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Optical forces from near-field directionalities in planar structures
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Matter manipulation with optical forces has become commonplace in a wide range of research fields and is
epitomized by the optical trap. Calculations of optical forces on small illuminated particles typically neglect
multiple scattering on nearby structures. However, this scattering can result in large recoil forces, particularly
when the scattering includes directional near-field excitations. Near-field recoil forces have been studied in the
case of electric, magnetic, and circularly polarized dipoles, but they exist for any type of directional near-field
excitation. We use the force angular spectrum as a concise and intuitive analytical expression for the force on
any dipole near planar surfaces, which allows us to clearly distinguish the effect due to the dipole, and due to
the surface. We relate this directly to the coupling efficiency of surface or guided modes via Fermi’s golden rule.
To exemplify this, a near-field force transverse to the illumination is computationally calculated for a Huygens
dipole near a metallic waveguide. We believe this formalism will prove insightful for various nanomanipulation
systems within areas such as nanofluidics, sensing, biotechnology, and nanoassembly of nanostructures.
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I. INTRODUCTION

The manipulation of small objects using purely optical
forces began with the optical trap [1–3] and has since ce-
mented itself as an important technique in a wide range of
fields [4,5]. The trapping force in modern optical tweezers
originates from the gradients of the electromagnetic field
intensity around the trapped object and, typically, strong gra-
dient forces are generated through the use of highly focused
beams and translating the focus to move the subject.

Tractor beams [6–9] are a more recent optical manipu-
lation concept which pulls the subject particle towards the
illumination source with no equilibrium position. The concept
has been proposed in a variety of configurations [10–14],
including inducing a far-field directionality in the subject’s
multipolar forward scattering, using a Bessel beam or plane
waves [15,16]. This configuration produces an attractive,
nonconservative force by increasing the ratio between the
forward scattering and the backward scattering of the subject,
constructing a directionality and a corresponding recoil force.

The upscaling of optical tweezers and tractor beams to
multiple objects is plagued by the complexity of aligning
and controlling many laser beams. A recent addition to these
nanomanipulation techniques, that has no such limitation,
has been recently proposed in the form of surface recoil
forces [17–19]. These forces are similar to the recoil forces
in tractor beams in that they are a result of directional scat-
tering and momentum conservation. The difference is that
they are applied to near-field excited guided waves [20–32].
Recent works on these surface recoil forces include chiral
sorting [33,34], surface mode optical pulling [35], and lateral
Casimir forces [36,37].
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This type of optical manipulation does not require incident
fields with an electromagnetic gradient and instead utilizes
the light-matter interactions that occur near the surface. Plane
waves can, therefore, be used as a much simpler optical
illumination which operates over a large area simultaneously
and naturally leads towards scaled up systems. Since the recoil
force is often polarization dependent, ultrafast polarization
switching technologies [38,39] can be implemented in the
illumination beam path, allowing rapid control over the dy-
namics of the objects. The geometry of the system makes
these forces highly applicable to lab-on-a-chip designs. Opti-
cal forces of this type could form part of the suggested future
nanofactories and “bottom-up” fabrication techniques [40].

In this paper, we derive a general formalism for the force
on any electromagnetic dipole within wavelength distance of
a planar medium, which we call the angular force spectrum.
Previous works on near-surface forces are limited to very
specific scenarios (specific dipole moments, specific surfaces,
particle chirality, etc.) but are clearly all physically related.
The angular force spectrum description is a robust and phys-
ically intuitive framework which is valid for any near-field
directionalities in any type of planar structure, including
plasmonic surface modes and dielectric planar waveguides.
We also show that the excitation strength of the surface
modes elegantly appears in the analytical expression for the
force angular spectrum, through Fermi’s golden rule. We use
the Huygens dipole, recently predicted to exhibit near-field
directionality [22,41–44], as a perfect example for which to
computationally compare the magnitudes of near-field and
far-field recoil forces. Finally, we compare these results with
an optimized version of the well-known circular electric
dipole [17,20,22] to show that this near-field dominance of
the force close to the surface is not specific to the Huygens but
is instead an example of a general principle of surface recoil
forces.
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II. NEAR-FIELD RECOIL OPTICAL FORCES

The underlying principle of a recoil force is the conserva-
tion of linear momentum. If the scattering of an illuminated
particle is directional, there is an imbalance in emitted radi-
ation. Since the scattered light is carrying linear momentum
away from the particle, the particle will experience a recoil
force to conserve momentum. The harnessing of directional
light as a means of producing recoil forces is a broadband
effect and can be achieved in numerous ways. A preferential
scattering in a direction perpendicular to the illumination
axis will produce a perpendicular force, therefore providing
a theoretical mechanism for full control of the subject in
three-dimensional space.

The Maxwell stress tensor (MST) is a standard method of
calculating optical forces and determines the rate of change of
mechanical momentum within an arbitrary closed volume via
a surface integral [45],

〈F〉 =
∫
S
〈
↔
T〉 · n̂ dS, (1)

where F is the force acting on a body and n̂ is the normal
vector perpendicular to and out of any arbitrary closed surface

S enclosing the body. The MST
↔
T is defined as [42,45,46]

〈
↔
T〉 = 1

2
R

{
εE ⊗ E∗ + μH ⊗ H∗ − 1

2
(ε|E|2 + μ|H|2)

↔
I

}
,

(2)

where E and H are the total electric and magnetic fields,
⊗ denotes the outer product of two vectors, asterisks repre-

sent complex conjugations,
↔
I is the identity matrix, and ε

and μ are the permittivity and permeability of the medium,
respectively. Throughout this paper, a time harmonic field
dependence E(r, t ) = R{E(r)e−iωt } is assumed, where ω is
the angular frequency of the field. In practice, the numerical
surface integration can become computationally expensive
due to the number of points necessary to acquire an accurate
result.

The system of interest to this paper is that of a generic
magnetodielectric Rayleigh particle close to a planar surface.
Under illumination, the particle can generate an electric dipole
moment p and a magnetic dipole moment m, which in the
simplest case is given by

p = αeẼ, m = αmH̃, (3)

where Ẽ and H̃ are the total fields minus the dipole’s self-
fields. The self-fields are in some contexts called scattered
fields, while the Ẽ and H̃ fields are called incident or back-
ground fields. Their sum produces the total fields E and H.
The background fields are calculated at the location of the
dipole moment (typically in the center on the particle). αe and
αm are the complex electric and magnetic polarizabilities, re-
spectively. In this paper, we shall omit higher-order multipoles
for simplicity although the same recoil force principle applies.

The total optical force acting on the particle is the sum of
the radiative reaction force of the dipole fields and the Lorentz
force that the background fields Ẽ and H̃ exert on the dipole
moments p and m. However, this calculation is in general very
complicated, because both the dipole moments and the back-

ground fields depend mutually on one another (via multiple
scattering) giving rise to feedback mechanisms, resonances,
etc. Fortunately, the problem can be split into two simpler
logical steps: the first step is to find the dipole moments which
satisfy Eq. (3), including illumination and multiple reflec-
tions, and possibly including further complications such as
gyrotropic or anisotropic particles which require generalized
versions of Eq. (3). This first step involves solving simulta-
neous equations self-consistently and is not the focus of this
work. Once p and m have been calculated in this way, the sec-
ond step of the problem is to find the force acting on the dipole
moments. Fortunately, for this second step, we can work with
the assumption that p and m are known values and study the
force which the background fields Ẽ and H̃ exert on them.
This second part of the problem is also extremely interesting
and is the focus of this paper, as the force becomes nontrivial
in the presence of a nearby surface. Therefore we assume that
the first step has been achieved and we work with p and m as if
they were independent variables assumed to correspond self-
consistently with Eq. (3), greatly simplifying the problem.

Since the particle is now modeled as a point dipole a
set distance above the surface, the arbitrary integration vol-
ume in Eq. (1) can be constricted to a single point around
the point dipole and subsequent algebra yields the exact
result [15,42,47,48]

〈F〉 = 1

2
R

{
(∇ ⊗ Ẽ)p∗ + μ(∇ ⊗ H̃)m∗

(4)

− k4

6πεc
(p × m∗)

}
,

where c and k are the speed of light and wave number of the
medium enclosing the dipole, respectively. Note that the fields
appearing in Eq. (4) correspond to the background fields Ẽ and
H̃ and not the total fields. Also note that, with the condition
that p and m are self-consistently generated, the force (4)
becomes linear with the background fields, enabling us to
study the force from different contributions of the background
field or even to its plane-wave decomposition.

One could substitute Eqs. (3) into the first two terms of
Eq. (4) and give rise to a range of force terms including
a conservative scattering force, a nonconservative scattering
force, and a radiation pressure, among others [8]. Throughout
this paper, we will refrain from performing the substitution (3)
into (4), for simplicity, so p and m must be calculated
self-consistently.

Since Ẽ and H̃ are the total fields excluding only the self-
fields of the dipole, they of course include the illumination,
but also, importantly, the backscattered fields (reflection of
the self-fields of the dipole in the surface), sometimes called
interaction fields. We can describe this with the substitution

Ẽ → Eillum + Ebs, H̃ → Hillum + Hbs, (5)

where “illum” and “bs” relate to the illumination and
backscattering contributions. The backscattered fields can also
produce optical forces. This is a key point in this paper
because the backscattering forces can be dominant when
sufficiently close to the surface. We stress again that the
backscattered fields depend on p and m and so must be
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calculated self-consistently such that Eqs. (3) are fulfilled.
This may involve multiple reflections.

The third term in Eq. (4) comes from the interference
of the magnetic and electric dipole radiation and we refer
to it as the radiative reaction term. An orthogonal and in-
phase p and m can produce a far-field directionality due to
the coherent interference of the two dipole radiations. This
directionality has a perfect contrast in the case of a Huygens
dipole [22,41–44]. The directional radiation produces a recoil
force due to the conservation of linear momentum.

The backscattered electromagnetic fields in Eq. (5) consist
of contributions from each multipole of the particle. In this
paper, we consider only the electric and magnetic dipoles,
Ebs = Ebs

e + Ebs
m and Hbs = Hbs

e + Hbs
m , but higher-order mul-

tipoles may be added in a similar fashion.
Many papers about optical tweezers on surfaces choose

to omit the backscattered fields and just use the illumina-
tion fields as Ẽ and H̃ in Eq. (5). This is done with the
assumption that the forces due to the backscattered fields and
any surface modes are negligible to the system. However,
the addition of the backscattered fields in Eq. (4) clearly
shows the appearance of extra force terms which are not
from the direct illumination. Several works do consider forces
from the backscattered fields, and it has been shown that
these forces can become very important to the motion of a
particle close to a surface and so should not be neglected
in general [33,35,49–53]. We emphasize that any object that
supports surface or guided modes can introduce nontrivial
forces in this way due to a potentially directional dipole near

field. In other words, a recoil force is a completely general
phenomenon that can occur for any source exhibiting near-
field directionalities.

III. ANGULAR FORCE SPECTRUM

We look to find an analytical expression of the near-field
force for a dipole near a planar surface that clearly shows the
recoil forces from guided or surface modes in a very general
way. To do so, we analytically expand the fields Ẽ and H̃ in
Eq. (4) into its angular spectrum.

By doing so, we arrive at the force angular spec-
trum [54,55], in which the force is written as an integral over
the transverse wave vector, analogously to the field’s angular
spectrum [45,56,57]. This type of expression lends itself very
well to physical insight because the integrand can highlight
exactly which angular components are contributing to a given
force and with what magnitude. When plotting the integrand,
a large area under the curve corresponds to a large force in
the integrand and so resonances can play a key role in optical
forces.

Substituting Eq. (5) into Eq. (4), the first and second terms
can be arranged into forces caused exclusively by the illumi-
nation and by the backscattered fields, which combine with
the radiative reaction force to give 〈F〉 = 〈Fillum〉 + 〈Fbs〉 +
〈Frr〉. By substituting the angular spectrum of the backscat-
tered fields into Eq. (4), one can split the backscattering force
into the near-field (evanescent) and far-field (propagating)
components, 〈Fbs〉 = 〈Fbs

NF〉 + 〈Fbs
FF〉. The resulting near-field

force angular spectrum is given by (see Appendix A)

〈Fbs
NF〉 = 1

2
R

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫∫

κ

dkx dky
k2

8π2ε

(−k)

kz
e2ikzh

⎛⎜⎜⎜⎜⎝rp |p∗ · Êp + μ m∗ · Ĥp|2︸ ︷︷ ︸
p-mode coupling

(Fermi’s golden rule)

+ rs |p∗ · Ês + μ m∗ · Ĥs|2︸ ︷︷ ︸
s-mode coupling

(Fermi’s golden rule)

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, (6)

where k = (kxx̂ + kyŷ + kzẑ), kz =
√

k2 − (k2
x + k2

y ), κ sym-

bolizes an integration over the domain where
√

k2
x + k2

y > k,

associated to the near field, h is the height of the dipole
above the surface, and rs and rp are the kx- and ky-dependent
s- and p-polarized Fresnel reflection coefficients of the sur-
face, respectively. Êp and Ĥp are the known normalized
fields of any p-polarized evanescent wave given by Êp =
ê+

p and Ĥp = (1/η)ês, where η =√
μ/ε. Likewise, Ês and

Ĥs are the normalized fields of any s-polarized evanescent
wave, given by Ês = ês and Ĥs = −(1/η)ê+

p . We use the
s and p polarization basis vectors defined in Refs. [58,59]
as ês = (k2

x + k2
y )−

1
2 (−kyx̂ + kxŷ) and ê±

p = ês × k±
k , where

k± = (kxx̂ + kyŷ ± kzẑ) and ± refers to propagation in the
+ẑ or −ẑ direction. These basis vectors correspond to the
well-known unit vectors of the azimuthal and polar angles
in spherical coordinates when k is real. Note that rs, rp, ês,
and ê±

p are complex and functions of kx and ky. While 〈Fbs
NF〉

is only suitable for the near-field domain, 〈Fbs〉 ≈ 〈Fbs
NF〉 if

suitably close to the surface (subwavelength distance) due

to the evanescent contributions dominating the integrals. A
less compact expression valid for the whole transverse wave-
vector plane is provided in Appendix A.

Fermi’s golden rule describes the coupling efficiency be-
tween a dipole and waveguide [22,26,60] and can be ex-
pressed as |Am|2 ∝ |p∗ · Em + μ m∗ · Hm|2, where |Am|2 is the
coupling efficiency and Em and Hm are the fields of the mode
being considered. By considering only p-polarized modes
with Fermi’s golden rule (Em → Ep and Hm → Hp), it is clear
that the normalized coupling efficiency of p-polarized modes
is apparent in Eq. (6), weighted by rp. The same is true for
s-polarized modes. It is both surprising and remarkable that
Fermi’s golden rule appears in such an elegant way inside the
apparently unrelated angular force spectrum.

Figure 1 demonstrates how the different terms combine to
produce the net lateral force: Fig. 1(c) shows the angular rep-
resentation of the p-polarized coupling efficiency, determined
by Fermi’s golden rule as written in Eq. (6), and depends
exclusively on the dipole moments p and m and their near-
and far-field directionalities [22,59]. Notice that Fig. 1(c) is
completely independent of the surface being considered. The
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FIG. 1. (a) A schematic of the Huygens dipole at a distance h
above the surface of permittivity ε. (b) The electric field distribution
of a p-polarized Huygens dipole 0.2λ above an infinite planar surface
of εr = −2 + 0.2i, illustrating the directional coupling. The yellow
arrows depict the vertical and lateral forces. (c)–(e) Fourier spectra
of (c) the p-polarized scattering from the Huygens dipole obtained
using Fermi’s golden rule, (d) the R{−kxe2kzhrp/kkz} term in Eq. (6),
and (e) the force along x, formed from multiplying (c) and (d). The
surface plasmon polariton (SPP) is the dominant contribution when
the dipole is this close to the surface.

clear asymmetry in Fig. 1(c) represents the dipolar direction-
ality, and is ultimately responsible for the existence of lateral
forces. In contrast, Fig. 1(d) is independent of the polarization
of the dipolar source and its directionality, but it contains
the Fresnel reflection coefficient, which represents the optical
response of the surface (in this case a metallic interface
supporting surface plasmons). Figure 1(d) also includes the
dependence of the force on the distance between the dipole
and the surface, and the −k

kz
factor in Eq. (6). The −k factor

means the force is antiparallel to the propagation direction of
the excited mode. This is physically intuitive, as a strong mode
coupling to a waveguide along a given direction will incite a
strong recoil force in the opposite direction, as dictated by
conservation of momentum.

The product of Fig. 1(c), dependent only on the dipole,
with Fig. 1(d), dependent on the surface, the distance, and the
force’s direction, produces the final force angular spectrum
shown in Fig. 1(e), which represents the combined effect of
the dipole and the surface and whose integration results in

the total force. This visual representation clearly unveils the
physical origins of the force from different contributions.

Even though each evanescent component of the backscat-
tered field produces an associated recoil force, the total force
can be zero due to the different components canceling each
other when the amplitudes of guided modes in different
directions (calculated via Fermi’s golden rule) are balanced.
Only when there is an imbalance in the coupling to guided
modes (known as near-field directionality [22]), such as in
Fig. 1, can we have a nonzero net recoil force. Another way
to obtain nonzero net recoil forces (even for nondirectional
dipoles) would be to use a surface with angular-dependent
reflection coefficients rs and rp, which can be achieved in
magneto-optical materials or metals by applying static mag-
netic fields [61,62].

An interesting observation can be made about the k
kz

pref-
actor of the force angular spectrum. While the ẑ component
is always equal to unity, the transverse components become
imaginary in the near-field regime, switching the force to
depend on the imaginary part of the reflection coefficients.
This is in contrast to the far-field regime where all components
of the force are functions of the real parts of rs and rp.

IV. NUMERICAL INVESTIGATION

To numerically illustrate the significance of these backscat-
tering forces, we explore the simple example of a Rayleigh
particle with electric and magnetic dipole moments, p and m,
that form a Huygens dipole and place it near a homogeneous
flat surface. We model only the radiating dipole and its fields
reflected from the surface, Ebs and Hbs, because we wish to
highlight the particle-waveguide interactions and their effects
on the optical force. Including the illuminating fields Eillum

and Hillum would yield no new physical insights and so are not
included in the fields of Eq. (4) for this example. Throughout
this section, we refer to gradient forces when describing
the forces from the gradient of the reflected fields, which
correspond to the first two terms of Eq. (4). The dipole’s fields
are reflected by the surface in accordance with the Fresnel
reflection coefficients rp and rs and we employ the angular
representation to compute the electromagnetic fields [59].

Figure 2 shows the lateral force felt by an optimized
Huygens dipole (my = kspp c pz, where kspp =

√
εr

1+εr
) [22] in

close proximity to a metallic plane at z = 0 and was calculated
by inserting the backscattered fields into Eq. (4). The Huygens
dipole is an excellent example, because it possesses a far-
field directionality whose recoil force Frr is given by the
radiative reaction term in Eq. (4), while at the same time, as
shown in Ref. [22], it also exhibits a near-field directionality,
which results in lateral near-field recoil forces, Fbs. Thus, this
system is ideal in order to compare the relative magnitude
of the commonly used far-field radiative reaction force Frr

and the typically neglected gradient forces caused by the
backscattered fields Fbs. It is already understood that the
far-field radiative reaction force Frr is significant enough to
overcome the illumination gradient force Fillum [15,16], so any
forces stronger than this are also significant. The results were
confirmed through use of the MST [Eq. (1)].

It is clear that the plot has three distinct regions. The first
region at h/λ > 0.3 has a decaying sinusoidal shape with a

235410-4



OPTICAL FORCES FROM NEAR-FIELD … PHYSICAL REVIEW B 99, 235410 (2019)

FIG. 2. (a) Magnetic field strength plotted for an optimized p-
polarized Huygens dipole at a height h = 0.15λ above a metallic
plane at z = 0 of εr = −12 + 3i and μr = 1. The directional SPP
is clearly visible around the surface at z/λ = 0. (b) The distance
dependence of the time-averaged lateral force on the same Huygens
dipole with respect to h, normalized by the scatting power. Total
refers to the force calculated via [Eq. (4)] and MST refers to the force
calculated via the Maxwell stress tensor [Eq. (1)]. The propagating
far-field force and SPP recoil force are shown with the blue and green
dotted lines, respectively.

period of λ/2 around a nonzero lateral force. The nonzero
equilibrium point is the far-field recoil force of the Huygens
dipole Frr, corresponding to the radiative reaction term in
Eq. (4). The weak oscillation with λ/2 periodicity comes from
the gradient force of the reflected far field of the dipole Fbs

FF
which can be neglected at these heights, as is usually done.

The other two regions are dominated by the force due
to backscattered fields, Fbs

NF, showing that they cannot be
neglected when the surface is within the near fields of the
dipole. The second region at h/λ < 0.1 is in the quasistatic
limit where the integral in the angular representation is dom-
inated by large transverse wave vectors kt and results in the
dipole “feeling” an image dipole placed at a distance h into
the surface [49]. The resultant force is asymptotic but in a
realistic system with a particle of finite size, this region may
be unreachable.

The region of interest at 0.1 < h/λ < 0.3 is a main focus of
this paper. A mode pertaining to the surface has been excited

FIG. 3. (a) Magnetic field strength plotted for an optimized el-
liptical dipole at h = 0.15λ above a surface of εr = −12 + 3i. The
directional SPP is again clearly visible around the surface at z/λ = 0.
(b) The distance dependence of the absolute lateral force on the same
dipole with respect to h, normalized by the scattering power. Total
refers to the force calculated via Eq. (4) and MST refers to the force
calculated via the Maxwell stress tensor [Eq. (1)]. Elliptical dipoles
have no far-field directionality when far from a surface.

by the near-field directionality of the dipole and a near-field
recoil force Fbs

NF has been produced. The force varies exponen-
tially with the separation distance from the surface because
of the decaying nature of the reflected evanescent waves, as
predicted by Eq. (6). In this particular example, the excited
mode is a surface plasmon polariton (SPP) on the metallic
surface (see Fig. 2) and it can contribute overwhelmingly to
the total force on the dipole, via the near-field recoil force
Fbs

NF. For a dielectric waveguide, a similar force would appear
because of any excited guided modes. The lateral force exists
due to the near-field directionality of the Huygens dipole, as
shown clearly in the fields of Fig. 2, and this directionality is
independent of the surface being used. As shown by Eq. (6),
the surface will only determine the strength of the force via the
guided modes which appear as peaks in the Fresnel reflection
coefficient, but the direction and existence of the lateral force
is ultimately stemming from the p-mode coupling near-field
directionality of the dipole itself.

This behavior is very general and applies to all dipoles. For
example, Fig. 3 shows the near-field lateral force Fbs

NF from an
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optimized [22] elliptical dipole p = (kspp, 0,−i
√

k2
spp − 1).

The same dominance of the SPP in the 0.1 < h/λ < 0.3
region demonstrates that this physics is not unique to the
Huygens. An elliptical dipole is known to have no far-field
directionality in vacuum and therefore no far-field force Frr.
This leads to the h/λ > 0.3 region oscillating about 〈FL〉 = 0
rather than the nonzero far-field force Frr of Fig. 2. The
oscillation itself can be said to be the far-field directionality
that the elliptical dipole gains when above a metallic
surface [63]. The near-field directionality and therefore
near-field forces can be directly controlled by the polarization
of the dipole, which experimentally can be controlled via the
illuminating polarization. For both examples and any other
dipoles, the directional near-field forces can become much
larger than the far-field forces and so cannot be neglected.

The mode recoil forces are a completely general result
applying to any directional guided or surface mode that exists
on any planar structure. The forces appear as quasistatic,
guided/surface mode, and far-field forces. The same princi-
ples of recoil forces due to near fields can be applied in arbi-
trary nonplanar geometries by using directly Eqs. (1) or (4),
but without such an easy analytical form as in the planar case.

V. CONCLUSIONS

In this paper, we discussed the significance of near-field
interactions in the emergence of optical forces and the under-
lying principles of symmetry and conservation of momentum

behind them. We showed a link between the near-field recoil
force on a coupling dipole and the excitation amplitude of
the surface mode which is determined by Fermi’s golden
rule.

We have compared the forces upon a general electromag-
netic dipole in the limit where a surface is placed close to the
particle, and demonstrated that near-field interactions domi-
nate the forces on the particle in this case. The Huygens dipole
and an elliptically polarized electric dipole are used as exam-
ples that exhibit near-field directionality and show that the
resultant backscattered fields are crucial for accurately cal-
culating the forces on the dipoles. This model is highly
applicable to a wide range of systems where a Rayleigh
nanoparticle or nanoantenna is in close proximity to a waveg-
uide and exhibits sharp electric and/or magnetic dipole
resonances under illumination. Any nanomanipulation in
this regime must take the backscattered near fields into
consideration.
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APPENDIX A: FORCE ANGULAR SPECTRUM DERIVATION

To describe the force on a general magnetodielectric particle near a planar surface, one can construct the force angular
spectrum. We begin with the angular spectrum of the electric field [45,56,57],

E(x, y, z) =
∫∫

E(kx, ky, z)ei(kx x+ky y) dkx dky. (A1)

The magnetic field can be expressed in a similar manner. Let us now consider only the force caused by the backscattered or
reflected fields 〈Fbs〉. The reflected field contributions from the electric and magnetic dipoles are combined, Ebs

e + Ebs
m = Ebs

total.
We then substitute (A1) into the gradient terms of Eq. (4) and evaluate the gradient operator as equivalent to a factor i k when
working with angular spectra. After the substitution of the mathematical identity (i k ⊗ E)p∗ = i k(E · p∗), and similarly for the
magnetic dipole term, we arrive at

〈Fbs〉 = 1

2
R

{∫∫
i k

(
p∗ · Ebs

total + μ m∗ · Hbs
total

)
dkx dky

}
,

(A2)

where k = (kx x̂ + ky ŷ + kz ẑ) and the integrals are conducted from −∞ to +∞ in kx and ky. The electromagnetic fields can
be expanded in the angular representation with the polarization vectors discussed in Refs. [58,59]. For a dipole above a planar
surface at z = 0, the reflected dipole fields at the position of the dipole r = h ẑ are given by the angular representation [59]

Ebs
e (kx, ky, h) = i k2

8π2 ε kz
[rp(ê−

p · p)ê+
p + rs(ês · p)ês]e

2ikzh,

Ebs
m (kx, ky, h) = i k2

8π2 ε kzc
[rp(ês · m)ê+

p − rs(ê−
p · m)ês]e

2ikzh,

(A3)

μ Hbs
e (kx, ky, h) = i k2

8π2 ε kzc
[rp(ê−

p · p)ês − rs(ês · p)ê+
p ]e2ikzh,
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μ Hbs
m (kx, ky, h) = i k2

8π2 ε kzc2
[rp(ês · m)ês + rs(ê−

p · m)ê+
p ]e2ikzh,

where k is the wave number of the medium enclosing the dipole, ε is the permittivity, and rs = rs(kx, ky) and rp = rp(kx, ky )
are the s- and p-polarized Fresnel reflection coefficients, respectively. Note that these reflected fields can (and will) involve any
number of multiple reflections so long as p and m are solved self-consistently with Eqs. (3).

The es and e±
p vectors form a set of orthogonal basis vectors (es · e±

p = 0) and are applicable to both propagating and
evanescent waves. After substituting (A3) into (A2), the integrand of (A2) can be split into rs and rp contributions and factorized.
This leads directly to the force angular spectrum of the dipole near any planar surface,

〈Fbs〉 = −1

2
R

{∫∫
dkx dky e2ikzh k2 k

8π2εkz

[
rp

(
p∗ · ê+

p + m∗

c
· ês

)(
p · ê−

p + m
c

· ês

)
+rs

(
p∗ · ês − m∗

c
· ê+

p

)(
p · ês − m

c
· ê−

p

)]}
. (A4)

Equation (A4) integrates over the whole kx, ky plane. This plane can be decomposed into the far-field region
√

k2
x + k2

y < k and

the near-field region
√

k2
x + k2

y > k, corresponding to propagating and evanescent components, respectively. In the near-field

region κ , (A4) can be greatly simplified because kz is purely imaginary, leading to the near-field properties of the unit vectors of
ê±

p = ê∓∗
p and ês = ê∗

s . Applying these to Eq. (A4) gives

〈
Fbs

NF

〉 = −1

2
R

{∫∫
κ

dkx dky e2ikzh k2 k
8π2εkz

[
rp

(
p∗ · ê+

p + m∗

c
· ês

)(
p · ê+∗

p + m
c

· ê∗
s

)
+rs

(
p∗ · ês − m∗

c
· ê+

p

)(
p · ê∗

s − m
c

· ê+∗
p

)]}

= −1

2
R

{∫∫
κ

dkx dky
k2

8π2ε

k
kz

e2ikzh

(
rp

∣∣∣∣p∗ · ê+
p + m∗

c
· ês

∣∣∣∣2

+ rs

∣∣∣∣p∗ · ês − m∗

c
· ê+

p

∣∣∣∣2
)}

, (A5)

where we can identify the normalized mode field vectors Ês = ês, Êp = ê±
p , Ĥs = −(1/η)ê±

p , and Ĥp = (1/η)ês, where η =√
μ/ε. By substituting these vectors into Eq. (A5), we arrive at Eq. (6). ê+

p appears in Eq. (A5) because the plane is beneath the
dipole and so the radiation from the surface or guided mode is propagating towards the dipole in the positive ẑ direction.

Equation (A5) can be displayed in an alternative form where terms are split according to dipole interactions rather than
polarizations by making use of the complex conjugate identity

|A + B|2 = |A|2 + |B|2 + 2R{AB∗}.
Some readers may prefer this alternative expression,

〈
Fbs

NF

〉 = −1

2
R

{∫∫
κ

γ [ fe + fm + fem]dkx dky

}
, γ = k2 k

8π2εkz
e2ikzh,

fe = rp|p∗ · ê+
p |2 + rs|p∗ · ês|2, fm = rp

∣∣∣∣m∗

c
· ês

∣∣∣∣2

+ rs

∣∣∣∣m∗

c
· ê+

p

∣∣∣∣2

,

fem = 2 rp R

{
(p∗ · ê+

p )

(
m
c

· ês

)}
− 2 rs R

{
(p∗ · ês)

(
m
c

· ê−
p

)}
.

APPENDIX B: CROSS POLARIZATION

The Fresnel reflection coefficients can be generalized for surfaces that can convert polarizations of light upon reflection,(
E ref

p

E ref
s

)
=

(
rpp rps

rsp rss

)(
E inc

p

E inc
s

)
, (B1)

where “inc” and “ref” refer to any field incident on the surface Einc = (E inc
p ê−

p + E inc
s ês)ei(kx x+ky y−kz z) and the subsequent

reflection Eref = (E ref
p ê+

p + E ref
s ês)ei(kx x+ky y+kz z), respectively. The angular spectrum expressions of Ref. [59] can be generalized

for the rsp and rps cross-polarization terms. Just as before, applying the gradient terms of Eq. (4) will produce an angular spectrum
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of the form

〈Fbs〉 = −1

2
R

{∫∫
dkx dky e2ikzh k2 k

8π2εkz

[
rpp

(
p∗ · ê+

p + m∗

c
· ês

)(
p · ê−

p + m
c

· ês

)
+rps

(
p∗ · ê+

p + m∗

c
· ês

)(
p · ês − m

c
· ê−

p

)
+rsp

(
p∗ · ês − m∗

c
· ê+

p

)(
p · ê−

p + m
c

· ês

)
+ rss

(
p∗ · ês − m∗

c
· ê+

p

)(
p · ês − m

c
· ê−

p

)]}
. (B2)

Equation (B2) can be written in the same form as Eq. (6) by substituting in the previously mentioned normalized mode field
vectors to produce〈

Fbs
NF

〉 = −1

2
R

{ ∫∫
κ

dkx dky e2ikzh k2 k
8π2εkz

[
rpp|p · Êp + μ m · Ĥp|2 + rss|p · Ês + μ m · Ĥs|2

+rps(p · Êp + μ m · Ĥp)∗(p · Ês + μ m · Ĥs) + rsp(p · Ês + μ m · Ês)∗(p · Êp + μ m · Ĥp)

]}
.

This cross-polarization expression may prove useful for readers looking to analytically describe forces above an anisotropic or
nonreciprocal planar surface.
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