a root F (z) of the equation z = F exp(F ) [45]. The Lambert
function has two branches F0(z) and F−1(z), which represent
two single-valued solutions of the equation. Specifically, we
use F−1 branch that satisfies the condition |F−1(x)| > 1 for
x < 0 and corresponds to the resonance inside the band |Er| <

Wε. Then, the solution of Eq. (38) can be written in the form

Er = W 2
ε

2VL

1

F−1
( − Wε

2|VL|
) . (40)

In accordance with the above-mentioned arguments, the reso-
nance energy shifts toward the Dirac point E = 0, as the strain
ε increases.

Calculations performed for different values of VL give
results resembling those shown in Fig. 2. For a reference, the
values of VL in the range between 15 and 30 eV produce the
resonance energies in the range between −0.40 and −0.20 eV.
In addition to the resonance position moving closer to the
Dirac point for larger |VL|, the resonance peak also gets
narrower. As for the impurity concentration c, it mainly acts
as a linear scale for absolute value of the self-energy function.
Increasing c does not affect the positions of the extrema in the
ATA approximation, and in the CPA approximation the results
indicate a slight shift for high concentrations. In the limit
of small impurity concentration c → 0, both approximations
give the same results.

B. Fano-Anderson model

Although the Lifshitz model does reasonably well describe
substitutional impurities and is capable of generating a res-
onance state near the Dirac point for large values of the
impurity perturbation VL, we are going to proceed to the
Fano-Anderson model analysis for several reasons.

First, the Lifshitz model has only one adjustable parameter
VL. The real impurities are expected to alter more than one
matrix element of the host Hamiltonian. Such can be the
hopping integrals and the potential energies on the lattice sites
in the neighborhood of the impurity. Generally, we expect a
model with extra parameters to be able to provide for more
accurate results. In this regard, the Fano-Anderson model is
preferable, as it has two parameters, E0 and thyb.

Second, we need a model to describe adsorbate impurities.
This is the type of point defects we expect to be present in
noticeable quantities in graphene samples grown by conven-
tional methods on substrates. It is widely known that the Fano-
Anderson model is capable of describing, at least qualitatively,
adsorbates deposited on a graphene sheet: atoms, molecules,
free radicals, etc.

Third, to obtain the impurity resonance in the Lifshitz
model, we had to assign unrealistically large values of the im-
purity perturbation VL. In contrast, the Fano-Anderson model
is free of this deficiency. It is capable to provide resonances
with energy and width nearly identical to that of the Lifshitz
model, but the respective values of the parameters thyb and E0

are of the same order as t0.
Hereby we will describe how Fano-Anderson impurities

form a Drude-peak width that is highly sensitive to applied
strain. If we want to provide a description for a specific sort
of impurities, we have to assign realistic values to the model
parameters thyb and E0. Such values can be obtained by fitting
to ab initio results, as was done in Refs. [16,17,43]. The results
vary due to obvious imprecision of the fitting procedure. After
all, this model does not describe adsorbate impurities in every
respect. In our examples, we will adjust the model parameters
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FIG. 3. The real (upper red curves) and imaginary (lower green
lines) parts of the self-energy �(E ) for the Fano-Anderson model
calculated in the CPA approximation with E0 = −0.75t0, thyb = 2t0,
c = 4 × 10−4 for two values of strain ε = 0 and ε = 5%. The solid
lines show results for zero strain, the dashed lines show results for
ε = 5% with the same deformation potential for host and impurity
atoms (α = 0), and the dotted lines show results for ε = 5% with
no impurity deformation potential (αimp = 0 or α = −2.5 eV).
Results obtained with αimp varying between these two limiting values
span the shaded areas.

to match a predefined resonance energy, while keeping the
ab initio fits in mind.

As we have noted previously, little is known on the re-
sponse of the impurity potential to strain. We overcome this
difficulty by sweeping the impurity potential αimp between
two limiting values: αimp = α and αimp = 0.

In the first limiting case, the potential energy on impurity
sites changes in concert with host sites, so that αimp = α =
−2.5 eV. Thus, the relative deformation potential α = 0,
and it is not present in the effective impurity potential (30).

In the second limiting case, the potential on impurity sites
does not change at all with the strain αimp = 0. Therefore,
α = α = −2.5 eV is present in Eq. (30). In Fig. 3, we
show real and imaginary parts of the self-energy function,
Re�(E ), and Im�(E ), calculated in the CPA approximation
for 0 and 5% strain. The parameter thyb = 2t0 is chosen to
conform with the general estimate provided in Ref. [17].
While this choice is not the only possible one, as the values for
specific impurities may differ significantly (like in Ref. [43]),
we consider it as a reasonable compromise that provides a
description of strongly bound impurities. The other parameter,
E0 = −0.75t0, is tuned to match with the resonance energy
Er = −0.35 eV, in analogy to Fig. 2. This is surprisingly close
to the parameters for fluorine obtained in the recent preprint
[46]. Whereas these results resemble those presented for the
Lifshitz model in Fig. 2, the values of thyb and E0 are not as
excessively large as VL = 6.3t0 used there.

To demonstrate a possible contrast between the results
with and without the impurity deformation potential, in Fig. 3
the areas between the two lines with α = 0 (dashed lines)
and α = −2.5 eV (dotted lines) are shaded. The apparent
difference suggests that the effect of the impurity deformation

FIG. 4. Imaginary part of the self-energy Im�(E ) calculated for
the Lifshitz model (black solid line) and for the Fano-Anderson
model (other curves). The impurity concentration c = 4 × 10−4 is
the same for all curves. The parameter VL = 6.3t0 for the Lifshitz
model. The parameters for the Fano-Anderson model are thyb =
2t0, E0 = −0.75t0 (blue dashed line); thyb = t0, E0 = −0.28t0 (green
dotted-dashed line); thyb = 0.5t0, E0 = −0.17t0 (red dotted line). The
zero strain is considered.

potential could be as significant as the one resulted from
variation of the bandwidth.

The obtained results are quite similar to the ones we
have seen for the Lifshitz model. Let us clarify how far
this comparability extends. In Fig. 4, we present Im� calcu-
lated both for the Lifshitz model (black solid line) and for
the Fano-Anderson model (other curves) at zero strain. To
make a proper comparison, the position of the resonance for
the Lifshitz model with VL = 6.3t0 has to be matched with the
positions of the minima of the self-energy function obtained
for the Fano-Anderson model. We fulfill this goal by using
the following procedure. To cover a wider range of the model
parameters, we select the impurity hopping parameter thyb as
multiples of 0.5t0. Then, we adjust the difference between
the host site and impurity site potential for zero strain E0

to achieve the chosen value of the resonance energy. The
impurity concentration c = 4 × 10−4 is fixed for all curves.

We observe in Fig. 4 that for weakly bound impurities
with thyb = 0.5t0 (red dotted curve) the dip in Im�(E ) be-
comes significantly narrower. For strongly bound impurities
with thyb = 2t0 (blue dashed line), the Fano-Anderson model
produces the results similar to the Lifshitz model as expected,
because both |thyb| and |E0| are significantly larger than the
energy of the resonance. In this case the function V (E ) given
by Eq. (30) has a weak dependence on E when the energy is
located in the vicinity of the Dirac point.

In what follows, we restrict ourselves to the case thyb = 2t0
in which the Fano-Anderson model is expected to yield results
comparable to the ones obtained in the Lifshitz model, so that
the strain dependence of the self-energy function has similar
character. Specifically, the resonance energy Er is determined
by Eq. (38), with VL substituted by Vε(E ):

Er = E0 − αε

1 − |thyb|2
W 2

ε
ln

( E2
r

W 2
ε

) . (41)
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In the case of strongly bound impurities, we can neglect
the first term in the denominator, and this equation acquires
the same form as Eq. (38). Thus, we can expect the reso-
nance energy to behave under strain in the same way as in
the Lifshitz model. In addition to the strain-induced shrinking
of the bandwidth (14), the dimensionless effective potential
−|thyb|2/(E0 − αε)Wε can be further amplified by the rela-
tive deformation potential α. Both mechanisms result in a
shift of the resonance energy toward the Dirac point.

The contribution of resonant impurity scattering to the
Drude-peak width �opt,ε(EF) is proportional to Im� taken
at Fermi energy EF [see Eq. (34)]. The sharp profile of the
self-energy function makes �ε very sensitive to the position
of the Fermi level. The latter is, in fact, determined by all
possible sources of excess charges. Those can be induced by
electrostatic doping and all sorts of defects. While resonance
impurities contribute to the charge imbalance, they do not
necessarily determine it.

For instance, let us examine whether resonance impuri-
ties alone can be responsible for the value EF = −0.23 eV
reported in Ref. [14]. For simplicity, we will assume that each
impurity removes one electron from the valence band. In cal-
culating Figs. 2–4, we had adjusted the impurity concentration
c to get the value �opt,ε(EF) ≈ 15 meV as reported in [14].
The resulting value c = 4 × 10−4 should be compared to the
carrier imbalance per atom Nc. If c > |Nc|, then it means that
the number of impurities is greater than the number charge
donors.

To estimate the carrier imbalance per atom Nc, one can use
Eq. (18). For EF = −0.23 eV and ε = 0, we get the negative
imbalance, i.e., holes, with |Nc| = 1.2 × 10−3. This concen-
tration is three times larger than c = 4 × 10−4. It allows us to
state that the charge doping in this particular case was caused
by some other mechanism.

As discussed in Sec. IV C (see also the end of Sec. III B),
the case |E ε

F | = const approximately corresponds to the con-
stant Drude weight when impurity concentration is small
enough, c � 4 × 10−4. In Fig. 5 we present �opt,ε calculated
in the ATA approximation as the function E ε

F for three in-
creasing values of the strain ε = 0%, 1%, 2%. The parameters
thyb = 2t0 and E0 = −0.75 t0 coincide with those of Fig. 3.
The same deformation potential for host and impurity atoms
is chosen, α = 0, so that the shift of the resonance energy is
solely caused by the decrease of the bandwidth. One can see
in Fig. 5 how this shift amplifies the Drude width.

While the relative change of the resonance energy due to
the strain is small compared to its absolute value in the ab-
sence of strain, the increase in �opt,ε can be quite substantial.
This is a consequence of the acute steepness of −2 Im�(E )
function that is reached on the half-width of the peak. The
large slope is intrinsic to the impurity resonance. This feature
is absent in the weak-scattering case, in which the resonance
cannot be seen, and the resulting expression for the Drude-
width dependence on the Fermi energy is a slowly varying
function with a nearly uniform moderate slope [see Eq. (36)].

The extracted from the experimental data [14] value EF =
−0.23 eV is shown as the vertical line. The points at inter-
section of this line by the curves �opt,ε give values of the
Drude width that correspond to different values of strain ε.
The inset in Fig. 5 zooms in the area with the three mentioned

FIG. 5. The Drude-peak width �opt,ε = −2 Im�(EF ), as a func-
tion of the Fermi energy EF, calculated for the strain ε =
0%, 1%, 2% in the Fano-Anderson model. Inset: zoom-in the vicinity
of EF = −0.23 eV which is shown as the vertical line. The model
parameters are the following: c = 4 × 10−4, E0 = −0.75t0, thyb =
2t0, α = 0.

intersections for ε = 0%, 1%, 2%. One can see that the de-
pendence of �opt,ε on strain is linear because the intersection
points are equally spaced for equal increments of the relative
strain ε. The linear regime holds when the values of EF fell on
the half-width of the resonance peak. It persists for values of
the relative strain up to ∼10%.

Since the Drude width scales linearly with the impurity
concentration c, it is convenient to consider its relative gain,
which per 1% of the strain reads as

κ = �ε − �0

�0ε

∣∣∣∣
ε=1%

. (42)

Figure 6 shows κ as a function of EF calculated for the
Fano-Anderson model in the CPA approximation. Here, it
is assumed that the Fermi energy itself is independent of
strain, |E ε

F | = |EF| = const. As was already discussed, this
case approximately corresponds to the strain-independent
Drude weight. The results are shown for the four sets of
the model parameters, with c = 5 × 10−5 and thyb = 2t0 for
each set and E0 = −1.25t0 (first set, purple lines); E0 = −t0
(second set, blue lines); E0 = −0.75t0 (third set, green lines);
E0 = −0.5t0 (fourth set, orange lines). Note that the third set
(green lines) corresponds to the values of thyb and E0 already
used in Figs. 3 and 5. For each set of parameters, we calculated
the gain κ with the same deformation potential for host and
impurity atoms (αimp = α or α = 0) shown by the dotted-
dashed lines and with αimp = 0 (α = −2.5 eV) plotted by
the double-dotted-dashed lines. The distances between these
pairs of lines signify the contribution of the relative deforma-
tion potential to the effect. The results for intermediate values
of the relative deformation potential (−2.5 eV < α < 0) fall
in the shaded areas between the lines.

The four sets shown in Fig. 6 differ from each other by the
values of the resonance energy Er. It gets closer to the Dirac
point as |E0| diminishes and passes from the first to the fourth
set. Respectively, the relative gain function κ(EF) becomes
sharper, as the resonance widths are getting narrower. This
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FIG. 6. The relative gain κ of the Drude width per 1% of strain
as a function of EF for the Fano-Anderson model. The calculation
is done assuming a constant strain independent EF. All curves are
for thyb = 2t0 and c = 5 × 10−5. Four sets of the curves differ by the
value of E0: 1, E0 = −1.25t0 (purple lines); 2, E0 = −t0 (blue lines);
3, E0 = −0.75t0 (green lines); 4, E0 = −0.5t0 (orange lines). The
dashed lines show the results with the same deformation potential
for host and impurity atoms (α = 0) and and the dotted lines are for
no impurity deformation potential (αimp = 0 or α = −2.5 eV). The
areas between each pair of curves are shaded in same color tone as
the lines. The dotted-dashed and double-dotted-dashed gray lines are
obtained on the base of analytical estimates for the upper and lower
bounds of the gain function for the cases αimp = α and αimp = 0,
respectively (see the main text for the explanation).

is true at least for |thyb| � t0 case, in which the width of the
resonance is proportional to |Er|, like in the Lifshitz model.

To study the relative gain κ(EF) we have chosen the
same impurity concentration c = 5 × 10−5 for all curves. It
is lower than the value 4 × 10−4 that was used for computing
Figs. 3–5. This choice ensures that for all values of E0 the
results presented in Fig. 6 will not change for any lower
impurity concentration.

With a significant increase in the concentration of im-
purities, the ATA and CPA approximations start to deviate
from each other. More importantly, these approximations fail
to give a valid description of the electronic spectrum at
all energies under consideration because at higher concen-
trations of impurities the spectrum undergoes a qualitative
transformation. It is estimated [22] that for a given energy of
the resonance Er, the spectrum transformation occurs at the
concentration cST = 2(Er/W0)2 ln(W0/|Er|). One can expect
that the presented results are applicable for the impurity
concentration c substantially lower than cST. We note that
for the first and second sets the presented results are still
valid even for higher concentration c = 4 × 10−4. However,
the imposed restriction on the impurity concentration is fully
justified for the fourth set for which the last concentration is
too high.

As can be seen from Fig. 6, the presented curves for κ(EF)
functions have a number of common features. Moving from
the Dirac energy toward increasing |EF|, we observe a sharp
maximum followed by a steep descent into negative values
of κ. The zero of κ(EF) function roughly corresponds to the

resonance energy. After crossing the resonance energy, we
reach the maximum decrease of the Drude weight. Both the
maximum and the minimum lie roughly on the half-width of
the peak in �(EF). Subsequently, we find a relatively small
negative gain that vanishes slowly as |EF| moves away from
the resonance energy and further increases.

Let us stress that in the case αimp = 0 (α = −2.5 eV)
the relative gain can be almost twice as large compared
with the case αimp = α (α = 0). Thus, we cannot neglect
this mechanism, and credit the hopping integral variation
as the exclusive source of the partial Drude-width increase.
Moreover, we cannot exclude the possibility that the relative
deformation potential α is even bigger in absolute value, in
which case it gives even larger contribution to the effect.

We have made an analytical estimate for the upper and
lower bounds of the gain function. A function κm(EF) de-
scribes the envelope function that goes through extrema of
κ(EF) functions plotted for different values of E0. We distin-
guish four functions that connect the maxima or the minima
for the cases αimp = α and αimp = 0. The corresponding
κm(EF) functions are shown in Fig. 6 by the dotted-dashed
and double-dotted-dashed gray lines.

Since in the general case not only the bandwidth Wε is
strain dependent, but also the energy-dependent effective po-
tential Vε(E ), the relative gain κ(EF) consists of the two terms

κ(EF) = κ
(W )(EF) + κ

(α)(EF). (43)

Here, the first term originates from the strain dependence
of Wε

κ
(W )(EF) = 1

�0

∂�

∂Wε

∂Wε

∂ε

∣∣∣∣
ε=0

, (44)

and the second is caused by the strain dependence of the
potential Vε(E )

κ
(α)(EF) = 1

�0

∂�

∂Vε

∂Vε

∂ε

∣∣∣∣
ε=0

. (45)

It is obvious that in the α = 0 case, only the former term
κ

(W )(EF) contributes to the gain.
To find the maximal value for this term, it is sufficient

to consider the imaginary part of the self-energy for the
Lifshitz model in the ATA approximation (37), at least for the
strongly bound impurities. To do this, one has to differentiate
the expression for κ

(W )(EF) with respect to the impurity
perturbation VL. Alternatively, we can reasonably assume that
this maximum occurs when the Fermi energy EF lies at the
resonance half-width from the energy Er . In this case, the two
terms in the denominator of Eq. (37) are approximately equal.
Using this property and taking the derivative over ε, we arrive
the following rather simple estimate:

κ
(W )
m (EF) ≈ 2

π
β ln

(
W0

|EF|
)

. (46)

One can see that Eq. (46) does not depend on the impurity
perturbation VL. This expression is plotted in Fig. 6 as the
upper dotted-dashed gray line. Taken with the opposite sign,
it also provides a good estimate for the lower bound of the
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gain for the same α = 0 case. It is shown as the lower
dotted-dashed gray line.

To derive a similar estimate for the term κ
(α)(EF) defined

by Eq. (45), one has to use the Fano-Anderson model with
the impurity perturbation given by Eq. (30). Using the same
simplifications as previously, we arrive at the following
expression:

κ
(α)
m (EF) ≈ − W 2

0

πt2
hyb

α

|EF| . (47)

Evidently, this term is nonzero only for α �= 0. In this
case the sum κ

(W )
m (EF) + κ

(α)
m (EF) of the two contributions,

Eqs. (46) and (47), describes the upper bound of the gain for
α = −2.5 eV. The same sum but taken with the negative
sign −[κ(W )

m (EF) + κ
(α)
m (EF)] provides the lower bound of

the gain at particular value of EF. Both limits are shown in
Fig. 6 by the double-dotted-dashed gray lines.

So far, we have analyzed the case of the strain-independent
Fermi energy |E ε

F | = const, that for the considered concentra-
tion of impurities corresponds to the constant Drude weight.
Now, we turn to the case of a sample with fixed number of
carriers.

C. Case of fixed number of carriers

For the isolated sample with fixed number of carriers, one
has to take into account the small drift of the Fermi energy
|E ε

F |, described by Eq. (19). As discussed in Sec. III B, 1%
strain results in the decrease of the interval |E ε

F | by only
3.5 meV. Note that for the impurity concentrations considered
in this work, one can neglect deviations of the DOS from
the clean graphene case [Eq. (13) caused by the resonance
impurities]. Thus, we can use Eq. (19) to obtain a value of the
Fermi energy E ε

F in the strained sample.
Nevertheless, the obtained shift of the resonance energy is

E ε
r − Er ∼ 10 meV for ε = 1% and Er = −0.35 eV. Although

this is three times larger than the corresponding shift of the
Fermi energy, it is worth to take into account the strain
dependence of E ε

F .
In Fig. 7 we plot the relative gain κ as a function of

the zero-strain Fermi energy E0
F = W0

√
Nc. It is assumed

that the number of carriers Nc is fixed, so that the value
E ε

F changes under the strain. Accordingly, the Drude-width
change is determined by both the resonance energy shift and
the strain dependence of the Fermi energy. We chose the same
parameters and notations as in Fig. 6.

We find that the relative gain depends on the Fermi energy
similarly to the previous section, but the magnitude of the
effect is noticeably smaller. While the results without account-
ing for the Fermi energy shift (see Fig. 6) feature the values of
the relative gain up to 15% per 1% of strain, in Fig. 7 we can
see only a 8% maximum increase for the same parameters. It
is still large in comparison to the Born approximation, which
yields ∼3% regardless of the impurity parameters.

Qualitatively, one can understand the obtained results by
the fact that the Fermi energy shifts in the same direction
as the resonance, albeit with a different strain rate. This
shift partially cancels the increase in the Drude width. To
account for this change in the calculation of the maximum

FIG. 7. The relative gain κ of the Drude width per 1% of strain as
a function of the zero-strain Fermi energy E 0

F = W0
√

Nc for the Fano-
Anderson model. The calculation is done assuming a constant strain-
independent carrier imbalance Nc. All parameters and notations are
the same as in Fig. 6. The black dotted-dashed and double-dotted-
dashed lines are obtained on the base of analytical estimates for the
upper and lower bounds of the gain function for the cases αimp = α

and 0, respectively (see the main text for the explanation). The gray
dotted-dashed and double-dotted-dashed gray lines are the same as
in Fig. 6.

gain κm(EF), we have to include an extra term:

κ
(EF )
m (EF) = 1

�0

(
∂�

∂E ε
F

∂E ε
F

∂ε

)∣∣∣∣
ε=0

≈ β

π

[
− ln

(
W0

|EF|
)

+ 1

2

]
. (48)

The sums ±[κ(W )
m (EF) + κ

(EF )
m (EF) + κ

(α)
m (EF)] are shown in

Fig. 7 as the dotted-dashed and double-dotted-dashed black
lines for the cases αimp = α and 0, respectively. For com-
parison, we also reproduced the corresponding dotted-dashed
and double-dotted-dashed gray lines from Fig. 6 that do not
include the term (48).

VI. CONCLUSIONS

Our investigation of the properties of the Drude width
in uniaxially strained graphene was partly motivated by the
experimental work [14]. As pointed out in [14], the strong
effect of strain on optical absorption of graphene at terahertz
and lower frequencies may have important implications for
graphene-based optoelectronic devices, e.g., photodetectors,
touch screens, and microelectromechanical systems. The ob-
servation that these properties can be controlled mechani-
cally opens new possibilities for the future applications of
graphene.

We have thoroughly investigated a possible contribution of
the point defects in the observed strong strain dependence
of the Drude width. A comparison with other mechanisms
of scattering of charge carriers, which can overshadow the
described effects, was not performed. Instead, we focused
on in-depth study of impurities that can be described by the
Lifshitz and the Fano-Anderson models within the framework
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of the ATA and the CPA approximations. These approxi-
mations allow to take into account the resonant character
of these impurities that cannot be properly addressed in the
weak-scattering regime analyzed in Ref. [14].

Another important issue considered in this work is the
underlying mechanism of the strain influence on the elec-
tronic spectrum of graphene. The first effect considered in
the vast majority of the literature focuses on strain effect on
hopping integrals. The tensile strain results in the increase
of the lattice bond lengths, so the corresponding hopping
parameters decrease. This in turn causes the deformation of
the electronic spectrum and the effective bandwidth Wε, given
by Eq. (14), decreases. In the weak-scattering regime, the
impurity scattering rate is merely proportional to the DOS
[see Eq. (13)]. The mentioned above decrease of the effective
bandwidth Wε causes a moderate monotonic increase in the
DOS and corresponding scattering rate.

Discussed in this work effects are associated with the
resonant impurity perturbation. We show that it may cause
a drastic increase in the impurity scattering rate when the
corresponding resonance is located in the vicinity of the Fermi
level. For the hole-doped sample shown in Fig. 1, the reso-
nance is assumed to be on the left side from the Fermi level.
As the strain is applied, the interaction between the impurity
state and host results both in the increase of the DOS and shift
of the impurity resonance toward the Dirac point and thus
closer to the Fermi level. In the case when the Drude weight is
assumed to remain constant, this shift of the resonance energy
produces a significant increase in the Drude-peak width.

In the case when the carrier number in the sample is
fixed, the Fermi level also shifts toward the Dirac point.
Nevertheless, the increase in the impurity scattering rate still
occurs because the Fermi level goes to the Dirac point slower
than the resonance energy as the strain is applied.

Yet, as we discussed, there is a second effect caused by
the onsite deformation potential. When this potential is the
same both on the host and impurity sites, the whole picture
described above remains valid except that the Dirac point,
the Fermi level, and the resonance energy are synchronously
shifted by the same magnitude. On the other hand, if we
assume that the deformation potential changes the onsite
energies of the host atoms, while the energies of the the
adatoms do not change, the resonant impurity scattering
rate is enhanced even more strongly under strain.

The effect of the strain on the impurity scattering rate is
characterized by the dimensionless gain parameter (35), or
by its discrete analog (42), which is convenient to use in

numerical calculations when the dependence of the scattering
rate on strain is linear. Our main results that describe the gain
for 1% strain can be summarized as follows.

(1) In the weak-scattering limit we obtain that the gain is
around 3%, which is larger than the estimate done in Ref. [14].
The reason of the discrepancy is explained in Sec. V A 1.

(2) For the fixed Drude weight |E ε
F | = |Eε

F − Eε
D| = const,

the maximal gain is 8% in the case when the potential energy
on impurity sites changes in concert with host sites. The gain
reaches 15% when the potential on adatoms in the Fano-
Anderson model does not change at all with the strain.

(3) As the absolute value of the Fermi energy increases,
the gain steeply diminishes and reaches zero when |E ε

F | is ap-
proximately equal to the resonance energy. Further increase of
the Fermi energy results in the negative values of the gain and
then one reaches the minimal negative gain, i.e., the maximum
decrease of the Drude weight. The predicted characteristic
nonmonotonic behavior of the gain as the function of the
Fermi energy can be used to identify the contribution of the
resonant impurities in the Drude width in the experiments with
controllable carrier density [15].

(4) For the fixed carrier number, when the difference |E ε
F |

becomes strain dependent, the value of the maximal gain
diminishes to 8%.

We emphasize that these values of the gain can be achieved
when the impurity resonance is located in the vicinity of
the Fermi level that in the experiment [14] has the specific
value EF = EF − ED ≈ −0.23 eV. To conclude, we note that
even if the resonant impurities are not responsible for the
effects observed in Ref. [14], this work allows one to speculate
that the resonant impurities added on graphene’s sheet should
allow one to control the corresponding electronic properties
of graphene. This provides guidelines for functionalizing
graphene samples in a way that would permit to modulate
efficiently the Drude-peak width by the applied strain.
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