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We present systematic ab initio calculations of the charge carrier correlations between adjacent layers of
two-dimensional materials in the presence of both charged impurity and strain disorder potentials using the
examples of monolayer and bilayer graphene. Our analysis yields unambiguous first-principles quantum correc-
tions to the Thomas-Fermi densities for interacting two-dimensional systems described by orbital-free density
functional theory. Specifically, using density-potential functional theory, we find that quantum corrections to
the quasiclassical Thomas-Fermi approximation have to be taken into account even for heterostructures of
mesoscopic size. In order for the disorder-induced puddles of electrons and holes to be anticorrelated at zero
average carrier density for both layers, the strength of the strain potential has to exceed that of the impurity
potential by at least a factor of ten, with this number increasing for smaller impurity densities. Furthermore,
our results show that quantum corrections have a larger impact on puddle correlations than exchange does, and
they are necessary for properly predicting the experimentally observed Gaussian energy distribution at charge
neutrality.
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I. INTRODUCTION

The simulation of two-dimensional (2D) materials and
prediction of their properties has become a mainstay of
materials science over the past decade, with the promise
and realization of valuable applications in both industrial
technology and fundamental research [1]. Theoretical and
computational methods for 2D materials have been advanced
into a sophisticated machinery that enables researchers to deal
with ever more realistic settings [2]. The widely used Kohn-
Sham density functional theory (KS-DFT) [3,4] presents one
particularly popular ab initio approach with the capability of
accurately handling hundreds of interacting particles (and up
to thousands of atoms in cases where linear-scaling methods
apply [5–10]). The development of functionals for 2D systems
has been lagging behind that of their 3D counterparts for
various reasons: Some of the most heavily used 3D KS-DFT
functionals are not bounded from below [11,12] when the 2D
limit is approached. This stems from the improper scaling
behavior of the density [11]. Furthermore, even consistent
first-order gradient corrections of the kinetic energy density
(used in developing metageneralized gradient approximations
for KS-DFT) were unknown for 2D fermion systems un-
til recently [13–15]. Nonetheless, considerable progress has
been made and alternative derivations of some of those 2D
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functionals have been obtained since the turn of the millen-
nium [16–25].

However, a systematic ab initio methodology that is uni-
versally applicable and scales favorably with particle num-
ber, thereby enabling high-throughput computations of meso-
scopic systems, is not yet available—with orbital-free density
functional theory (OF-DFT) being the suspected saviour for
almost a century [26–32]. While KS-DFT scales cubically
with particle number in generic settings, OF-DFT scales lin-
early, and sublinear scaling can be achieved in special cases.
Functional development, in particular concerning the kinetic
energy functional [33–35], and implementations of OF-DFT
have gained momentum in recent years [30,32,36–41], also
in conjunction with other techniques like ab initio molecular
dynamics [42]. Chemical accuracy is approached in selected
cases [43–45]. If quantum effects play a minor role or if
the considered system is largely homogeneous, OF-DFT can
also be used in its most basic form, the Thomas-Fermi (TF)
approximation. For instance, the effect of exchange on large
disordered systems with long-range interactions was studied
in Ref. [46] using OF-DFT in TF approximation. The TF
model is not only of historical significance, but presents,
as an exact constraint for homogeneous systems and in the
limit of infinite nuclear charges [47], an important base
line for benchmarking proposed systematic density functional
improvements. To what extent then do corrections to the
TF approach play a crucial role or dominate over exchange
effects in 2D materials? (They do, indeed, for a number of
relevant fermionic systems, ranging from atomic Fermi gases
to molecules and single atoms.)
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The most severe obstacle for OF-DFT in taking over as the
workhorse of theoretical chemistry and materials science is
the lack of accurate, reliable, systematic, and preferably uni-
versal quantum corrections to the quasiclassical TF approxi-
mation, in particular for the kinetic energy of low-dimensional
systems [13–15,48,49]. While ad-hoc corrections to the qua-
siclassical limit and heuristic approximations are available
for kinetic energy and particle density of low-dimensional
systems [50,51], successful derivations of systematic and
consistent corrections are scarce [15,49,52–54]. One promis-
ing route towards systematic orbital-free quantum corrections
is provided by density-potential functional theory (DPFT)
[15,49,54–57], a more flexible reformulation of the original
Hohenberg-Kohn DFT [4,58], which circumvents the need
for an explicit kinetic-energy density functional and provides
natural ways for systematic semiclassical expansions.

In this paper we explore the applicability of DPFT for
2D materials by assessing quantum corrections to the TF
approximation for double-layer heterostructures of mono- and
bilayer graphene. Of particular interest to us are situations
that are not easily tackled with orbital-based techniques,
for example 2D material sheets of mesoscopic size that are
subjected to aperiodic disorder potentials. Such situations are
for example of current interest in studies on Coulomb drag
[59] where there exists an unsettled controversy as to whether
the behavior of drag measured in experiment [60] is due to
correlation [61] or anticorrelation [62] between the density
fluctuations of the layers.

Our work contributes in several ways to answering some
of the questions raised above. Sections II and III provide the
computational framework for obtaining quantum-corrected
carrier densities of 2D materials using DPFT. The expres-
sions for the semiclassical particle densities developed here
enable us to decide whether or not the quasiclassical TF
approximation is sufficient for describing at least conglom-
erate properties like average interlayer correlations of het-
erostructures. Section IV introduces the generic double-layer
system, with both layers subjected to one layer of charged
impurities, while only one of the layers is strained. Charge and
strain disorder potentials are expected to compete in creating
correlated (from charged impurities) and anticorrelated (from
strain) carrier densities in the two layers. Our model setup is
designed to extract the strain strengths required for switching
between correlation and anticorrelation. In Sec. V we apply
our approach to double-monolayer graphene and double-
bilayer graphene. We discuss whether or not the electron-hole
puddles of both layers, interacting electrostatically, require a
self-consistent interlayer treatment. Finally, we analyze the
effects of quantum corrections and exchange energy on the
correlations with the aid of phase diagrams that chart the
correlation measures as functions of impurity density, carrier
density, and ratios of strain and charge disorder. The Ap-
pendix gathers background information on the units, system
parameters, correlation measures, and numerical procedures
employed here.

II. DENSITY-POTENTIAL FUNCTIONAL THEORY

Instead of resorting to the computationally demanding
orbital-based Kohn-Sham DFT, we make use of orbital-free

density-potential functional theory (DPFT) [55,56]. It is for-
mally equivalent to the Hohenberg-Kohn formulation but
makes systematic improvements upon the TF approximation
technically feasible—in particular for low-dimensional sys-
tems.

Specifically, by Legendre-transforming Ekin[n], the kinetic
energy functional of the particle density n(r), w.r.t. the new
variable V (r) = μ − δEkin[n]

δn(r) , we recast the total energy of an
interacting quantum system with interaction energy Eint[n],

E [n, μ] = Ekin[n] + Eext[n] + Eint[n]

+ μ

(
N −

∫
(dr) n(r)

)
, (1)

as the density-potential functional

E [V, n, μ] = E1[V − μ] −
∫

(dr) n(r)
(
V (r) − Vext (r)

)
+ Eint[n] + μN. (2)

Here, the external potential Vext (r) yields the external energy
Eext[n], and the particle number N is enforced via the La-
grange multiplier μ, viz. the chemical potential. From Eq. (2)
we obtain the ground-state solutions of the three variables V ,
n, and μ by self-consistently solving

n(r) = δE1[V − μ]

δV (r)
, (3)

V (r) = Vext (r) + δEint[n]

δn(r)
, (4)

N =
∫

(dr)n(r). (5)

Equation (5) is obtained by combining ∂E [V, n, μ]/∂μ with
Eq. (3) and reveals the particle number constraint in Eq. (1).

Equations (3)–(5) are exact and reminiscent of the KS
scheme but without the need of orbitals. However, the non-
interacting case aside, we have to approximate the unknown
potential functional E1[V − μ]; here the subscript indicates
that E1 can be written in terms of a single-particle trace over
a function of the single-particle Hamilton operator [56]. We
also have to provide the equally important interaction energy
Eint[n] as an explicit functional of the particle density n.
Approximate particle densities follow directly from approxi-
mations of E1[V − μ] (or, rather, its functional derivative) for
any given potential V . As is evident from Eq. (4), V constitutes
an effective single-particle potential with interaction effects
effectively included for any given density n.

Following Refs. [15,49,54,56,57,63] we approximate E1 by
its noninteracting version as the single-particle trace

E1[V − μ] = tr{(H1 − μ) η(μ − H1)}, (6)

where H1 = H1(R, P) = T (P) + V (R) is a single-particle
Hamiltonian with dispersion relation T and potential energy
V , while the trace includes the degeneracy factor g. For
example, g = 4 accounts for the spin and valley multiplicity of
unpolarized charge carriers in the cases of mono- and bilayer
graphene. R and P are the position and momentum operators,
respectively, and η( ) denotes the step function.

The explicit expression for E1 in Eq. (6) results in
an explicit expression for the particle density in terms of
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TABLE I. Thomas-Fermi density nTF(r) and quantum-corrected
density n3(r) for linear and quadratic dispersion in 2D from
evaluating Eq. (7), with degeneracy factor g, Bessel functions
Jα ( ), ν(z) = [μ − V (z)]+, K (z) = ν(z)/(h̄vF ), σ (z) = 2m ν(z)/h̄2,
and [x]+ denoting x η(x). We recover the TF densities from their
quantum-corrected successors upon replacing K (r + s) and σ (r + s)
by their local versions K (r) and σ (r), respectively. The case of
quadratic dispersion is dealt with in Ref. [54]; see Appendix F for
the derivations in the case of linear dispersion.

T (p) nTF(r) n3(r)

vF|p| g
4π

K (r)2 g
4π2

∫
(ds) K (r+s)3

|s| J1(2|s| K (r + s))
p2

2m
g

4π
σ (r) g

4π2

∫
(ds) σ (r+s)

|s|2 J2(2|s|√σ (r + s) )

arbitrary functions V (r) via Eq. (3). The approximate nature
of Eq. (6) aside, the exact particle density including all
quantum corrections is thereby obtained for any specified
interaction energy Eint[n] and without reference to orbitals.
Specifically, Eqs. (3) and (6), together with the Fourier trans-
form of the step function, yield the particle density [64]

n(r) = g
dt

2π it
e

it
h̄ μ〈r|e− it

h̄ H1 |r〉, (7)

see Refs. [54,65–68].
We seek to approximate the time evolution operator

U = e− it
h̄ H1 systematically via split-operator methods, for ex-

ample of the Suzuki-Trotter type [54,69]. The quasiclassical
approximation U ≈ U2 = e− it

h̄ T (P)e− it
h̄ V (R) recovers the quasi-

classical TF density nTF, while U3 = e− it
2h̄ T (P)e− it

h̄ V (R)e− it
2h̄ T (P)

produces the first quantum-corrected density n3 in a series
of expressions that utilize higher-order factorizations [54] of
U . We give the corresponding 2D densities for linear and
quadratic dispersion in Table I and outline the derivation of
n3 for the case of linear dispersion in Appendix F. In contrast
to nTF(r), which is restricted to classically allowed regions of
the potential and only depends on the local value V (r), n3(r)
samples V in an extended region and exhibits evanescent tails
beyond the quantum-classical border.

III. SELF-CONSISTENT SIMULATION OF DISORDERED
2D MATERIALS

We target 2D systems with chemical potential in the vicin-
ity of the Dirac point (the point where valence and conduction
bands touch) for graphene (effective bilayer graphene). The
usual tight-binding approach absorbs the lattice structure in an
effective Hamiltonian and yields noninteracting quasiparticles
in a homogeneous [Vext (r) = 0] environment. The electronic
structures, viz. atoms, of the materials are thus not mod-
eled explicitly here. The single-particle energies, viz. band
structure, associated with such quasiparticles is the dispersion
relation T (p) whose operator version appears in Eq. (6). T (p)
can be an arbitrary function, but for the purpose of this work
we shall restrict ourselves to the analytically more tractable
cases of linear and quadratic dispersion [70].

In the following we outline the procedures involved for
arriving at the ground state solutions of Eqs. (3)–(5); further
details are provided in Appendix E. Upon adding external

potentials VC(r) and VS(r) that model charged impurities and
strain, respectively, we initiate the self-consistent loop of
Eqs. (3)–(5) by evaluating the density [denoted n−(r) for the
quasiparticles that follow the dispersion of the conduction
band] with the external potential

Vext (r) = VC(r) + VS(r) (8)

for these conduction quasiparticles, see Appendix C for de-
tails. Since no interactions are included at this stage, the
effective potential is V−(r) = Vext (r). The density n+(r) of
valence quasiparticles, which follow the inverted dispersion,
e.g., T (p) = −vF|p| in the case of graphene, is built from the
same density expression as n−(r) but takes as an input the
inverted potential 2 (μ + 	) − Vext (r), with an optional band
gap 	 (in the case of mono- and bilayer graphene, we have
	 = 0). The effective potential for the valence quasiparticles
reads

V+(r) = 2 (μ + 	) − V−(r) (9)

and equals the external potential for the valence quasiparticles
if interactions are omitted. The such obtained carrier density
n(r) = n−(r) − n+(r) updates the effective potential via the
interaction contribution in Eq. (4).

As an approximate interaction energy Eint[n] for the quasi-
particles, we employ the regularized Hartree term for the
Coulomb energy,

EH[n] = W

2

∫
(dr)(dr′)

n(r) n(r′)
max(|r − r′|, b)

, (10)

where b is half the lattice constant of the numerical implemen-
tation and W = h̄vFrs, with the ratio rs of Coulomb potential
energy and kinetic energy for graphene. Upon functional
differentiation, Eq. (10) leads to the Hartree potential [71]

VH(r) = W
∫

(dr)
n(r′)

max(|r − r′|, b)
(11)

as an approximate interaction contribution in Eq. (4). Eyeing
means of comparison and higher accuracy, we may sup-
plement EH with an exchange energy [72], leading to the
exchange potential VX; see Appendix B for details.

The updated effective potential V then determines a new
quasiparticle density n−(r) via Eq. (3), thereby closing the
self-consistent loop. This process is repeated until a pre-
defined relative precision is reached (we find 10−6 to be
sufficient) when comparing the local densities of subsequent
loop iterations. The chemical potential is adjusted in each
iteration to enforce a given particle number, viz. average
carrier density. Figure 1 highlights the differences in the con-
verged quasiparticle densities nTF and n3 of a single graphene
layer with and without exchange. Both exchange and quan-
tum corrections tend to decrease the peaks of the density
landscape. This effect is well known in the case of exchange
[46], and a smoothening of the carrier density in an external
potential VC is to be expected when tunneling starts to play a
role with the inclusion of quantum corrections. In fact, when
comparing the corresponding densities in Fig. 1 we find that
quantum corrections considered in this work can dominate
over exchange effects.

The analysis of disorder averages reveals a striking in-
stance of this observation. As observed in Fig. 1 for a single
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FIG. 1. The spatial distributions of quasiparticle densities nTF

and n3 of monolayer graphene visibly depend on exchange and
quantum corrections. The upper left panel shows the Thomas-Fermi
density nTF. The other three panels display the differences between
nTF and the quantum-corrected density n3 (upper right panel), the
TF density with the exchange potential of Eq. (B1) included (lower
left panel) and n3 including exchange (lower right panel). The color
bar refers to densities measured in units of 0.001/l2. The horizontal
and vertical axes indicate spatial position, in the units of l as labeled
explicitly in the lower right panel. The same disorder realization,
with average impurity density n̄imp = 1012/cm2, is used in all four
panels.

disorder realization, n3 and nTF differ in their density distri-
bution function. For n3 the integration over a finite region
in the disorder landscape, see Table I, tends to result in
smoother densities compared with nTF. This effect can be

quantified by density histograms compiled from many disor-
der realizations. The density histograms in Fig. 2, calculated
for a graphene monolayer on SiO2 with n̄imp = 1012/cm2,
corroborate the snapshot of one disorder realization in Fig. 1.
Figures 1 and 2 highlight the (a priori) importance of not only
addressing exchange but also quantum corrections beyond
the TF approximation for quantitatively viable investigations
of 2D materials via orbital-free DFT: Both the inclusion
of exchange and of quantum corrections indicate less pro-
nounced peaks of the carrier-density landscape. Compared
to the TF approximation, the quantum corrections exhibit an
averaging effect with broader density distributions that have
relatively more weight on intermediate values of the density
rather than a strong distribution maximum at zero density;
cf. Fig. 2 (left). Although exchange also shows visibly less
pronounced densities in Fig. 1, this effect stems from a global
reduction in density variance rather than a redistribution of
densities from very small towards intermediate values. The
distributions of the quantum-corrected densities (including
exchange) are captured by their Gaussian (‘G’) or Lorentzian
(‘L’) fits (with offset) more accurately than the distributions
resulting from the TF approximation. This observation is in
line with experimental results for graphene that point towards
Gaussian distributions of density and energy in the pres-
ence of charged disorder [73,74]. In Fig. 2 we compare our
calculations ‘nTF(+X)’ and ‘n3(+X),’ with their Gaussian fits
‘G(TF)’ and ‘G,’ directly with the experimental data ‘exp.’
from scanning tunneling spectroscopy; cf. Ref. [74]. We find
our quantum-corrected approach to predict the experimental
data much better than what can be obtained from the TF
approximation—in both qualitative and quantitative terms. In
view of this stark improvement over the TF approximation,
we want to stress again that our quantum-corrected density
expressions are based on first principles without adjustable pa-
rameters or fits and rely solely on controlled approximations
to quantum mechanics.
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FIG. 2. Quantum corrections are crucial for obtaining the experimentally observed Gaussian energy distribution function for monolayer
graphene on SiO2 at charge neutrality. Left: Density histograms for nTF and n3, with and without exchange (X), for 500 disorder realizations
with 〈nj〉 = 0. We choose the bin widths for the densities such that 100 counts per bin are obtained on average. In contrast to the TF
approximation, the quantum-corrected density distribution n3 (including exchange) is captured reasonably well by a Lorentzian and even
better by a Gaussian fit. Right: Translating local densities into energies ED = sgn(n(r)) h̄vF

√
π |n(r)|, with the signum function sgn( ), we

find that the local quantum-corrected energies ED follow a Gaussian distribution that resembles the Gaussian fit to the experimental data
‘exp.’ (extracted from Ref. [74]) remarkably well. This is in stark contrast to the results of the TF approximation. We convert counts/bin into
frequencies by renormalizing the histograms with the maxima of the Gaussian fits ‘G’ and ‘G(TF),’ respectively.
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FIG. 3. Schematics of the double-layer setup investigated here.
Two finite-size monolayers are embedded in h-BN at a layer sep-
aration of 5 nm, while the SiO2 substrate provides the charged
impurities at an effective distance [75–77] of 1 nm from the first
layer L1. For the purpose of revealing the impact of strain and charge
disorder on the electron-hole-puddle correlations between L1 and L2,
we model L2 as an unstrained clean layer. We use the same setup for
analyzing both monolayer and bilayer graphene heterostructures.

IV. DOUBLE LAYER SETUP

The treatment of monolayers in the previous section forms
our basis for the description of more complicated heterostruc-
tures. Figure 3 illustrates a two-layer system, where both
layers L1 and L2 are sandwiched between h-BN and subjected
to a charged impurity layer from the SiO2 substrate. We
expose L2 to the same charge disorder that affects L1, though
at a larger separation, but refrain from adding disorder on L2
in order to avoid confusing interlayer correlation effects with
effects from independent disorder on L2. For the same reason
we model the strain of L1 and the charge disorder by the
identical type of disorder, albeit in different realizations. The
layer separation of 5 nm suffices to justify a merely classical
electrostatic interaction between L1 and L2, i.e., interlayer
tunneling of charge carriers can be neglected—in contrast to
intralayer tunneling through the disorder potential landscape.
The latter is missed by densities in TF approximation but
captured (in part) via the higher-order Suzuki-Trotter factor-
izations.

In what follows we address the puddle correlations be-
tween L1 and L2 as a function of the ratio R between the
disorder strength of the strain and that of the charged impu-
rities. Further details are provided in Appendix C. The sum
of VC and VS results in electron-hole puddles within the first
layer L1, whose electrostatic potential adds to the external
potential VC for the charge carriers in the second layer [78].
We expect maximal puddle correlation if R = 0, that is, when
no strain can obscure the then dominating effect of the charged
impurities on both layers: Owing to the intralayer Coulomb
interaction, the puddles in L1 are much reduced in weight
compared with the case of noninteracting carriers. That is,
the tendency of a puddle in L1 to electrostatically induce
a puddle of opposite charge in L2 is overcompensated by
the charge disorder, which exhibits the tendency to induce a
puddle of the same charge [79]. Following the same line of
reasoning, we expect maximal anticorrelation if R = ∞, with
the transition from correlation to anticorrelation occuring at
some value R > 1. In the following section we substantiate
these claims with quantitative predictions for graphene and
bilayer graphene.

V. DENSITY CORRELATIONS IN DOUBLE LAYERS OF
MONO- AND BILAYER GRAPHENE

We quantify the interlayer correlations of electron-hole-
puddles of the double-layer system described in Sec. IV
by solving Eqs. (3) and (4) self-consistently [80] and by
comparing the converged carrier densities n1 = n(L1) and
n2 = n(L2) of layers L1 and L2 locally. To that end we cal-
culate the two correlation measures ξ [n1, n2] and ξc[n1, n2],
which yield a value of one for perfectly correlated electron-
hole puddles (i.e., if the density distribution n2 is proportional
to n1 and their values have the same sign at each position r),
minus one for perfect anticorrelation (i.e., if n2 is proportional
to −n1), and are designed for tracking the transition between
these two extremes; see Appendix D for details.

Figure 4 depicts potentials and densities for graphene,
viz. linear dispersion, calculated for mean carrier densities
〈n j〉 = 0 and equal strengths of strain and charge disorder
(ratio R = 1). Due to the screening effects of the Coulomb
interaction within L1, the effective potential for L1 exhibits
less variability than the total external potential, i.e., the sum
of the disorder potentials VC and VS. The quasiparticle density
n1 of L1, which can be viewed as resulting from this effec-
tive potential, induces an external electrostatic potential for
the carrier density n2 of L2. For R = 1 the charge disorder
potential for n2 exceeds the electrostatic potential caused by
n1 by a factor of more than 50. For the setting that leads to
Fig. 4, the magnitudes of the total external potential for L2
are smaller than those of L1 by a factor of 3–5.

As a result, the density fluctuations of n2 are diminished
compared with those of n1 by a factor of 5–10. It is therefore
well justified to refrain from a self-consistent treatment of the
electrostatically induced potentials Vind of both layers and to
consider only Vind stemming from n1. As is evident from the
bottom row of Fig. 4, the spatial distributions of n1 and n2 are
correlated rather than anticorrelated for R = 1.

Repeating the calculation which yields the results illus-
trated in Fig. 4 for different values of R, we find the crit-
ical value R0 at the transition from interlayer correlation
to anticorrelation. The correlation measure ξ signifies inter-
layer puddle-correlation (anticorrelation) by taking on posi-
tive (negative) values. The corresponding diagram in Fig. 5,
calculated with charged impurities density n̄imp = 1012 cm−2,
exhibits R0 ≈ 10 ± 2 when n3 is used, and a similar value
in the case of nTF. Here, we take into account exchange
effects and report a rough error estimate simply based on
our numerical findings from five disorder realizations [81].
Evidently, the disparity in electron-hole puddle landscapes
between n3 and nTF as seen in Fig. 1 does not translate into
an appreciable difference between ξ (3)+X (for n3) and ξTF+X

(for nTF).
Although it is not surprising per se that integrated quan-

tities like ξ are less sensitive to local differences between
n3 and nTF, it cannot be assumed a priori. Our quantitative
analysis shows that a quasiclassical approach to interlayer
correlations in monolayer-graphene heterostructures is jus-
tified in the case of rather large impurity densities like of
1012 cm−2 used for Fig. 5. Commonly, however, the TF
approximation is less reliable for smaller particle numbers,
and quantum corrections can be expected to play a more
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FIG. 4. Visibly correlated carrier densities n3 (including ex-
change) for layers L1 and L2 (bottom row) from impurity and strain
potentials of equal strength R = 1 (top row): This figure illustrates
the intermediate potentials relevant in the work flow towards carrier
distributions for a double-monolayer graphene system as depicted
in Fig. 3. The color codes are in units of u for energy and l−2 for
density, respectively, and apply to both graphics in each row. Top
row: Charged impurity potential VC (left) and strain potential VS

(right) for L1. Second row: Total external potential Vext (left) and
converged effective potential V (right) for L1. Third row: Charged
impurity potential VC for L2 (left) and electrostatically induced
potential Vind on L2 from the charge distribution n1 of L1 (right,
scaled up by a factor of 50). Fourth row: Total external potential Vext

(left) and converged effective potential V (right) for L2. Bottom row:
Converged carrier densities n1 (left, scaled by a factor of 1000) and
n2 (right, scaled by a factor of 5000).

dominant role as the carrier density is reduced. The disor-
der potential for smaller n̄imp is less pronounced and gives
rise to puddles that exhibit smaller carrier densities on av-
erage. Indeed, with n̄imp = 1011/cm2 employed for Fig. 6,
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transition from correlated to anticorrelated electron-hole puddles at
R = R(3)+X

0 ≈ RTF+X
0 ≈ 10 ± 2, where R is the ratio of the strength

of strain to charged impurity disorder. The correlation measure
ξ is plotted as a function of R for five disorder realizations of
double monolayer graphene, extracted from both TF- and quantum-
corrected carrier densities with exchange incorporated. The average
density of charged impurities is n̄imp = 1012/cm2. The error bars
demarcate minimal and maximal values of ξ found within the set of
disorder realizations; the shaded areas and the dotted line segments
guide the eye; the horizontal line at ξ = 0 separates the correlation
phase (above) from the phase of anticorrelation (below). We use a
logarithmic horizontal axis in order to more clearly showcase the
transition point and the contrast of ξ over a large range of R.

the quantum-corrected ξ (3)+X can be clearly distinguished
from the quasiclassical ξTF+X. Our data shown in Fig. 6
point to the critical value RTF+X

0 ≈ 15 ± 2 with an error
estimate similar to that in Fig. 5. An increased R0 at lower
n̄imp can be understood from the following simplified picture.
With typical values vC|d and vS of the charge and strain
potentials for L1 and neglecting interactions, we have typical
values nTF(L1) ∝ (μ − vext (L1))2 ≈ (vC|d + vS)2 for μ ≈ 0,
i.e., approximately nTF(L1) ∝ v2

S at R ≈ 10. Then, the typical

−0.08

−0.04

0

0.04

0 20 40 60 80 100

−0.08

−0.04

0

0.04

0 20 40 60 80 100

ξ

R

ξTF+X

ξ(3)+X

−0.08

−0.04

0

0.04

0 20 40 60 80 100

ξ

R

ξTF+X

ξ(3)+X

−0.08

−0.04

0

0.04

0 20 40 60 80 100

n̄imp = 1011/cm2

FIG. 6. At lower values of n̄imp, quantum corrections lead to
stark differences in the crossover behavior. Here we repeat the plot
in Fig. 5, but for n̄imp = 1011/cm2, and an increased sheet size to
ensure enough disorder statistics (640 impurities on (800 nm)2). The
extended crossover of ξ (3)+X from correlation to anticorrelation con-
trasts with the pattern observed in Fig. 5 and heralds the emergence of
quantum effects (i.e., major deviations from ξTF+X) with decreasing
particle numbers.
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FIG. 7. Like Fig. 5, but for double bilayer graphene. Using n3,
we extract R(3)

0 ≈ 10 ± 3 for the transition from correlated to anticor-
related carrier densities but a somewhat smaller value RTF

0 ≈ 8 ± 1
in the case of the TF approximation. Similar to our observations
for double-monolayer graphene, we find that quantum corrections
have little effect in the case of double-bilayer graphene for n̄imp =
1012 cm−2.

TF density in L2 is determined by vext (L2) = vC|d̃ + vind,
where the typical values vC|d̃ ≈ 1

2vC|d at d̃ − d ≈ 5 nm
and vind ∝ v2

S are roughly equal if n̄imp = 1012/cm2 and
R = 10. For a scaled n̄imp = λ × 1012/cm2 and the same
R = 10, vext (L1) scales with λ as well, but the typi-
cal values of nTF(L1) then scale like λ2 v2

S, such that
vext (L2) = λvC|d̃ + λ2 vind. For the case of λ = 1/10, as rep-
resented by Fig. 6, the strength of vind, relative to vC|d̃ , is
diminished by a factor of ten. As strain feeds into vind, not
into vC|d̃ , (relatively) more strain is required to counteract the
effect of vC|d̃ , implying a larger critical R0 at lower impurity
densities. Disregarding the uncertainties for the critical R, one
could estimate R(3)+X

0 ≈ 30 for the quantum-corrected corre-
lations. However, ξ (3)+X rather exhibits an extended crossover
regime, where the magnitude of strain can be varied substan-
tially with little effect on the average correlation ξ (3)+X. Our
main result is thus that corrections to the TF approximation
can become important even for integrated or averaged ob-
servables of 2D materials—given the proper conditions, for
example, small carrier densities.

We briefly turn to the impact of exchange effects in inter-
layer correlations. Since quantum corrections modify the TF
carrier distributions of the individual layers more profoundly
than exchange does, cf. Fig. 1, we expect that exchange plays
a minor role in determining carrier correlations of double-
layer systems. This is confirmed with Table II in Appendix
B, where ξ is determined in TF approximation for a single
disorder realization, with and without exchange. In view of the
magnitude of uncertainties displayed in Figs. 5 and 6 we find
negligible quantitative differences when omitting or including
exchange.

Our results on double bilayer graphene in Fig. 7 show
a slight quantitative difference between the transitions of
ξ (3) and ξTF for the here employed density of charged im-
purities n̄imp = 1012 cm−2. However, the overall trend for
both approximations is still very similar and the spread
of ξ , originating in multiple disorder realizations like in
Figs. 5 and 6, still implies R(3)

0 ≈ RTF
0 within the depicted
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FIG. 8. Determination of the critical ratio RTF
0 ≈ 8 for double

bilayer graphene (found in Fig. 7) as a function of 〈n2〉, viz μ(L2).
The findings for ξTF in Fig. 7 correspond to 〈n2〉 = 0 here. All data
points are obtained for a single fixed disorder realization.

uncertainties. Extrapolating from the double-monolayer case
the double-bilayer graphene can be expected to exhibit more
pronounced differences between ξ (3) and ξTF for smaller
density of charged impurities.

Figure 8 provides another angle on the transition from
correlation to anticorrelation for double bilayer graphene: For
fixed 〈n1〉 = 0 we chart ξTF as a function of 〈n2〉 and find
a qualitative change in the shape of the curves ξ (〈n2〉) as R
transits across RTF

0 ≈ 8, consistent with our findings in Fig. 7.

VI. CONCLUSIONS AND PERSPECTIVES

The main result of this work is thus that both exchange and
quantum corrections beyond the Thomas-Fermi approxima-
tion are essential for quantitatively reliable density distribu-
tions in the context of 2D materials. While exchange plays a
minor role for some integrated quantities like interlayer corre-
lations of double-layer systems, quantum corrections become
important for smaller average carrier densities, viz. cleaner
systems. In other words, systems like graphene on boron
nitride samples with n̄imp ≈ 1010 cm−2 call for a more sophis-
ticated description than the Thomas-Fermi approximation can
provide. We showed that the regime of high carrier densities
may still be described quasiclassically in the computationally
highly efficient Thomas-Fermi approximation. For specific
systems, however, quantum corrections have to be taken into
account at the quantitative level. In this work we provided one
such example when analyzing the crossover from correlation
to anticorrelation in bilayer heterostructures of 2D materials.
We focused on describing double layers of mono- and bilayer
graphene via recently developed techniques of calculating
quantum corrections, but our approach can be easily adapted
for other heterostructures.

Turning to the issue of Coulomb drag [60], our analysis
reveals that the strain potential has to be at least ten times
stronger than the impurity potential in order for anticorrelation
between the layers to occur in both monolayer and bilayer
graphene. Any strain potential weaker than this will result
in correlation. The DPFT framework presented here thus
provides the following path towards an experimental
verification of the nature of correlations in graphene
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heterostructures, a nontrivial task since it is impossible
to directly measure the local densities of encapsulated 2D
layers via local scanning tunneling microscopy. The strength
of the strain potential [82] may first be extracted from local
height fluctuation data obtained via atomic force microscopy
[83], followed by the impurity strength from conductivity
measurements [84]. The resulting ratio R may then be
compared against Figs. 5 to 7 to determine the nature of
correlation between the layers. This would be especially
useful for clarifying the source of the unexpected sign
changes [85–87] in Coulomb drag experiments that have
been explained by earlier works simply asserting correlation
[61,88] or anticorrelation [60,62] without proof. In the case
of bilayer graphene, Ref. [89] theoretically demonstrated that
a multiband mechanism based on the thermal smearing of
Fermi energy in both layers explains the unexpected sign
changes at high densities where puddles may be ignored. A
complete analysis at the double neutrality where both puddles
and multiband effects are important is however still lacking.
In the future, this may be addressed by generalizing the DPFT
framework presented here to incorporate multiband effects
[89] in the determination of puddle-induced quantities such
as the interlayer correlation and density fluctuations.

Finally, the findings of this work are useful in the study
of van der Waals heterostructures [1] consisting of a pair of
two-dimensional electronic layers separated by thin dielectric
spacers. These structures serve as ideal platforms for the study
of a range of interesting physical effects such as exciton con-
densation [90–93] and strong light-matter interaction [94–96]
and are thus an area of intense research activity. It is likely that
the interlayer puddle correlations calculated within this work
play a role in the above physics.
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APPENDIX A: UNITS AND SYSTEM PARAMETERS

Throughout this work we use cgs units, measure lengths
in l = √

3a ≈ 2.46 Å, where a is the lattice constant of
graphene, energies in u = h̄vF/l ≈ 2.678 eV (for mono-
layer graphene, with the Fermi velocity vF = 106 m/s) and
u′ = h̄2/(m l2) ≈ 36.71 eV (for bilayer graphene with quasi-
particle mass [97] m ≈ 0.39 eV/(2 v2

F)). With the elementary
charges in cgs and SI units connected via eSI = √

4πecgs

and the dielectric constants related via ε = κε0, the Coulomb
coupling strength in Eqs. (10) and (B1) reads

W = e2
cgs

κε0
= h̄vFrs ≈ 2.187

κ
ul (A1)

for graphene and

W ≈ 0.1596

κ
u′l (A2)

for bilayer graphene. The static limit [98] for h-BN amounts
to setting κ = 5.09.

We restrict the numerical evaluations to square-
shaped sheets of 2D materials with edge length of
L = 200 nm = 406.5 l , unless stated otherwise. A graphene
sheet of (200 nm)2 consists of approximately 1.5 million
carbon atoms, while the number of charge carriers,
derived from the n3-type realizations of n±(r), typically
ranges between 100 and 10 000 for layer L1—depending
on the employed disorder strengths. We confirmed the
convergence of the correlation measure ξ by increasing the
resolution—here a modest grid size of 1052 grid points
proved enough for converging ξ sufficiently.

The main contribution to the quantum-corrected density
n3(r) stems from the effective potential V in the vicinity of r,
see Table I, but the spatial integral for n3 is a priori indefinite.
We restrict this spatial integral to the square-shaped sheet of
area L2. Hence, the bulk of the sheet is modeled adequately,
but the region close to the edges requires further considera-
tion. Two scenarios suggest themselves. First, the Coulomb
tails of the charged impurities could be taken into account be-
yond the here employed sheet area L2 (which would increase
the computational cost substantially, with little effect on ξ ).
For this case of a truly finite sheet also the linear (quadratic)
dispersion for graphene (bilayer graphene) would require a
modification due to the nonperiodic boundary conditions.
Second, we could view the sheet as a representative part of a
larger sample whose disorder potential is unknown beyond the
employed sheet area [99]. That is, both scenarios render the n3

densities less precise near the edges (and particularly near the
corners) of the sheet when omitting the spatial regions beyond
the employed area L2 (which amounts to setting V (z) = μ

for z /∈ L2). We deem this inaccuracy acceptable since the
majority of the sheet is adequately taken into account, and the
effect on ξ is likely irrelevant given the observed variation due
to different disorder realizations.

APPENDIX B: EXCHANGE

Exchange potentials for graphene are available, for exam-
ple in Ref. [46],

VX(r) ≈W
√

π |n(r)| sgn(n(r))

×
[

1

4
log

(
4

√
3√

π |n(r)|

)
− 0.5757

]
(B1)

TABLE II. The correlation measure ξ , given in Eq. (D1), as
a function of the ratio R between strain and disorder strength [cf.
Eq. (C2)] for one disorder realization of double monolayer graphene
in TF approximation, with and without exchange (X). In absolute
numbers on the relevant scale of [−1, 1] for the correlation measures
and regarding the spread of ξ due to different disorder realizations,
cf. Fig. 5, we find exchange effects to be insignificant for investi-
gating correlations between the two layers L1 and L2. We made the
same observation for different disorder realizations.

R 0.1 1 10 20 50

ξTF+X 0.492 0.347 −0.013 −0.051 −0.122
ξTF 0.480 0.341 −0.015 −0.058 −0.135
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FIG. 9. Quantum corrections to the TF approximation are visibly
significant also at the level of effective potentials. Here, we depict
the external potential Vext for a graphene sheet of size L2, corre-
sponding to one realization of charged impurity disorder (top left),
the self-consistently converged effective potential V in TF approx-
imation (denoted VTF here) with the Hartree term only (top right),
the differences between VTF and VTF(+X ), where the Hartree term
plus the exchange of Eq. (B1) constitutes the interaction potential
(bottom left), and the comparison of the quantum-corrected effective
potential (including exchange) with VTF (bottom right). The color
code presents energy in units of u. The bottom panels are scaled by a
factor of 5.

in the units used here. Figure 9 illustrates the exchange
effects on the converged effective potential V , and Table II
demonstrates that exchange is negligible as far as interlayer
correlations are concerned.

An approximate exchange potential for other materials,
viz. other dispersion relations, can for instance be obtained
by calculating the according Dirac exchange energy for 2D
systems and adding correlation in the spirit of Ref. [100].
It would also be interesting to see if exchange-correlation
functionals developed for the 2D electron gas like in Ref. [23]
can be used for systems with quadratic dispersion differing
in the particle mass, e.g., for effective bilayer graphene. This
topic is, however, beyond the scope of this work.

APPENDIX C: DISORDER POTENTIALS

We separate the sheet (with optional strain) of the first
layer L1 from the plane that holds the charged impurities
by d = 1 nm, cf. Fig. 3. The impurity-induced Coulomb
potential in a sheet at distance d reads

VC(r) = W
∫

(dr′)
C(r′)√

|r − r′|2 + d2
, (C1)

where C takes on values ci ∈ {−1, 0, 1} randomly on the
grid points i ∈ {1, . . . , �}. We employ an average density of
charged impurities nimp (e.g., 1012 cm−2, corresponding to
400 impurities on L2), with half of the impurities positively
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FIG. 10. Comparison between the correlation measures ξ and ξc

for the TF densities, including exchange. As expected, ξc provides
more contrast than ξ , but its increased variance renders it less useful
for our purposes.

charged, such that the net charge in the impurity plane is zero.
We model the strain as

VS(r) = RW
∫

(dr′)
C̃(r′)√

|r − r′|2 + d2
, (C2)

with R controlling the relative impact of strain and charged
impurities, while C̃ and C represent different disorder real-
izations of the same type. The sum of Eqs. (C1) and (C2) is
the external potential Vext, cf. Eq. (8), for a monolayer setup
as well as for the first sheet of the double-layer structure.
The second sheet of the double-layer structure is not affected
by VS, but only by the charged impurities at a distance of
d̃ = 6 nm, cf. Fig. 3, and by the electrostatic potential from
the converged carrier distribution n1 on the first sheet:

Vext (L2)(r) = VC(r)|d=d̃ +
∫

(dr′)
W n1(r + r′)√
|r′|2 + (d̃ − d )2

. (C3)

APPENDIX D: CORRELATION MEASURES

In Sec. V we use a normalized version of the interlayer
correlation measure [2]

ξ [n1, n2] = 〈(n1 − 〈n1〉)(n2 − 〈n2〉)〉
n1,rms n2,rms

(D1)

to quantify the degree of (anti)correlation between the den-
sity distributions n1 and n2. Here, 〈n j〉 = 1

�

∑�
i=1 n j (i) is

the mean of the discretized density of layer j on the grid
points i ∈ {1, . . . , �}, and the root mean square of the density
fluctuations in layer j is n j,rms = √〈(n j − 〈n j〉)2〉. To check
for spurious artifacts of the correlation measure ξ in Eq. (D1)
and provide an error estimate for the (anti)correlations, we
also consider the alternative measure

ξc[n1, n2] = 〈 (n1 − 〈n1〉c)(n2 − 〈n2〉c)〉c

n1,rms,c n2,rms,c
, (D2)

which yields stronger contrast between situations of correla-
tion and anticorrelation—at the expense of larger variance; cf.
Fig. 10. Here we define the average

〈A〉c =
∑�

i=1 χc(i)A(i)∑�
i=1 χc(i)

(D3)
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FIG. 11. Schematic of the workflow for implementing the self-
consistent loop of Eqs. (3)–(5). Steps (I) and (II) represent the
initialization. The self-consistent loop is carried out in steps (III)–
(VI).

of a quantity A and the corresponding root mean square

n j,rms,c =
√

〈(n j − 〈n j〉c)2〉c. The characteristic function χc(i)

at grid point i equals one if nj (i) /∈ I j (for both j = 1, 2)
and zero otherwise [101]—with the cutoff interval I j =
[mini{n j (i)} + c 	 j, maxi{n j (i)} − c 	 j] and the density
spread 	 j = maxi{n j (i)} − mini{n j (i)}. We choose c = 0.4
to dismiss the fluctuations of correlation at small local carrier
density. Owing to its increased variance, we refrain from
depicting ξc in Sec. V.

APPENDIX E: SELF-CONSISTENT GROUND-STATE
VARIABLES

In this Appendix we outline the numerical procedures for
obtaining the ground-state variables of DPFT, viz. stationary
solutions, n, V , and μ of Eqs. (3)–(5), adapted to the quasi-
particle system described in Sec. III. Figure 11 illustrates the
main steps for implementing the self-consistent loop, with a
detailed description below.

Initialization (iteration i = 0):
(I) Calculate n(0)

± = n(i=0)
± = nν[V (0)

± − μ(0)] using
V (0)

− = Vext from Eq. (8) and V (0)
+ from Eq. (9). The initial

choice of the chemical potential is arbitrary, e.g., μ(0) = 0.
We omit r dependences in this Appendix for the sake of
notational simplicity. nν[V − μ](r) are functionals of V − μ

with parametric dependence on r, for example, the density
expressions given in Table I.

(II) Adapt μ(0) until N = ∫
(dr) n(0) = ∫

(dr) (n(0)
− − n(0)

+ ).
For instance, we demand N = 0 to be reached within an
absolute accuracy of 10−4.

Self-consistent loop:
(III) Update effective potential

V (i+1)
− = Vext + δEint[n]

δn

∣∣∣∣
n−=n(i)

−

and determine effective potential V (i+1)
+ via Eq. (9).

(IV) Update densities ñ(i+1)
± := nν[V (i+1)

± − μ(i+1)],
starting with μ(i+1) = μ(i), and adjusting μ(i+1) until
N = ∫

(dr) ñ(i+1) = ∫
(dr) (ñ(i+1)

− − ñ(i+1)
+ ).

(V) Mix old and new densities with mixing parameter
θ ∈ (0, 1): n(i+1) = (1 − θ ) n(i) + θ ñ(i+1). More sophisticated
density mixing like Pulay or Broyden mixing can be expected
to improve the convergence behavior.

(VI) Check convergence with an appropriate norm crite-
rion ||n(i+1) − n(i)|| < ε. We use ε = 10−6 and

||n(i+1) − n(i)|| =
∑

r j
χi j |n(i+1)(r j ) − n(i)(r j )|

s(i+1)
∑

r j
χi j

, (E1)

with grid positions r j ,

χi j = η

(
t (i+1)(r j ) − s(i+1)

1000

)
, (E2)

t (i+1)(r j ) = min{|n(i+1)(r j )|, |n(i)(r j )|}, (E3)

s(i+1) = 1

2

(
MAXi − MINi

)
, (E4)

MAXi = maxr
{
max{|n(i+1)(r)|, |n(i)(r)|}}, (E5)

MINi = minr
{
min{|n(i+1)(r)|, |n(i)(r)|}}. (E6)

If densities have converged to within ε, the stationary solu-
tions n, V , and μ of Eqs. (3)–(5) are found; otherwise return
to step (III) for the next iteration.

The number of self-consistent iterations i required for
convergence is largely determined by the density-mixing pa-
rameter θ , which is highly system dependent. Here, we can
choose θ = 0.5 for weak disorder but need to approach the
equilibrium very gently in case of strong disorder (θ � 0.01).
In our implementation i usually reaches values on the order of
∼10/θ .

APPENDIX F: THE QUANTUM-CORRECTED DENSITY n3

FOR LINEAR DISPERSION

In this Appendix, we outline the derivation of the density
expressions for linear dispersion given in Table I. Equations
(3) and (6) yield Eq. (7) with the aid of the Fourier transform
of the step function η(·):

n(r) = g〈r|η(μ − H1)|r〉 = g
dt

2π it
e

it
h̄ μ〈r|e− it

h̄ H1 |r〉,
(F1)
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where the degeneracy factor g is part of the trace in Eq. (6).
Generally, a Suzuki-Trotter factorization Uν of the time-
evolution operator with

〈r|Uν |r〉 = 〈r|
ν/2∏
i=1

eαiT (P)eβiV (R)|r〉 (F2)

=:
ν/2∏
i=1

∫
(dri )(d pi ) ci e− it

h̄ A (F3)

and real-valued functions ci and A fixed by the here inserted
completeness relations in position and momentum space, im-
plies

〈r|η(μ − H1)|r〉 =
ν/2∏
i=1

∫
(dri )(d pi ) ci η(μ − A). (F4)

For example, the case U3 in Sec. II is formally obtained by
setting α1 = α2 = − it

2h̄ , β1 = − it
h̄ , and β2 = 0 in U4. Note that

U3 is denoted as U3′ in Ref. [54].

We obtain the TF density by choosing ν = 2 and
α1 = β1 = − it

h̄ . Specifying linear dispersion, T (p) = vF|p|,
we find

nTF(r) = 2πg
∫ ∞

0

d p p

(2π h̄)2
η(μ − vF p − V (r)), (F5)

whose analytic result is easily obtained and given in Table I.
The computation of n3 requires the insertion of three com-
pleteness relations, and the so-introduced two-dimensional
momentum integrations are reduced to one-dimensional inte-
grals via appropriate coordinate transformations. The subse-
quent analytic evaluations of the remaining one-dimensional
integrals lead to the expression for n3 in Table I, leaving one
spatial integral to be evaluated numerically.
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