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Flat bands with extremely narrow bandwidths on the order of a few millielectron volts can appear in twisted
multilayer graphene systems for appropriate system parameters. Here we investigate the electronic structure of
a twisted bi-bilayer graphene, or twisted double bilayer graphene, to find the parameter space where isolated
flat bands can emerge as a function of twist angle, vertical pressure, and interlayer potential differences. We
find that in twisted bi-bilayer graphene the bandwidth is generally flatter than in twisted bilayer graphene by
roughly up to a factor of 2 in the same parameter space of twist angle θ and interlayer coupling ω, making
it in principle simpler to tailor narrow bandwidth flat bands. Application of vertical pressure can enhance the
first magic angle in minimal models at θ ∼ 1.05◦ to larger values of up to θ ∼ 1.5◦ when P ∼ 2.5 GPa, where
θ ∝ ω/υF . Narrow bandwidths are expected in bi-bilayers for a continuous range of small twist angles, i.e.,
without magic angles, when intrinsic bilayer gaps open by electric fields, or due to remote hopping terms. We
find that moderate vertical electric fields can contribute in lifting the degeneracy of the low-energy flat bands by
enhancing the primary gap near the Dirac point and the secondary gap with the higher energy bands. Distinct
valley Chern bands are expected near 0◦ or 180◦ alignments.
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I. INTRODUCTION

Research on twisted hybrid van der Waals two-dimensional
2D materials has recently seen a new surge of interest fol-
lowing experimental observations of exotic quantum phases
due to strong electron correlations [1,2] and especially sig-
natures of unconventional superconductivity [3–5] in twisted
bilayer graphene (tBG), raising hopes of finding new clues
for understanding analogous behaviors seen in more complex
systems [6]. In tBG the spatial variation of interlayer coupling
modifies the intrinsic Dirac cone band structure of graphene
in such a way that the band dispersion is almost completely
suppressed at the so-called magic twist angles [7]. When
the bandwidth W of these low-energy bands is sufficiently
narrow it is possible to achieve the U/W � 1 condition that
makes the effective Coulomb repulsion U more dominant. A
considerable body of literature has formed recently on the
Coulomb interaction-driven broken symmetry phases [8–14]
and superconductivity in tBG flat bands [15–32] in an effort to
elucidate the nature of the superconducting phases. Analogous
observations of Coulomb interaction-driven correlated phases
and superconductivity have been observed in ABC trilayer
graphene (TG) on hexagonal boron nitride (hBN) [33–35]
where the flattening of the low-energy bands is facilitated by
the presence of a vertical electric field that introduces a band
gap at the primary Dirac point of a chiral two-dimensional
electron gas (2DEG) [36,37], or in twisted gapped Dirac
materials [38–40]. It was suggested that the low energy flat
bands [41] could have well-defined valley Chern numbers and
give rise to spontaneous quantum Hall phases when the band
degeneracy is lifted by Coulomb interactions [36,42].
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The proposals of flat bands in several types of multilayer
graphene materials is suggesting that they can arise in a large
variety of 2D material combinations provided that we choose
the appropriate intrinsic electronic structure of each layer and
their interlayer coupling [42]. In this work we study the flat
band bandwidth phase diagram of a twisted BG/BG system,
that we refer to as twisted bi-bilayer graphene (tBBG) or
twisted double bilayer graphene, which consists of two bilayer
graphene units with a twist. We assess for this system the
effect of the interlayer coupling strength and the interlayer
potential differences between the layers in the resulting band-
width of the low-energy flat bands. It is expected that the
smaller parabolic band dispersion slopes at low energy in
a BG can favor the formation of flat bands upon interlayer
hybridization. This paper is structured as follows. In Sec. II
we introduce the theoretical details of the continuum model
Hamiltonian used to formulate the problem. In Sec. III we
present the phase diagram of U/W , the flat band bandwidth
and gaps as a function of different system parameters, such
as the twist angle, the interlayer coupling strength, and the
interlayer potential differences due to a vertical electric field.
In Sec. IV we discuss the valley Chern number phase dia-
grams, and then close the paper in Sec. V with the summary
and conclusions.

II. MODEL HAMILTONIAN FOR TWISTED
BI-BILAYER GRAPHENE

Models proposed in the literature to capture the electronic
structure of tBG relied either on tight-binding calculations
[43–45] often based on the distance-dependent two center
approximation models for the hopping terms between inter-
layer carbon atoms, or by using other more sophisticated
parametrizations [46,47]. The successful formulation of a
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FIG. 1. Moiré pattern created by a twisted bi-bilayer graphene
(tBBG) and the commensurate unit cell of two Bernal stacked bilayer
graphene aligned (a) near 0◦ twist angle for type-I AB/AB twisted
bi-bilayers, and (b) near 180◦ (or 60◦) twist angles for type-II
AB/BA twisted bi-bilayers. Panel (c) represents schematically two
uncoupled parabolic bands, the perturbative interband hybridization
through the interlayer tunneling ω, the intrinsic bilayer gap (2�), and
band offset (2�′) due to a perpendicular electric field.

rigorous moiré bands theory on the basis of the moiré pat-
tern superlattice [7] allows one to obtain accurate continuum
models for the Hamiltonian informed from first-principles cal-
culations [47]. In the present work we extend the continuum
model of Bistritzer-MacDonald for the tBG [7] to the case
of tBBG. The Hamiltonian of tBBG at valley K that we use
captures the interlayer coupling between the twisted layers
through a first-harmonic stacking-dependent interlayer tun-
neling function. Schematic representations of commensurate
and twisted BG/BG structures are shown in Fig. 1. We write
the Hamiltonian of the twisted top (+) and bottom (−) bilayer
graphene Hamiltonian subject to �i intralayer potentials as

HtBBG(θ )=

⎛
⎜⎜⎝

h+
t + �̄1 t+

s 0 0
t+†
s h+

b + �̄2 T (r) 0
0 T †(r) h−

t + �̄3 t−
s

0 0 t−†
s h−

b + �̄4

⎞
⎟⎟⎠,

(1)

where h±
t/b = ht/b(±θ/2) such that the relative twist angle

between the bilayers is θ . The top and bottom BG are labeled
through the positive/negative (+/−) rotation signs, while
in turn we have top/bottom (t/b) graphene layers within
each BG that are coupled through the matrices t±

s that we
define later. The site potentials for each graphene layer �i

are mapped on its sublattices through �̄i = �i1 where i =
1, 2, 3, 4 are the layer labels from top to bottom, and 1 is
a 2 × 2 identity matrix. Potential differences can give rise
to band gaps at the primary Dirac point of each BG and
shift the associated band edges. We will discuss later on the
effects of these intralayer potentials in the electronic structure
of the flat bands. The Hamiltonian of graphene is given by
h±

l (θ ) = h±(θ ) + δ(1 − lsσz )/2 where the second term adds
a δ = 0.015 eV sublattice potential at the higher energy dimer
sites at the t/b layers l = ± [48], that depends on AB or BA
stacking s = ±, respectively. The Dirac Hamiltonian given by
h(θ ) = υF R̂−θp · σxy includes a phase shift due to a rotation

R̂−θ such that e±iθp → e±i(θp−θ ), where σxy = (σx, σy) and
σz are the graphene sublattice pseudospin Pauli matrices,
and the momentum is defined in the xy plane p = (px, py),
where we assume K valley unless stated otherwise. The Fermi
velocity υF = υ0 defined from υi = √

3|ti|a/2h̄ is related to
the intralayer nearest-neighbor hopping term t0 = −2.6 eV
within the local density approximation (LDA) [49], while
an enhanced t0 = −3.1 eV and ab initio interlayer tuning
better captures the experimental moiré band features [50]. The
interlayer coupling model of a bilayer graphene is given by

t±
AB =

(−υ4π
±† −υ3π

±

t1 −υ4π
±†

)
, t±

BA = t±†
AB (2)

satisfying ts=+ = t†
s=− for AB or BA (s = ±1) stacking-

dependent interlayer coupling that consists of a minimal
coupling term ts = t1(σx − isσy)/2 plus remote hopping
contributions through t3 = 0.283, t4 = 0.138 terms, giving
rise to trigonal warping and electron-hole asymmetry. The
π± operators include the phases due to ±θ/2 layer rotation.
The type-II AB/BA bi-bilayers near 180◦ alignment can be
modeled by controlling the stacking of bottom BG from AB
to BA by using s = −1 for the bottom BG. The interlayer
tunneling is defined as the Hamiltonian matrix element at the
Dirac point t1 = HBA′ (K, �dAB) between B and A′ sites from
bottom to top layer for AB stacking when both atomic sites are
vertically aligned and assume t1 = 0.361 eV at zero pressure
within LDA [48]. We can identify the interlayer tunneling
with the first harmonic expansion coefficient of the interlayer
coupling such that t1 = 3ω [47], and for simplicity we use the
same AB stacking tunneling within each Bernal BG and the
twisted interfaces. The minimal model approximation uses
δ = t3 = t4 = 0 in Eq. (1). The presence of remote hopping
terms will lead to broadening of the low-energy flat bands
and enhancement in electron-hole asymmetry. This behavior
is not strange since the t3 trigonal warping widens the range
of band touching points at three points away from the Dirac
point at directions connecting the K points with 	 [48], and
the t4 term breaks the intrinsic electron-hole symmetry of
bilayer graphene [51].

The moiré Brillouin zone (mBZ) orientation is preserved
when the top and bottom graphene layers rotate symmetrically
in opposite senses. In the small-angle approximation the inter-
layer coupling Hamiltonian is given by

T (r) =
∑

j=0,±
e−iQ j rT j

l,l ′ , (3)

where the three Q j vectors Q0 = Kθ (0,−1) and Q± =
Kθ (±√

3/2, 1/2) are proportional to twist angle θ and K =
4π/3a is the Brillouin zone corner length of graphene, whose
lattice constant is a = 2.46 Å, and here the indices l, l ′ label
the sublattices of neighboring twisted surface layers. The
interlayer coupling matrices between the two rotated adjacent
layers are given by

T 0 =
(

ω′ ω

ω ω′

)
, T ± =

(
ω′ ωe∓i2π/3

ωe±i2π/3 ω′

)
(4)

using a form that distinguishes interlayer tunneling matrix
elements ω = ωBA′ and ω′ = ωAA′ for different and same
sublattice sites between the layers. The convention taken here
for the T j matrices [47] assumes an initial AA stacking
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configuration τ = (0, 0) and differs by a phase factor with
respect to the initial AB stacking τ = (0, a/

√
3) [7]. The

greater interlayer separation c compared to the carbon-carbon
distances aCC lead to slowly varying interlayer tunneling
function T (r) and the moiré patterns can often be accurately
described within a first-harmonic approximation [7,47]. In
this limit, and assuming no corrugation effects, the interlayer
coupling strength can be well approximated by a single pa-
rameter ω = ω′ whose value was calculated within LDA to
be ω ∼ 0.113 eV when averaged for every stacking at a fixed
interlayer distance cAB = 3.35 Å of AB stacking. A somewhat
weaker ω ∼ 0.098 eV is expected when the interlayer relax-
ations for farther AA interlayer distance cAA = 3.57 Å within
LDA is accounted for in the averaging process [47]. The
interlayer tunneling matrix elements Hll ′ (K, �d ) are evaluated
at the Dirac point K for a commensurate system with stacking
sliding vector �d through the lattice Fourier transform of the
distant real-space hopping terms connecting the sites l and l ′.
The tunneling matrix elements ω,ω′ for twisted systems are
obtained averaging over all possible commensurate stacking
configurations given by the integral

ωll ′ =
∫

cell
d �d Hll ′ (K, �d ) 


∑
s

Hll ′ (K, �ds)

3
(5)

that in the first-harmonic approximation can be approximated
by taking the average of the sum over the three symmetric

stacking configurations s = AA, AB, BA at their respective
equilibrium interlayer distances [47]. Because tunneling
between interlayer sublattices in graphene on graphene
vanish at symmetric stackings s when they are not vertically
aligned we have

ω = ωAB′ = ωBA′ 
 HBA′ (K, dAB)

3
, (6)

ω′ = ωAA′ = ωBB′ 
 HAA′ (K, dAA)

3
. (7)

Using Eqs. (6) and (7) at zero pressure and using the
EXX+RPA equilibrium distances for each stacking [52] we
get ω = 0.12 eV for cAB such that t1 = 3ω = 0.36 eV, close to
the LDA interlayer coupling in Bernal BG, and ω′ = 0.098 eV
for cAA, which is incidentally rather close to the interlayer
tunneling from explicit integrations in �d in Ref. [47]. The
effects of atomic relaxation in the moiré patterns can have
non-negligible effects in the details of the electronic structure
for both intralayer potentials and interlayer coupling that
can be captured with higher-order harmonics in the moiré G
vectors [53]. It was also noted that in tBG unequal interlayer
coupling values ω �= ω′ enhances the gap between the
low-energy flat band and its neighboring higher-energy band
[12]. The band structures for type-I AB/AB structures near 0◦
alignment calculated for the minimal tBBG model are shown
in Fig. 2 both for rigid unrelaxed ω = ω′ and out-of-plane

FIG. 2. Band structures of bi-bilayer graphene for θ = 1.5◦, 1.05◦, for zero and finite interlayer potential difference parameters �,�′. The
parabolic dotted lines are a guide to the eye for the original position of the bilayer graphene band edge in the absence of interlayer tunneling
between the BG. The addition of an interlayer potential difference through the �′ parameters introduces a separation between the low-energy
flat bands roughly proportional to the interlayer potential difference between the top and bottom outer layers of tBBG. For a system with Fermi
velocity υF = 1.0 × 106 m/s we show the (a) band structures calculated with a single parameter interlayer coupling ω = ω′ = 0.12 eV, and
(b) band structures calculated with ω′ = 0.1 and ω = 0.12 eV with different intersublattice tunneling values that enhances the gap between the
flat bands and the neighboring higher energy bands.
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relaxed interlayer tunneling values ω �= ω′. In the case of
tBG it was noted that the magic angle follows the θ ∝ ω/υF

proportionality [54] where the magic angles grow with
increasing interlayer coupling strength. Hence, an enhanced
υF = 1.0 × 106 m/s (or t0 = −3.1 eV), together with ab initio
tunneling ω = 0.12 eV, ω′ = 0.098 eV from Eqs. (6) and (7)
leads to similar low-energy bands as the LDA υF = 0.84 ×
106 m/s (or t0 = −2.6 eV) combined with weaker ω = 0.1 eV
and ω′ = 0.08 eV values. In the calculations to follow we use
the enhanced Fermi velocity of υF = 1.0 × 106 m/s together
with the ab initio interlayer tunneling ω and ω′ based on
Eqs. (6) and (7) compatible with EXX+RPA equilibrium
distances. Our calculations have used a configuration space
with variable cutoff in momentum space of a radius of up to
6G1 = 24πθ/(

√
3a) using Hamiltonian matrices with sizes

as large as 676 × 676 such that θ � ω/(12π |t0|) to obtain
converged results in the limit of small θ and large ω.

An important distinctive feature of tBBG with respect to
tBG is that we have an additional control knob to change the
electronic structure through a perpendicular external electric
field that modifies the interlayer potential �i values in Eq. (1).
The potential drops introduced by an external electric field
could be modeled through the parameter set �1 = −�4,
�2 = −�3, redefined as �1 = (� + �′)/2, �2 = (−� +
�′)/2 in terms of 2�, the interlayer potential difference
within each BG, and 2�′ the potential difference between
the BG. We will use the relation �′ = 2� to introduce equal
interlayer potential drops of �′ between the consecutive lay-
ers to model the effects of an electric field. A qualitatively
different interlayer potential configuration consists in having
the electric fields point in opposite directions at each BG.
This could be done by grounding the tBBG device and using
equipotential top/bottom gates to accumulate charges of the
same sign at the outer layers. The potential distribution of
this case can be modeled by �1 = −�2 = −�3 = �4 = �,
where the reversal of the relative mass sign between the top
and bottom BG can modify the topology of the resulting flat
bands. Distinct band topologies are thus expected for a system
subject to a perpendicular electric field near 180◦ (or 60◦)
alignment where for the same mass sign the chirality of the
bands at K are reversed.

III. FLATBANDS AS A FUNCTION OF TWIST ANGLE,
ELECTRIC FIELDS, AND PRESSURE

In the following we discuss the electronic structure results
and the moiré flat band bandwidth in tBBG as a function
of system parameters such as twist angle θ , the interlayer
coupling ω tunable by pressure, and interlayer potential dif-
ferences due to an electric field, in search of the optimal
conditions for finding isolated low-energy flat bands near
the Fermi level. The interlayer potential differences due to
an electric field are modeled combining potential differences
between the layers within each BG (�) and inter-BG potential
offset (�′), which are related to each other through �′ = 2�

that can lift the degeneracy of the flat bands.
In the band structures resulting from the minimal model

shown in Fig. 2 for a twist angle of θ = 1.5◦, we can still
distinguish features of the original BG band structure at the
Dirac cones, and can identify the band structure near the

FIG. 3. Variation of flat band bandwidth for � = �′ = 0 eV
as a function of interlayer coupling strength and twist angle for
the rigid continuum model with t0 = −2.6 eV. The bandwidths in
tBBG are narrower by roughly a factor of 2 when compared with
the bandwidths in tBG with similar system parameters, where the
dotted horizontal lines represent the bandwidth of tBG at the belly
maxima. Left panel: Flatband bandwidth as a function of twist
angle θ at different interlayer couplings ω = 0.12, 0.18, 0.24 eV. We
observe that the bandwidth changes nonmonotonically with the twist
angle and goes through a series bandwidth minima. Right panel:
Flat band bandwidth as a function of ω, at different twist angles
θ ◦ = 1◦, 1.25◦, 1.5◦. We can observe a steep initial reduction in the
bandwidth followed by a mild bump for increasing ω.

magic angle θ = 1.05◦ of tBG. The first important observation
is that the overall bandwidths of the low-energy bands in
tBBG are almost half of those corresponding to tBG for a
similar range of θ and ω parameter values, suggesting that
the tBBG system is generally more suitable for the generation
of narrow bandwidth flat bands than in tBG. This is shown
in Fig. 3 where we represent the bandwidth as a function of
twist angle θ for fixed values of interlayer coupling ω and as
a function of ω for fixed θ values. From the bandwidth versus
θ dependence we can observe that the bandwidths remain
below 10 meV for every twist angle below and around the
first magic angle. Likewise, the bounce off of the bandwidth
for increasing ω past the critical value at the first magic angle
have maxima that are roughly half of those seen in tBG [54].
We thus expect that in tBBG the twist angle control does not
need to be as precise as in tBG to maintain a moderately
narrow bandwidth on the order of ∼10 meV for twist angles
smaller than ∼1◦. Inclusion of remote hopping terms results
in band gaps near charge neutrality for sufficiently large twist
angles and widening of the bandwidths with respect to the
minimal model, as shown in Fig. 4. The trigonal warping
term in BG generates several band touching points in the
vicinity of the Dirac point, and introduces particle-hole sym-
metry breaking of sufficient relevance especially when we
apply an external electric field. In Fig. 4 we compare the
band structures of the minimal model and the more complete
model that includes the remote hopping parameters, both for
type I near 0◦ and type II near 180◦ alignments. For the
complete Hamiltonian we include the remote hopping terms
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FIG. 4. Comparison of the minimal and remote hopping Hamiltonian model that includes the trigonal warping t3, intrinsic electron-hole
asymmetric t4 terms, and higher-energy dimer site potential δ. The band structures of the minimal model are in black, and those that include
the remote hopping terms are in dotted red lines. The remote hopping terms generally widen the minimal model flat bands, and can introduce
primary band gaps δp near charge neutrality for large twist angles. Appropriate electric fields can compress the bandwidth, while maintaining
band isolation through the primary δp and secondary gaps δs. We distinguish the (a) band structures for type I near 0◦ alignment and (b) for
type II near 180◦ alignment that show distinct electronic structures and responses to electric fields.

t3 and t4, the site potential offset δ between the high energy
dimer sites, and interlayer coupling ω and ω′ in Eqs. (6) and
(7) evaluated at the equilibrium out-of-plane relaxed lattice
distances.

The second important observation is the tunability of the
primary and secondary band gaps accompanied by a variation
in bandwidth due to an electric field, as illustrated in Fig. 4.
Even for a twist angle ∼1.5◦ considerably greater than the
minimal model magic angle of ∼1◦ the low-energy bands
can remain isolated thanks to the primary δp and secondary
δs gaps. These gap values are obtained from the difference
between the maximum (minimum) energy of the flat band and
the minimum (maximum) energy of the neighboring higher
(lower) band resulting in positive values when there is a
gap and giving negative values when there is band overlap.
Application of external fields contributes in changing the
bandwidth and a relatively narrow bandwidth on the order
of ∼25 meV or smaller is achievable for moderate electric
fields that introduce interlayer potential differences typically
of a few tens of meV. The bandwidths were obtained from the
difference between the maximum and minimum band energy
for a given band within the mBZ. Band gaps within each
BG layer (�) and band offsets between BG layers (�′) are
simultaneously present when a perpendicular electric field
is applied in the system. It is found that generally �′ con-
tributes in widening the bandwidth of the low-energy bands.

An important factor for the onset of the interaction-driven
ordering is the isolation of the low-energy bands that can
be quantified from the primary gap δp near charge neutrality
and the secondary gap δs near the 	 point of mBZ, since
greater band isolation reduces screening and strengthens the
Coulomb interactions. Hence, the parameter space most likely
to observe Coulomb-driven ordered phases should have simul-
taneously smaller bandwidths W and larger isolation gaps δp

and δs. We can estimate the ratio of Ueff/W from the effective
three-dimensional screened Coulomb potential

Ueff = e2

4πεrε0lM
exp(−lM/λD), (8)

where the moiré length is lM = a/θ , and the De-
bye length λD = 2ε0/e2D(δp, δs) uses the 2D density of
states D(δp, δs) = 4[|δp|u(−δp) + |δs|u(−δs)]/(W 2AM ) that
assumes a value proportional to the band overlap ratio δp/s/W
when δp/s < 0, where u(x) is the heaviside step function,
εr = 4, and we counted four valley-spin degenerate electrons
per moiré unit cell area AM = √

3 l2
M/2 for each filled moiré

band. This ratio in Eq. (8) is used to find the parameter space
region of twist angle and interlayer electric field with narrow
bands and strong effective Coulomb interactions (see Fig. 5).
While the parameter region near θ ∼ 0.5◦ shows the largest
Ueff/W ratios compared to θ � 1◦ due to the greater flatness
of the bands at small twist angles, the closer proximity of
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FIG. 5. Colormap phase diagram of Ueff/W for the effective Coulomb interaction versus bandwidth W in the parameter space of θ and
� that indicates the plausible regions where Coulomb interactions can trigger ordered phases. Inclusion of remote hopping terms in the band
Hamiltonian of bilayer graphene introduces particle-hole symmetry breaking generally favoring Ueff/W for the conduction bands over the
valence bands. Islands in the phase diagram are found due to the suppression of Ueff in Eq. (8) when neighboring bands overlap, leading to
large regions of twist angles between 0.5◦–0.8◦ and 1◦–1.6◦ favorable for interaction-driven broken symmetry phases for � values accessible
in experiments.

the neighboring energy bands in this regime may enhance
the Coulomb screening in a way that is not captured in the
screening model we have used. We expect that the electron-
hole asymmetry resulting from the intrinsic asymmetry of
BG with remote hopping terms can be further affected by
the coupling with the substrate, for example by aligning
BG with a hexagonal boron nitride substrate which in a
heterojunction with single-layer graphene, introduced a strong
intrinsic particle-hole asymmetry in the electronic structure
[55].

A phase diagram of the bandwidth, the primary gap, and
secondary gap as a function of twist angle and external field
strength is presented in Fig. 6. For simplicity we have assumed
that the potential differences between contiguous layers are
given by �′ = 2� and are the same for a given electric field,
although the precise interlayer potential differences will de-
pend on the screening between the layers. This phase diagram
of Ueff/W ratios, bandwidths, primary, and secondary gaps
both for electrons and holes illustrates the parameter space
where the likelihood for finding ordered phases is higher. As
a general trend we find a non-negligible asymmetry between
electrons and holes, and the possibility of finding states with
primary and secondary gaps both at small and large twist an-
gles of ∼0.5◦ and ∼1.5◦ for sufficiently strong electric fields.
Due to the almost linear increase of the low-energy bandwidth

with increasing twist angle there is a tradeoff between band
isolation easier at larger twist angles and bandwidth increase
to find the optimum parameter space where the Coulomb
interaction effects will be strongest.

Application of pressure is also a useful control knob to tune
the electronic structure of 2D materials [4,54,56,57]. In the
bandwidth and gaps phase diagram as a function of twist angle
and pressure shown in Fig. 7 both for �(′) = 0 and for �(′) �=
0 we can observe that the enhancement of ω through pressure
generally compresses the bandwidth of the flat bands. In the
minimal model of tBBG the application of pressure leads to a
magic angle line

θ◦
n = Cn

ω

|t0| (deg) (9)

whose coefficient values of C1 = 27.5, C2 = 10.5, and C3 =
5.6 agree within 10% with the results obtained for tBG
[54], in keeping with the expected band scaling behavior
proportional to α = ω/(θυFK ) [7] (see Supplemental Ma-
terial [58]). This observation suggests that increase of ω,
e.g., through external pressure P [56], should allow one to
achieve narrow bandwidth features for larger twist angle θ .
This behavior holds both for the minimal model and when
remote hopping terms are considered, although the remote
hopping terms tend to broaden the bandwidth of the minimal
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FIG. 6. Variation of flat band bandwidth and band isolation through the primary δp and secondary δs band gaps for the low-energy valence
(V) and conduction (C) bands near charge neutrality as a function of twist angle θ and interlayer potential difference �, shown for (a) type
I near 0◦ alignment as a function of θ and �, and for (b) type II near 180◦ alignment, that requires a larger � to achieve positive primary
gaps δp for θ � 1◦ to simultaneously achieve δp/s > 0. The remote hopping terms introduce particle-hole symmetry breaking that expands
the parameter space where the low-energy flat bands are isolated and generally favors the isolation of the conduction band over the valence
bands. Negative values for the gaps indicate overlap with neighboring bands. In the presence of remote hopping terms, simultaneous δp/s > 0
are expected in the conduction bands for small � in the vicinity of θ ∼ 0.7◦ and in particular around θ � 1.5◦, for both near 0◦ and 180◦

alignments. These regions should be more accessible with scanning probe measurements where vertical electric fields and induced carrier
densities are less directly controllable than in top-bottom dual gated devices.

235417-7



CHEBROLU, CHITTARI, AND JUNG PHYSICAL REVIEW B 99, 235417 (2019)

FIG. 7. Phase diagram of bandwidth and band isolation of the flat band through primary δp and secondary δs gaps with the surrounding
bands, calculated both for the valence and conduction flat bands as a function of θ and �′ = 2� for (a) type I near 0◦ alignment, and for
(b) type II near 180◦ alignment. The Hamiltonian model for the above results includes the remote hopping terms and the calculations were
carried out for �′ = 0, and for finite interlayer potential �′ �= 0. More phase diagrams for other � values and calculations for the minimal
model can be found in the Supplemental Material [58].

model (see the Supplemental Material for a comparison of the
phase diagrams [58]). The phase diagram also illustrates how
pressure can be used to enhance the secondary gaps both for
valence and conduction bands, but it can at the same time
suppress the primary gap. The phase diagram is modified
substantially in the presence of interlayer potential differences
�(′) �= 0 triggered by a perpendicular electric field, generally
widening the bandwidth in the phase diagram and shifting

the weights between the primary and secondary gaps. The
relationship between P and ω values in the relevant range of
pressures between 0 and ∼15 GPa is fitted by a second-order
polynomial and its positive root:

P = Aω2 + Bω + C, (10)

ω = A′ + √
B′ + C′P. (11)
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TABLE I. External pressure P(ωs) and associated interlayer
coupling ωs(P) for commensurate stacking geometries (s =
AA,AB,BA) illustrated in Fig. 8. We list the fitting coefficients for
P(ω) in Eq. (10) A (GPa/eV2), for B (GPa/eV), and C (GPa), and
the inverse fit for ω(P) in Eq. (11) A′ (eV), for B′ (eV2), and C′

(eV2/GPa).

LDA EXX+RPA

Stacking (s) A B C A B C

AA 473.6 −22.17 −0.9011 543.3 −61.01 0.735
AB 306.5 −36.56 −0.04339 324.7 −35.47 −0.4671

Stacking (s) A′ B′ C′ A′ B′ C′

AA 0.0234 0.0025 0.0021 0.0561 0.0018 0.0018
AB 0.0596 0.0037 0.0033 0.0546 0.0044 0.0031

The fitting parameters are listed in Table I and they are found
to be valid over a wide range of pressures stretching up to
∼30 GPa and also for negative values down to ∼ − 1 GPa.
To obtain the above fitting parameters we have used the
relationship between P and interlayer separation c for every
stacking of Ref. [52], and the calculations of ω versus c as
detailed in Ref. [47]. The explicit fitting functions for these
quantities are presented in the Supplemental Material [58].
This approach is different from that in Ref. [54] where the
total pressure was obtained from the average of the local
pressure values at the same interlayer distance c for every
stacking.

IV. TOPOLOGICAL FLAT BANDS IN TWISTED
BI-BILAYER GRAPHENE

The presence of moiré superlattices gives rise to avoided
gaps between the bands in the mBZ allowing them to
have a well-defined valley Chern number in a wide class
of twisted multilayer systems [42,59,60], transition-metal
dichalcogenides [61], trilayer graphene on hexagonal boron
nitride (TG/BN) [36], and for a variety of twisted gapped
Dirac materials [39]. For our tBBG system the possibility

FIG. 8. Interlayer coupling versus pressure for different stacking
geometries AA, AB (equivalent to BA) for equilibrium distances
calculated within the LDA and EXX+RPA calculations from Ref.
[52] that can be fitted through Eqs. (10) and (11) with the parameters
in Table I.

of opening a band gap δp near charge neutrality through an
electric field together with the opening of a secondary gap
δs with the higher-energy bands makes tBBG an interesting
platform to engineer flat bands with well-defined valley Chern
numbers that are tunable through an electric field like in
TG/BN [36,42]. The valley Chern number phase diagram
in Fig. 9 as a function of interlayer potential differences
and twist angle indicates the range of Chern numbers Cυ =
0,±1,±2,±3,±4 expected in these systems. The valley
Chern numbers were calculated through

Cυ =
∫

mBZ
d2�k �n(�k)/(2π ) (12)

by integrating in the moiré Brillouin zone for each valley the
Berry curvature for the nth band through [62]

�n(�k) = −2
∑
n′ �=n

Im

[ 〈un| ∂H
∂kx

|un′ 〉〈un′ | ∂H
∂ky

|un〉
(En′ − En)2

]
,

(13)

where for every k point we take sums through all the neigh-
boring n′ bands, the |un〉 are the moiré superlattice Bloch
states, and En are the eigenvalues. There are clear qualitative
differences between the valley Chern numbers for twist angles
near 0◦ for type-I AB/AB and those near 180◦ for type-II
AB/BA alignments. In the first case the valley Chern numbers
between valence and conduction bands are generally opposite
in value adding up to a total of zero, while in the second case
they are the same number for both valence and conduction
bands. These differences are naturally expected if we consider
that the chirality of the massive bands at the top and bottom
layers that couple to each other are interchanged depending on
the alignment. Quantitative modifications in the valley Chern
numbers are observed when we compare the phase diagrams
of the minimal and remote hopping parameter models as a
function of � where clear differences in particular for small
� ∼ 10 meV regions are observed, comparable in magnitude
with the band distortions introduced by the remote hopping
terms. The vicinity of θ ∼ 1◦ and low electric field � have
spots where the valley Chern numbers for the valence and
conduction bands differ in magnitude. For sufficiently large
values of � the valley Chern numbers of the lowest-energy flat
bands agree for the minimal and remote hopping parameter
models in a large parameter space of twist angles as illustrated
in Fig. 10 by showing the band structure and the Berry
curvatures used in the valley Chern number calculations.
Hence, the topological properties of the bands remain overall
relatively robust to small perturbations to the band structures
introduced by the remote hopping parameters. The values of
the low-energy flat band Chern numbers and those of the
neighboring higher-energy bands are gathered in Table II.
When the valley Chern numbers between the minimal and
remote hopping term models differ they are comparable in a
large parameter space.

V. SUMMARY AND CONCLUSIONS

We have extended the Bistritzer-MacDonald continuum
model of tBG to investigate the electronic structure of tBBG
as a function of twist angle θ , electric fields, and the
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FIG. 9. The K valley Chern number phase diagram of low-energy conduction and valence bands for the minimal model of tBBG (top row)
and including the remote hopping parameters (bottom row). Agreement between both models is seen for a large parameter space, although
when remote hopping terms are considered we can expect to trigger quantum phase transitions with different valley Chern numbers at moderate
values of � ∼ 10 meV to access regions in phase space where we can expect quantized Hall conductivities at zero magnetic fields, particularly
for twist angles θ � 1◦.

pressure-dependent interlayer coupling. We have considered
both the minimal model and also the effects of the remote
hopping terms in the band structure calculation of bilayer
graphene. The calculated bandwidth phase diagram for the
low-energy bands shows that the bandwiths are roughly a
factor 2 narrower than those in tBG indicating that tBBG
should be more forgiving in the twist angle precision required
to access the strongly interacting regime, and for this reason
we expect that the narrow band features in tBBG will be
observed more simply than in tBG. The possibility of applying
a perpendicular electric field is an interesting control knob that
allows one to enhance the separation between the flat bands
and also influences the gaps with the higher-energy bands
favoring a more effective band isolation. At the same time,
we find that interlayer potential differences can widen the
bandwidths near the first magic angle of the minimal model
and smoothen the bandwidth variation to give a continuous
range of angles where the bandwidths are narrow. Within the
minimal model, the bandwidth phase diagram for zero inter-
layer potential difference and small perturbations thereof is
found to be closely similar to the case of tBG, maintaining the
same linear dependence between θ and the interlayer coupling
ω for the magic angles, and the inverse proportionality to the
Fermi velocity of the graphene layers. Our calculations show
that bi-bilayer graphene under a perpendicular electric field
can host robust ordered phases for twist angles in the vicinity

of ∼0.6◦ and near ∼1.5◦, with the parameter space for the
conduction bands being generally favored over those of the

TABLE II. The Chern numbers table of tBBG for twist angles
near the 0◦ (Type I) and 180◦ (Type II) alignment with and without
remote hopping parameters at the angles θ = 1.5◦, 1.05◦, and 0.7◦

whose band structures are represented in Fig. 10. The Chern numbers
presented here are for low-energy conduction (C) and valence bands
(V), and one higher energy band in each conduction (C + 1) and
valence (V − 1) band. The interlayer potentials are, respectively,
�′ = 0.03 eV for θ ∼ 0◦ and �′ = 0.05 eV for θ ∼ 180◦, which are
large enough to isolate the low-energy bands.

Minimal Remote

Bands V (−1) V C C (+1) V (−1) V C C (+1)

θ = 1.5◦

Type I 1 −2 2 −1 2 −2 2 −1
Type II 0 1 1 0 0 1 1 0

θ = 1.05◦

Type I 0 −2 2 0 0 −2 2 0
Type II −1 1 1 −1 −1 1 1 −1

θ = 0.7◦

Type I −2 0 0 2 −2 0 0 . . .

Type II 0 0 0 0 0 0 0 0

235417-10
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FIG. 10. Band structure and Berry curvature plots for select twist angles θ = 0.7◦, 1.05◦, 1.5◦ and interlayer potential differences within
the minimal and remote hopping parameters Hamiltonian model for tBBG, leading to quantitative differences in the bandwidths and associated
δp/s for the primary and secondary gaps. The results are shown for (a) type I near 0◦ AB/AB alignment for �′ = 2� = 0.03 eV and for
(b) type II near 180◦ AB/BA alignment that requires a larger �′ = 2� = 0.05 eV to simultaneously achieve positive primary and secondary
gaps δp/s > 0. For θ � 1◦ these two alignments are shown to give distinct Cυ = ±2 of opposite and Cυ = 1 same sign K valley Chern numbers
for valence and conduction bands. These qualitative differences in the Chern numbers for the two stacking alignments can be traced to the
different associated chiralities of the bands in the top and bottom layers.

valence bands. With proper electric fields we expect that prac-
tically all angles spanning the range between 0.4◦ and 1.6◦
could host ordered phases. Application of pressure can also
enhance the isolation of the bands when used in combination
with appropriate electric fields. We have related the interlayer
tunneling with external pressure through stacking-dependent
interlayer coupling parameters ω and ω′ compatible with

the EXX+RPA interlayer potentials to capture the interde-
pendence of corrugation and interlayer tunneling in a self-
contained manner. A more detailed study that combines the
effects of in-plane moiré strains will be addressed elsewhere.
Comparisons between the electronic structure between the
type I near 0◦ aligned systems and the type II 180◦ aligned
bi-bilayers indicate that 0◦ aligned systems generally require
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weaker electric fields to achieve optimal flat band systems
prone to interaction-driven ordered phases, and give rise to
distinct valley Chern number phase diagrams.

Note added. Related experiments and theory are Refs.
[63–65] and Refs. [66–69].

ACKNOWLEDGMENTS

We acknowledge helpful discussions with S. Kahn,
F. Wu, and M. Koshino. This work was supoprted by

Samsung Science and Technology Foundation under Project
No. SSTF-BA1802-06 for J.J. Financial support is acknowl-
edged for N.R.C. from the Korean National Science Founda-
tion through Grant No. NRF-2016R1A2B4010105, for B.L.C.
by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry
of Education Grants No. 2018R1A6A1A06024977 and No.
NRF-2017R1D1A1B03035932. This research was supported
in part by the U.S. National Science Foundation under Grant
No. NSF PHY-1748958.

[1] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E.
Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature (London)
556, 80 (2018).

[2] K. Kim, A. DaSilva, S. Huang, B. Fallahazad, S. Larentis, T.
Taniguchi, K. Watanabe, B. J. LeRoy, A. H. MacDonald, and
E. Tutuc, Proc. Natl. Acad. Sci. USA 114, 3364 (2017).

[3] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[4] M. Yankowitz, S. Chen, H. Polshyn, K. Watanabe, T. Taniguchi,
D. Graf, A. F. Young, and C. R. Dean, Science 363, 1059
(2019).

[5] Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigora,
K. Watanabe, T. Taniguchi, T. Senthil, and P. Jarillo-Herrero,
arXiv:1901.03710.

[6] P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M.
Triscone, Annu. Rev. Condens. Matter Phys. 2, 141
(2011).

[7] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. USA
108, 12233 (2011).

[8] M. Ochi, M. Koshino, and K. Kuroki, Phys. Rev. B 98,
081102(R) (2018).

[9] J. M. Pizarro, M. J. Calderón, and E. Bascones,
arXiv:1805.07303.

[10] J. W. F. Venderbos and R. M. Fernandes, Phys. Rev. B 98,
245103 (2018).

[11] B. Padhi, C. Setty, and P. Phillips, Nano Lett. 18, 6175
(2018).

[12] M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki,
and L. Fu, Phys. Rev. X 8, 031087 (2018).

[13] J. Kang and O. Vafek, Phys. Rev. X 8, 031088 (2018).
[14] J. Kang and O. Vafek, arXiv:1810.08642.
[15] M. Fidrysiak, M. Zegrodnik, and J. Spalek, Phys. Rev. B 98,

085436 (2018).
[16] B. Roy and V. Juricic, Phys. Rev. B 99, 121407(R)

(2019).
[17] T. Huang, L. Zhang, and T. Ma, Sci. Bull. 64, 310 (2019).
[18] S. Ray, J. Jung, and T. Das, Phys. Rev. B 99, 134515

(2019).
[19] C.-C. Liu, L.-D. Zhang, W.-Q. Chen, and F. Yang, Phys. Rev.

Lett. 121, 217001 (2018).
[20] T. J. Peltonen, R. Ojajärvi, and T. T. Heikkilä, Phys. Rev. B 98,

220504(R) (2018).
[21] D. M. Kennes, J. Lischner, and C. Karrasch, Phys. Rev. B 98,

241407(R) (2018).
[22] H. Isobe, N. F. Q. Yuan, and L. Fu, Phys. Rev. X 8, 041041

(2018).

[23] Y.-Z. You and A. Vishwanath, arXiv:1805.06867.
[24] H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, Phys. Rev. X

8, 031089 (2018).
[25] F. Wu, A. H. MacDonald, and I. Martin, Phys. Rev. Lett. 121,

257001 (2018).
[26] F. Guinea and N. R. Walet, Proc. Natl. Acad. Sci. USA 115,

13174 (2018).
[27] J. Gonzalez and T. Stauber, Phys. Rev. Lett. 122, 026801

(2019).
[28] Y. Su and S.-Z. Lin, Phys. Rev. B 98, 195101 (2018).
[29] B. Lian, Z. Wang, and B. A. Bernevig, arXiv:1807.04382.
[30] E. Laksono, J. N. Leaw, A. Reaves, M. Singh, X. Wang, S.

Adam, and X. Gu, Solid State Commun. 282, 38 (2018).
[31] Q. K. Tang, L. Yang, D. Wang, F. C. Zhang, and Q. H. Wang,

Phys. Rev. B 99, 094521 (2019).
[32] A. Kerelsky, L. McGilly, D. M. Kennes, L. Xian, M. Yankowitz,

S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, A.
Rubio, and A. N. Pasupathy arXiv:1812.08776.

[33] G. Chen, L. Jiang, S. Wu, B. Lyv, H. Li, K. Watanabe, T.
Taniguchi, Z. Shi, J. Jung, Y. Zhang, and F. Wang, Nat. Phys.
15, 237 (2019).

[34] G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. Fox,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, J.
Jung, Z. Shi, D. Goldhaber-Gordon, Y. Zhang, and F. Wang,
arXiv:1901.04621.

[35] G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, Z. Shi,
T. Senthil, D. Goldhaber-Gordon, Y. Zhang, and F. Wang,
arXiv:1905.06535.

[36] B. L. Chittari, G. Chen, Y. Zhang, F. Wang, and J. Jung, Phys.
Rev. Lett. 122, 016401 (2019).

[37] F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. MacDonald,
Phys. Rev. Lett. 106, 156801 (2011).

[38] L. Xian, D. M. Kennes, N. Tancogne-Dejean, M. Altarelli, and
A. Rubio, arXiv:1812.08097.

[39] S. Javvaji et al. (unpublished).
[40] M. H. Naik and M. Jain, Phys. Rev. Lett. 121, 266401

(2018).
[41] In this work, we loosely use the term flat bands to refer to

the sufficiently narrow bandwidth low-energy bands where an
effective Coulomb interaction U versus bandwidth W ratio
satisfies U/W � 1.

[42] Y.-H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil,
Phys. Rev. B 99, 075127 (2019).

[43] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Phys. Rev Lett. 99, 256802 (2007).

[44] S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov,
Phys. Rev. B 81, 165105 (2010).

235417-12

https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26154
https://doi.org/10.1073/pnas.1620140114
https://doi.org/10.1073/pnas.1620140114
https://doi.org/10.1073/pnas.1620140114
https://doi.org/10.1073/pnas.1620140114
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1126/science.aav1910
http://arxiv.org/abs/arXiv:1901.03710
https://doi.org/10.1146/annurev-conmatphys-062910-140445
https://doi.org/10.1146/annurev-conmatphys-062910-140445
https://doi.org/10.1146/annurev-conmatphys-062910-140445
https://doi.org/10.1146/annurev-conmatphys-062910-140445
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevB.98.081102
https://doi.org/10.1103/PhysRevB.98.081102
https://doi.org/10.1103/PhysRevB.98.081102
https://doi.org/10.1103/PhysRevB.98.081102
http://arxiv.org/abs/arXiv:1805.07303
https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1021/acs.nanolett.8b02033
https://doi.org/10.1021/acs.nanolett.8b02033
https://doi.org/10.1021/acs.nanolett.8b02033
https://doi.org/10.1021/acs.nanolett.8b02033
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevX.8.031088
http://arxiv.org/abs/arXiv:1810.08642
https://doi.org/10.1103/PhysRevB.98.085436
https://doi.org/10.1103/PhysRevB.98.085436
https://doi.org/10.1103/PhysRevB.98.085436
https://doi.org/10.1103/PhysRevB.98.085436
https://doi.org/10.1103/PhysRevB.99.121407
https://doi.org/10.1103/PhysRevB.99.121407
https://doi.org/10.1103/PhysRevB.99.121407
https://doi.org/10.1103/PhysRevB.99.121407
https://doi.org/10.1016/j.scib.2019.01.026
https://doi.org/10.1016/j.scib.2019.01.026
https://doi.org/10.1016/j.scib.2019.01.026
https://doi.org/10.1016/j.scib.2019.01.026
https://doi.org/10.1103/PhysRevB.99.134515
https://doi.org/10.1103/PhysRevB.99.134515
https://doi.org/10.1103/PhysRevB.99.134515
https://doi.org/10.1103/PhysRevB.99.134515
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevB.98.220504
https://doi.org/10.1103/PhysRevB.98.220504
https://doi.org/10.1103/PhysRevB.98.220504
https://doi.org/10.1103/PhysRevB.98.220504
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevX.8.041041
https://doi.org/10.1103/PhysRevX.8.041041
https://doi.org/10.1103/PhysRevX.8.041041
https://doi.org/10.1103/PhysRevX.8.041041
http://arxiv.org/abs/arXiv:1805.06867
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1073/pnas.1810947115
https://doi.org/10.1073/pnas.1810947115
https://doi.org/10.1073/pnas.1810947115
https://doi.org/10.1073/pnas.1810947115
https://doi.org/10.1103/PhysRevLett.122.026801
https://doi.org/10.1103/PhysRevLett.122.026801
https://doi.org/10.1103/PhysRevLett.122.026801
https://doi.org/10.1103/PhysRevLett.122.026801
https://doi.org/10.1103/PhysRevB.98.195101
https://doi.org/10.1103/PhysRevB.98.195101
https://doi.org/10.1103/PhysRevB.98.195101
https://doi.org/10.1103/PhysRevB.98.195101
http://arxiv.org/abs/arXiv:1807.04382
https://doi.org/10.1016/j.ssc.2018.07.013
https://doi.org/10.1016/j.ssc.2018.07.013
https://doi.org/10.1016/j.ssc.2018.07.013
https://doi.org/10.1016/j.ssc.2018.07.013
https://doi.org/10.1103/PhysRevB.99.094521
https://doi.org/10.1103/PhysRevB.99.094521
https://doi.org/10.1103/PhysRevB.99.094521
https://doi.org/10.1103/PhysRevB.99.094521
http://arxiv.org/abs/arXiv:1812.08776
https://doi.org/10.1038/s41567-018-0387-2
https://doi.org/10.1038/s41567-018-0387-2
https://doi.org/10.1038/s41567-018-0387-2
https://doi.org/10.1038/s41567-018-0387-2
http://arxiv.org/abs/arXiv:1901.04621
http://arxiv.org/abs/arXiv:1905.06535
https://doi.org/10.1103/PhysRevLett.122.016401
https://doi.org/10.1103/PhysRevLett.122.016401
https://doi.org/10.1103/PhysRevLett.122.016401
https://doi.org/10.1103/PhysRevLett.122.016401
https://doi.org/10.1103/PhysRevLett.106.156801
https://doi.org/10.1103/PhysRevLett.106.156801
https://doi.org/10.1103/PhysRevLett.106.156801
https://doi.org/10.1103/PhysRevLett.106.156801
http://arxiv.org/abs/arXiv:1812.08097
https://doi.org/10.1103/PhysRevLett.121.266401
https://doi.org/10.1103/PhysRevLett.121.266401
https://doi.org/10.1103/PhysRevLett.121.266401
https://doi.org/10.1103/PhysRevLett.121.266401
https://doi.org/10.1103/PhysRevB.99.075127
https://doi.org/10.1103/PhysRevB.99.075127
https://doi.org/10.1103/PhysRevB.99.075127
https://doi.org/10.1103/PhysRevB.99.075127
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevB.81.165105
https://doi.org/10.1103/PhysRevB.81.165105
https://doi.org/10.1103/PhysRevB.81.165105
https://doi.org/10.1103/PhysRevB.81.165105


FLAT BANDS IN TWISTED DOUBLE BILAYER GRAPHENE PHYSICAL REVIEW B 99, 235417 (2019)

[45] P. Moon and M. Koshino, Phys. Rev. B 87, 205404 (2013).
[46] S. Fang and E. Kaxiras, Phys. Rev. B 93, 235153 (2016).
[47] J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, Phys. Rev.

B 89, 205414 (2014).
[48] J. Jung and A. H. MacDonald, Phys. Rev. B 89, 035405 (2014).
[49] J. Jung and A. H. MacDonald, Phys. Rev. B 87, 195450 (2013).
[50] D. Wong, Y. Wang, J. Jung, S. Pezzini, A. M. DaSilva, H.-Z.

Tsai, H. S. Jung, R. Khajeh, Y. Kim, J. Lee, S. Kahn, S.
Tollabimazraehno, H. Rasool, K. Watanabe, T. Taniguchi, A.
Zettl, S. Adam, A. H. MacDonald, and M. F. Crommie, Phys.
Rev. B 92, 155409 (2015).

[51] E. McCann and V. I. Falko, Phys. Rev. Lett. 96, 086805
(2006)

[52] N. Leconte, J. Jung, S. Lebègue, and T. Gould, Phys. Rev. B 96,
195431 (2017).

[53] J. Jung, A. M. DaSilva, A. H. MacDonald, and S. Adam, Nat.
Commun. 6, 6308 (2015).

[54] B. L. Chittari, N. Leconte, S. Javvaji, and J. Jung, Elect. Struct.
1, 015001 (2019).

[55] A. M. DaSilva, J. Jung, S. Adam, and A. H. MacDonald, Phys.
Rev. B 91, 245422 (2015).

[56] M. Yankowitz, J. Jung, E. Laksono, N. Leconte, B. L. Chittari,
K. Watanabe, T. Taniguchi, S. Adam, D. Graf, and C. R. Dean,
Nature (London) 557, 404 (2018).

[57] S. Carr, S. Fang, P. Jarillo-Herrero, and E. Kaxiras, Phys. Rev.
B 98, 085144 (2018).

[58] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.99.235417 for complementary information
on (1) the pressure-dependent bandwidth and gaps phase
diagram, (2) the parametrization of the interlayer distance-
dependent pressure and tunneling for the P versus ω relation-
ship, and (3) the low-energy bands formulation of the Hamilto-
nian.

[59] Y.-H. Zhang, D. Mao, and T. Senthil, arXiv:1901.08209.
[60] N. Bultinck, S. Chatterjee, and M. P. Zaletel, arXiv:1901.08110.
[61] F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, Phys. Rev.

Lett. 121, 026402 (2018).
[62] D. Xiao, M. C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[63] X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, K. Watanabe, T. Taniguchi,

A. Vishwanath, and P. Kim, arXiv:1903.08130.
[64] C. Shen, N. Li, S. Wang, Y. Zhao, J. Tang, J. Liu, J. Tian, Y.

Chu, K. Watanabe, T. Taniguchi, R. Yang, Z. Y. Meng, D. Shi,
and G. Zhang, arXiv:1903.06952.

[65] Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J. M.
Park, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero,
arXiv:1903.08596.

[66] Y. W. Choi and H. J. Choi, arXiv:1903.00852.
[67] J. Y. Lee, E. Khalaf, S. Liu, X. Liu, Z. Hao, P. Kim, and A.

Vishwanath, arXiv:1903.08685.
[68] M. Koshino, Phys. Rev. B 99, 235406 (2019)..
[69] J. Liu, Z. Ma, J. Gao, and X. Dai, arXiv:1903.10419.

235417-13

https://doi.org/10.1103/PhysRevB.87.205404
https://doi.org/10.1103/PhysRevB.87.205404
https://doi.org/10.1103/PhysRevB.87.205404
https://doi.org/10.1103/PhysRevB.87.205404
https://doi.org/10.1103/PhysRevB.93.235153
https://doi.org/10.1103/PhysRevB.93.235153
https://doi.org/10.1103/PhysRevB.93.235153
https://doi.org/10.1103/PhysRevB.93.235153
https://doi.org/10.1103/PhysRevB.89.205414
https://doi.org/10.1103/PhysRevB.89.205414
https://doi.org/10.1103/PhysRevB.89.205414
https://doi.org/10.1103/PhysRevB.89.205414
https://doi.org/10.1103/PhysRevB.89.035405
https://doi.org/10.1103/PhysRevB.89.035405
https://doi.org/10.1103/PhysRevB.89.035405
https://doi.org/10.1103/PhysRevB.89.035405
https://doi.org/10.1103/PhysRevB.87.195450
https://doi.org/10.1103/PhysRevB.87.195450
https://doi.org/10.1103/PhysRevB.87.195450
https://doi.org/10.1103/PhysRevB.87.195450
https://doi.org/10.1103/PhysRevB.92.155409
https://doi.org/10.1103/PhysRevB.92.155409
https://doi.org/10.1103/PhysRevB.92.155409
https://doi.org/10.1103/PhysRevB.92.155409
https://doi.org/10.1103/PhysRevLett.96.086805
https://doi.org/10.1103/PhysRevLett.96.086805
https://doi.org/10.1103/PhysRevLett.96.086805
https://doi.org/10.1103/PhysRevLett.96.086805
https://doi.org/10.1103/PhysRevB.96.195431
https://doi.org/10.1103/PhysRevB.96.195431
https://doi.org/10.1103/PhysRevB.96.195431
https://doi.org/10.1103/PhysRevB.96.195431
https://doi.org/10.1038/ncomms7308
https://doi.org/10.1038/ncomms7308
https://doi.org/10.1038/ncomms7308
https://doi.org/10.1038/ncomms7308
https://doi.org/10.1088/2516-1075/aaead3
https://doi.org/10.1088/2516-1075/aaead3
https://doi.org/10.1088/2516-1075/aaead3
https://doi.org/10.1088/2516-1075/aaead3
https://doi.org/10.1103/PhysRevB.91.245422
https://doi.org/10.1103/PhysRevB.91.245422
https://doi.org/10.1103/PhysRevB.91.245422
https://doi.org/10.1103/PhysRevB.91.245422
https://doi.org/10.1038/s41586-018-0107-1
https://doi.org/10.1038/s41586-018-0107-1
https://doi.org/10.1038/s41586-018-0107-1
https://doi.org/10.1038/s41586-018-0107-1
https://doi.org/10.1103/PhysRevB.98.085144
https://doi.org/10.1103/PhysRevB.98.085144
https://doi.org/10.1103/PhysRevB.98.085144
https://doi.org/10.1103/PhysRevB.98.085144
http://link.aps.org/supplemental/10.1103/PhysRevB.99.235417
http://arxiv.org/abs/arXiv:1901.08209
http://arxiv.org/abs/arXiv:1901.08110
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
http://arxiv.org/abs/arXiv:1903.08130
http://arxiv.org/abs/arXiv:1903.06952
http://arxiv.org/abs/arXiv:1903.08596
http://arxiv.org/abs/arXiv:1903.00852
http://arxiv.org/abs/arXiv:1903.08685
https://doi.org/10.1103/PhysRevB.99.235406
https://doi.org/10.1103/PhysRevB.99.235406
https://doi.org/10.1103/PhysRevB.99.235406
https://doi.org/10.1103/PhysRevB.99.235406
http://arxiv.org/abs/arXiv:1903.10419

