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Topology and localization of a periodically driven Kitaev model
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Periodically driven quantum many-body systems support anomalous topological phases of matter, which
cannot be realized by static systems. In many cases, these anomalous phases can be many-body localized, which
implies that they are stable and do not heat up as a result of the driving. What types of anomalous topological
phenomena can be stabilized in driven systems, and in particular, can an anomalous phase exhibiting non-Abelian
anyons be stabilized? We address this question using an exactly solvable, stroboscopically driven 2D Kitaev spin
model, in which anisotropic exchange couplings are boosted at consecutive time intervals. The model shows
a rich phase diagram which contains anomalous topological phases. We characterize these phases using weak
and strong scattering-matrix invariants defined for the fermionic degrees of freedom. Of particular importance is
an anomalous phase whose zero flux sector exhibits fermionic bands with zero Chern numbers, while a vortex
binds a pair of Majorana modes, which as we show support non-Abelian braiding statistics. We further show
that upon adding disorder, the zero flux sector of the model becomes localized. However, the model does not
remain localized for a finite density of vortices. Hybridization of Majorana modes bound to vortices form “vortex
bands,” which delocalize by either forming Chern bands or a thermal metal phase. We conclude that while the
model cannot be many-body localized, it may still exhibit long thermalization times, owing to the necessity to
create a finite density of vortices for delocalization to occur.
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I. INTRODUCTION

Periodic driving provides a versatile tool for inducing and
controlling topological phenomena in quantum many-body
systems. In many cases, the driven systems realize Floquet
versions of topological insulators and superconductors [1–18]
and artificial gauge fields [14]. Interestingly, periodically
driven systems open the possibility of going beyond these
static analogues and accessing novel anomalous phases avail-
able only in Floquet systems [19–36]. Experimental realiza-
tions of topological phenomena in Floquet systems have been
demonstrated in the solid state [37], cold atomic setups [38],
and photonics networks [39–41].

Many studies of Floquet topological systems have
focused on various aspects of the noninteracting quasienergy
spectrum, such as topological invariants and topologically
protected edge modes. What, if anything, of these topolog-
ical characteristics survives when inter-particle interactions
are added? Generically, isolated Floquet many-body systems
absorb energy indefinitely, reaching an “infinite temperature”
steady state [15,42] in which all the topological properties
are lost, even though the energy absorption rate can be
parametrically small in special limits [43,44]. In the pres-
ence of quenched disorder, this fate can be evaded if the
system is many-body localized, such that energy absorption
from the driving field is suppressed [45,46]. Floquet sys-
tems which are many-body localized were shown to support
symmetry-protected topological phases [28,29,31]. Interest-

ingly, in many cases the anomalous topological phases, which
are unique to Floquet systems, can be many-body localized
even in the absence of any symmetry [22,47].

Of particular interest is the possibility to stabilize topo-
logically ordered states which are unique to Floquet systems.
What new kinds of topological orders and non-Abelian anyons
exist in the presence of periodic driving? Can such states be
stabilized against the effect of heating if quenched disorder is
added? In this work, we address these questions by studying a
class of topological states that can be realized by an exactly
solvable, periodically driven spin model. Our approach is
to start from Kitaev’s honeycomb model [48] and make the
exchange couplings time-dependent (as in Refs. [49–52]). The
model can be solved by a mapping to free fermions coupled to
a static Z2 gauge field [48,53]. Reference [52] pointed out that
it supports a new form of anomalous topological order dubbed
“Floquet enriched topological order.” In this work, we focus
on the broader phase structure of the model and the possibility
to stabilize these phases by utilizing many-body localization.

In the clean (disorder-free) case, we find multiple phases,
including phases of either “strong” or “weak” topological
character (with chiral or nonchiral protected edge modes,
respectively). We focus our attention on the “anomalous”
topological phase whose fermionic spectrum is characterized
by the presence of chiral edge states, despite the fact that all
the fermionic Floquet bulk bands are topologically trivial. The
possibility of such a Floquet band structure has been discussed
in Refs. [19,20,22]. In this phase, the Z2 flux excitations
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carry pairs of localized Majorana modes at quasienergies 0
and π/T , where T is the driving period, protected by the
time periodicity of the fermionic Hamiltonian [54]. We show
that upon exchange, the two Majorana modes behave as two
independent non-Abelian Ising anyons.

To investigate whether these phases can be stabilized using
many-body localization, we study whether the full spectrum
of the exactly solvable model can be localized in the presence
of disorder. If that is indeed the case, then many-body local-
ization may persist in the presence of integrability breaking
perturbations. To this end, we add quenched disorder in a
way that preserves the solvability of the model, and explore
the localization properties of the fermionic spectrum in the
presence of a static flux configuration.

Since in the anomalous phase the fermionic bulk Floquet
bands have zero Chern numbers, all the fermionic bulk states
can be localized in the presence of quenched disorder [22]. We
demonstrate that disorder can be introduced into the driven
spin model such that all states are localized if no Z2 fluxes are
present. In sectors with a finite density of fluxes, the Majorana
modes bound to these fluxes form bands centered around
quasienergy 0 and π/T . We find that these bands become
delocalized, either forming a “thermal metal” phase [55,56]
or by forming bands with nonzero Chern numbers. Hence,
while in the flux-free sector of the theory all the fermionic
excitations can be localized, the entire spectrum (including all
flux sectors) necessarily contains delocalized “single-particle”
states. This suggests that, in the presence of perturbations
breaking the integrability of the driven Kitaev model, the
anomalous topological phase cannot be fully localized. How-
ever, starting from a flux state with vanishing flux density,
as long as the rate for creating flux excitations is small, a
system initialized in the flux-free sector may take a long time
to thermalize.

The rest of the paper is organized as follows. In Sec. II,
we review the Kitaev honeycomb model, its mapping to
free Majorana modes, and introduce the driving protocol.
We study the phase diagram of the system (Sec. III), which
is periodic in driving strength, and discuss the presence of
Floquet-Majorana modes bound to vortex defects (Sec. IV).
In Sec. V A, we discuss the effect of disorder, focusing on
particular points in the phase diagram at which all the states
are localized, while in Sec. V B, we argue that delocalization
necessarily occurs away from these points, given a finite
density of flux excitations. We conclude and discuss directions
for future work in Sec. VI.

II. PERIODICALLY DRIVEN KITAEV MODEL

Kitaev’s honeycomb model describes S = 1/2 spins on
a hexagonal lattice that are coupled in a highly anisotropic
fashion [48]. Here we consider a time-dependent version of
the model, given by

H =
∑
〈 j,k〉α

Jα, jk (t )σα
j σα

k , (1)

where 〈 j, k〉α denotes a pair of neighboring spins on the
honeycomb lattice which are connected by a bond of type
α = x, y, z [see Fig. 1(a)]. The Pauli matrices σα act on the
spin degree of freedom, and Jα, jk (t ) is the coupling strength.

(a) (b)

FIG. 1. (a) Driving protocol of the 2D Kitaev model. We use a
2D L × W honeycomb lattice with Bravais vectors �ax and �ay and
two sublattices labeled as A and B. The driving protocol involves
consecutive boosts of Jx, Jy, and Jz. When JsT/4 = π/2 and Ju = 0
Majorana operators return to their initial positions after two driving
periods, 2T . In a finite system, this will lead to the formation of
chiral edge states at the boundaries. (b) The phase diagram of the
static Kitaev model consists of three gapped A phases and a gapless B
phase. The driving strength Js acts as additional axis in this diagram.

The model Eq. (1) describes a strongly interacting system,
whose analysis, however, is simplified by the observation that
there exists an integral of motion for each unit cell in the
lattice. For every hexagonal plaquette p, a so-called plaquette
operator Ŵp commutes with the Hamiltonian [48]. These
mutually commuting operators Ŵp have eigenvalues wp = ±1
and the total Hilbert space of the Hamiltonian (1) decomposes
into sectors that are distinguished by those eigenvalues, in the
following referred to as flux sectors.

The Hamiltonian (1) can be mapped into a problem of
Majorana modes coupled to a static Z2 gauge field as follows
[48]. For each spin of the lattice, located on site j, one intro-
duces four Majorana operators, c j and b

α jk

j , with α jk = x, y, z
depending on the orientation of the bond between neighboring
spins j and k. Then, by identifying σα

j = ib
α jk

j c j , the fermionic
Hamiltonian can be written as

Hu = i

2

∑
〈 j,k〉α

Jα, jk (t )u jkc jck, (2)

where u jk = ib
α jk

j b
α jk

k is the Z2 gauge field defined on the bond
connecting the sites j and k. The Z2 flux wp through a given
plaquette is equal to the product of the ujk’s encircling that
plaquette.1 Since the gauge field operators u jk commute with
H , we can replace them with their eigenvalues, ujk = ±1.
This is equivalent to working in a given flux sector, in a fixed
gauge.

For time-independent Jα, jk the phase diagram of the model
is shown in Fig. 1(b); in the so-called A phase, |Jx| + |Jy| <

|Jz|, the system has a gapped spectrum and exhibits a Z2 topo-
logical order with Abelian anyonic excitations. In contrast, in
the B phase, |Jx| + |Jy| > |Jz|, the system is gapless, but can
be brought into a topological state with non-Abelian statistics
upon opening a gap with a time-reversal symmetry-breaking
perturbation [48].

1The Hilbert space that the c j and ujk act on is larger than the
Hilbert space of the spins, thus a projection on the physical Hilbert
space is required, see Ref. [48].
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In this paper, we explore the case where the Jx,y,z depend
periodically on time and investigate the various emerging
phases of the model [49,52]. We consider a driving protocol
in which each coupling can be written as Jα = Ju + Js(t ),
where Ju is time-independent and Js(t ) is piecewise constant.
Specifically, we use a four-step driving protocol [19]

Jx = Js + Ju, Jy,z = Ju

for nT < t � nT + T/4, (3)

Jy = Js + Ju, Jz,x = Ju

for nT + T/4 < t � nT + T/2, (4)

Jz = Js + Ju, Jx,y = Ju

for nT + T/2 < t � nT + 3T/4, (5)

Jx,y,z = Ju

for nT + 3T/4 < t � nT + T, (6)

with T the driving period, and n ∈ Z. The Hamiltonian (2) is
now time-periodic, Hu(t ) = Hu(t + T ), such that its behavior
can be characterized by studying the time-evolution opera-
tor over one driving period, known as the Floquet operator.
Setting h̄ = 1, the latter reads

F = T exp

(
−i

∫ T

0
Hu(t )dt

)
, (7)

where T denotes time-ordering. The eigenvalues and eigen-
vectors of F play a similar role to the energies and wave
functions of static systems, with one important difference.
Owing to the periodic nature of the driving field, eigenvalues
of the unitary Floquet operator take the form exp(−iεT ),
with ε referred to as quasienergy. Unlike energy levels in
time-independent systems, the quasienergy is periodic, ε =
ε + 2π/T .

The specific form of the driving protocol simplifies the
evaluation of the Floquet operator Eq. (7), which in our case
takes the form

F = F4 F3 F2 F1, (8)

Fi = exp(−iHiT/4), (9)

where Hi are the Hamiltonians for the four steps of the driving
protocol shown above.

III. PHASE DIAGRAM

The Floquet operator (7) breaks time-reversal symmetry
due to the structure of the driving protocol. However, since the
Hamiltonian (2) describes a lattice model of Majorana modes,
the fermionic spectrum shows a particle-hole symmetry taking
the real-space form

F = F ∗, (10)

which is valid for any configuration of the static Z2 gauge field
and therefore applies to any vortex sector.

In the vortex free sector, translational symmetry enables
writing the Hamiltonian in momentum space. Using the basis

of Fig. 1, the Hamiltonian reads

Hu =
∑

k

(cA,−k cB,−k )Hk

(
cA,k
cB,k

)
, (11)

with

Hk = (Jx + Jy cos(kx ) + Jz cos(ky))τy

+ (Jy sin(kx ) + Jz sin(ky))τx (12)

and

cA/B,k = 1√
2N

∑
r

eikrcA/B,r, (13)

where r denotes the position of the unit cell, A and B are
the sublattices, N is the total number of unit cells, and the
Pauli matrices τi act on the sublattice degree of freedom. In
momentum space, particle-hole symmetry takes the form

F (k) = F ∗(−k). (14)

We begin by considering the vortex-free sector and later
study the effect of a nonzero number of Z2 flux excitations.
While in static systems the particle-hole symmetry relates
states with positive and negative energies, in driven systems
there are two particle-hole symmetric quasienergies, ε = 0, π ,
left invariant by the transformation (14), which maps ε(k) to
−ε(−k).

For generic values of the parameters Ju and Js the
quasienergy spectrum of a system with periodic boundary
conditions consists of two quasienergy bands separated by
gaps at ε = 0 and ε = π . As a function of the coupling param-
eters Ju and Js, the system undergoes a series of topological
phase transitions, marked by the closing and reopening of
these quasienergy gaps.

We determine the phase boundaries by locating the lines of
gap closing in the (Ju, Js) plane. The resulting phase diagram
is shown in Fig. 2(a). To determine the nature of each phase,
we use the KWANT code [57] to study the system in the infinite
ribbon geometry, (infinite along �ax and finite along �ay, see
Fig. 1). Each phase is characterized by the strong topological
invariants W0 and Wπ , which count the net number of chiral
edge states (on each edge of the ribbon) within the gap at
ε = 0 and π , respectively. These topological invariants may
be determined either from the full time evolution operator of
the bulk system, U (k, t ) [20], or from the scattering matrix of
a Floquet system coupled to leads, as done in Appendix A.
The strong topological invariants are related to the Chern
numbers of the two quasienergy bands as

C± = ±(Wπ − W0), (15)

where C± are the Chern numbers of the Floquet bands |u+〉
and |u−〉, with quasienergy −π < ε<0 and 0 < ε < π :

C± = i

2π

∫
d2k

(〈
∂u±
∂kx

∣∣∣∣∂u±
∂ky

〉
−

〈
∂u±
∂ky

∣∣∣∣∂u±
∂kx

〉)
. (16)

In addition to the strong invariants W0,π , each phase is
also characterized by four weak invariants, ν j,ε, with j = x, y
and ε = 0, π . The latter require both particle-hole symmetry
and translation symmetry, and determine the positions of
edge modes in the Brillouin zone in the same way as for
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FIG. 2. (Top) Phase diagram mapped by determining gap closings at quasienergies ε = 0 and ε = π . Each phase is labeled by its strong
and weak topological invariants at ε = 0, π, (W0, νx,0,Wπ , νx,π ), computed using the scattering matrix formalism (see Appendix A). The
invariants are: (−1,−1, −1, 1) in phase A, (−1, −1, 0, 1) in phase B, (0, −1, −1, 1) in phase C, (1,−1, 0, 1) in phase D, (0, −1, 3, 1) in
phase E , and (3, −1, 0, 1) in phase F . The pattern of topological phases repeats when increasing Js due to the periodicity of the system in
driving strength, Eq. (17). (Bottom) Band structures of the system in an infinite ribbon geometry (infinite along �ax , with W = 40). The color
scale denotes the wavefunction amplitude on the bottom 20 lattice sites, meaning that bulk states are plotted in green, whereas modes on the
top and bottom boundaries are plotted in red and blue, respectively. From left to right, the panels show the band structure computed for values
of Js and Ju marked by orange symbols in the top panel: (JuT/4, JsT/4) = (0.225, 0) �, (0, π/4)�, (0, π/2) �, and (0.225, π/2) �.

time-independent topological superconductors [58,59]. In a
ribbon geometry with edges parallel to a j ( j = x, y), the
index ν j,ε counts the parity of the number of edge modes
crossing k j = π at each of the two particle-hole symmetric
quasienergies, ε = 0, π . For instance, in a ribbon geometry
with edges parallel to ax, a system with Wπ = 1 will have
one protected chiral edge mode crossing the quasienergy zone
edge, ε = π . Due to the constraint imposed on the spectrum
by particle-hole symmetry, the edge mode can cross either
at kx = 0, implying that νx,π = 1, or at kx = π , in which
case νx,π = −1. The weak invariants in different directions
are always equal, νx,ε = νy,ε (see Appendix B), such that
each phase of the model can be uniquely identified by four
invariants, (W0, νx,0,Wπ , νx,π ).

We now describe the phase diagram in more detail. For
Js = 0 (Fig. 2, marked by �), the system is time-independent.
In this case, we recover the graphenelike spectrum of the static
Kitaev model in the gapless phase [48].

Including a driving component Js 	= 0 leads to a gap
opening and the quasienergy bands acquire a nonzero Chern
number (Fig. 2, phase B).

For JuT/4 = 0 and JsT/4 = π/2 (Fig. 2, marked by �),
during the first three steps of the driving protocol the system
consists of Majorana dimers which are decoupled from each
other. In every one of these three steps, the two connected Ma-
joranas of a given dimer, c1 and c2, are swapped, transforming
the fermionic state as c1 → c2 and c2 → −c1, which can be
verified by direct calculation. Therefore, after two full driving
periods, each operator comes back to itself, as shown in Fig. 1.
We show in more detail in the next section that this implies

the Floquet-single particle states are localized, forming flat
bands which have zero Chern number and are positioned at
quasienergies ε = ±π/2. For a finite system however, states
at the edge of the system move by one unit cell every period,
forming dispersing edge modes in both ε = 0 and ε = π

quasienergy gaps. The appearance of chiral edge states in this
case is unique to driven systems [20], as in the static case
they cannot occur when all the bulk bands have zero Chern
numbers [60–62]. We will refer to this phase the “anomalous
Floquet topological phase” (or just the “anomalous phase”).

At the point JuT/4 = 0.225 and JsT/4 = π/2 (Fig. 2,
marked by �), the system is in a weak topological phase
at ε = 0 and a strong phase at ε = π . The weak phase
exhibits counter-propagating Majorana edge modes protected
by a combination of particle-hole symmetry and translation
symmetry in either the �ax or the �ay directions. Since the
time-independent coupling Ju and the driving strength Js are
isotropic, counter-propagating Majorana edge modes appear
both on boundaries parallel to �ax or �ay (see Appendix B).

As Js is increased, the phase diagram of Fig. 2 shows
repeating patterns. This is due to the periodicity of the model
in driving strength. In the absence of a time-independent
coupling Ju = 0, the Floquet operator obeys

F (JsT/4) = −F (JsT/4 + π ) = F (JsT/4 + 2π ), (17)

such that the topological phases of the model repeat
in a periodic fashion. This enables realizing strong and
weak topological phases for arbitrarily slow driving (see
Appendix C).
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FIG. 3. Dynamics and quasienergy spectrum in the anomalous
phase with Ju = 0 and Js = π/2. On the left, we show the evolution
of two Majorana operators cA, cB. During the first three parts of the
period, labeled 1 to 3, the Majorana operators are transferred to a
neighboring site, as shown by the arrows. After a full period of the
time evolution, cA, cB are swapped. On the right, a pair of vortices
is introduced by flipping the sign of two bonds (marked with thick
lines). States on plaquettes with an even number of flipped bonds
(blue ellipses) have energies ε = ±π/2. Each vortex is modeled as a
plaquette with an odd number of flipped bonds (yellow ellipses), and
binds two Floquet-Majorana states, at quasienergies ε = 0 and π .

IV. MAJORANA MODES AT VORTEX DEFECTS

In the static Kitaev model, a phase with a nonzero Chern
number can occur when time-reversal symmetry is broken.
Then, vortex defects in the Z2 gauge field ûi j bind Majorana
states at ε = 0 [48]. In contrast, in the driven Kitaev model
there are two particle-hole symmetric quasienergies and there-
fore isolated Majorana modes can appear either at quasienergy
ε = 0 or π [63]. As we show below, this happens at the vortex
cores in the anomalous phase (W0 = Wπ 	= 0).

The fact that vortices in the anomalous phase carry Majo-
ranas at both 0 and π quasienergies can be seen analytically,
considering the special case of resonant stroboscopic driving,
JsT/4 = π/2, and a vanishing uniform component Ju = 0.
At this point, the quasienergy spectrum of the driven Kitaev
model can be analyzed exactly. In each of the first three steps
of the driving protocol, the Majorana operators connected by a
nonzero hopping are swapped. Given the order of steps in the
driving protocol, a full period of the time evolution effectively
swaps the two operators cA and cB located on opposite sites of
a given hexagonal plaquette, as shown in Fig. 3. The Floquet
eigenmodes are therefore superpositions (cA ± icB)/

√
2 of

wave functions located at the two sites. Upon applying one
period of the time evolution, those states acquire phase factors

cA ± icB√
2

→ ±i
cA ± icB√

2
(18)

corresponding to quasienergies ±π/2, as can be verified by
direct calculation.

Introducing vortices (i.e., Z2 fluxes) into the system
amounts to locally flipping signs in the coupling terms Jx,y,z. A
hexagonal plaquette is said to carry a π vortex if the couplings
have switched sign at an odd number of its bonds. Thus,
vortices appear in pairs but can proliferate through the system
while being connected by a string of flipped couplings (see
Fig. 3). We focus on the resonant driving case, JsT/4 = π/2,
and analyze the quasienergy spectrum in the presence of two
types of plaquettes: one with an even number of couplings of

the same sign, and one with an odd number of flipped bonds.
Let nA and nB be the number of flipped bonds encountered
by the operators cA and cB during the first three steps of
the driving protocol (see Fig. 3). By explicitly computing
the Floquet operator of a single plaquette, we find that the
Majorana operators transform as

cA ± icB√
2

→ ±i
(−1)nB cA ± i(−1)nA cB√

2
(19)

during a full driving cycle. For a plaquette containing an even
number of flipped bonds, Eq. (19) is identical to the evolution
obtained without any flipped bonds [Eq. (18)] if both nA and
nB are even, or leads to a global minus sign if nA and nB are
both odd. In both cases, the combination (cA ± icB)/

√
2 is still

a fermionic eigenmode with quasienergy π/2 or −π/2, de-
pending on the parity of nA,B. A different situation is realized
in a plaquette with an odd number of flipped bonds. In that
case, the complex superposition of the two operators cA and
cB is no longer an eigenmode of the Floquet operator. We find
instead that the eigenmodes are formed by the real superpo-
sition (cA ± cB)/

√
2, and the corresponding quasienergies are

π, 0. The resulting vortex states are Majoranas, which cannot
shift away from ε = 0, π due to particle-hole symmetry, and
must therefore remain localized as long as the system is in
the anomalous phase. In Appendix D, we discuss the braiding
properties of the two types of Majorana modes, showing that
they behave as two independent sets of anyons.

V. EFFECTS OF DISORDER

A. Model and numerical study

Floquet many-body systems generically absorb energy
indefinitely and all topological features are lost in the
steady state [15,42], unless the system is many-body local-
ized [45,46]. Certain anomalous chiral Floquet phases have
been shown to be compatible with many-body localization
[35,64,65]. Can the Floquet-Kitaev model be many-body
localized in the presence of disorder? To answer this ques-
tion, we first examine whether the fermionic spectrum of the
exactly solvable Floquet-Kitaev model is fully localized, and
at the same time, the system is in an anomalous phase. If this
is indeed possible, then many-body localization may persist in
the presence of interactions that spoil the exact solvability of
the model.

Quasienergy bands which have a nonzero Chern number
cannot be spanned by a complete basis of localized Wannier
functions [66,67], implying the existence of at least one
mobility edge as a function of quasienergy [68]. As such,
any phase in which bands carry nonzero Chern numbers
necessarily contains delocalized states, independently of the
type of disorder. In contrast, for the anomalous topological
phase with trivial bulk bands, it was shown that disorder
can lead to an entirely localized bulk coexisting with chiral
edge states, which are completely decoupled from the bulk at
all quasienergies [22]. The phase was dubbed an anomalous
Floquet Anderson insulator (AFAI), and is only accessible by
periodic driving.

Of all the phases appearing in the driven Kitaev model
(see Fig. 2), thus, only the anomalous phase (phase C) could
possibly be stable against heating and will therefore be studied
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FIG. 4. The disorder term Vr(t ) acts only on the localized orbitals
of each plaquette and does not lead to delocalization. States in the flat
bands repel in quasienergy depending on the magnitude of Vr(t ) (here
denoted by the width of the diagonal lines), but remain localized
on their respective plaquettes. Floquet-Majorana states with energies
ε = 0, π formed at vortices (yellow ellipses) also remain unaffected.

hereafter. While the free-fermion problem in the flux-free
sector is similar to that of Ref. [22], localization has to
occur in every vortex sector in order to guarantee that the
system does not absorb energy in a generic (not fine-tuned)
Hamiltonian.

To determine the robustness of the Floquet-Kitaev model
in the anomalous phase, we study the localization properties
of the free fermion system Eq. (2) in the presence of disorder
which maintains the exact solvability of the model. If the latter
leads to localized bulk states at any quasienergy and density
of vortex excitations, we expect the disordered phase of the
periodically driven Kitaev model to be stable against heating,
allowing its topological properties to be observed.

We start by considering the system at the point of resonant
driving, i.e., Ju = 0 and JsT/4 = π/2, where the Floquet bulk
bands are completely flat since the corresponding states are
strictly localized on opposite sites of each hexagonal pla-
quette. When introducing vortices into the system Majorana
modes are formed, which, like the bulk states, are strictly
localized on the vortex plaquettes (see Fig. 3). At finite vortex
densities, they form flat bands at quasienergies ε = 0, π . For
small deviations away from the resonant driving point, the
bulk bands acquire a dispersion. Similarly, Majorana modes
overlap and form dispersing bands, whose form may depend
strongly on the configuration of the vortices. In the following
we will consider random configurations of fluxes arising from
disorder in the system, showing that away from the resonant
driving point the system will necessarily host delocalized
states.

As a first step, we show that the system remains fully
localized in the case of a special type of time-dependent
disorder which keeps the model exactly solvable. Starting
from Ju = 0 and JsT/4 = π/2, we add a disorder potential
that changes the quasienergies of the clean system, but not the
Floquet eigenstates (see Fig. 4). The disorder term is given by

Hdis =
∑

n

Vn(t )σ x
n σ z

l σ x
j σ

z
m. (20)

Here, n labels a B sublattice site, and the positions of the sites
l (n), j(n), m(n) relative to n are as shown in Fig. 4.

In terms of the fermionic representation, Hdis is written
as [52]

Hdis =
∑

n

iVn(t )cncm ûnl ûl j û jm. (21)

In a fixed gauge, the disorder term acts as a diagonal hopping
from a B sublattice site to the A site across the hexagon, with
amplitude Vn(t ).

To keep the solvability of the model, the time-dependence
is chosen such that the disorder acts in a stroboscopic fashion:
Vn(t ) = 0 for 0 < t<3T/4, and Vn(t ) = vn for 3T/4 < t <

T . Here, vn are independent random numbers drawn from
the uniform distribution [−δV, δV ], with δV the disorder
strength. In the fourth part of the period, the evolution of the
eigenmodes localized on the sites m, n is

ψ± → e±ivnT/4ψ±, (22)

where ψ± are the even and odd combinations of the Majorana
operators on the two sites n, m across the plaquette, as in
Eq. (18).

In the case of resonant driving, Ju = 0 and JsT/4 = π/2,
the Floquet eigenstates are not changed in the presence of this
type of disorder. The disorder only changes the quasienergies
of states localized in plaquettes with no Z2 flux, which become
ε±

n = ± π
2T ± vn. The quasienergies of the pairs of Majorana

modes localized on plaquettes with a Z2 flux are not affected
by the disorder; their quasienergies are pinned to 0, π/T
by particle-hole symmetry. This can be verified by applying
the evolution in the first three parts of the period, Eq. (19),
followed by the evolution due to the disorder, Eq. (22), and
diagonalizing the resulting evolution operator.

Thus, for resonant driving all the states in the spectrum
(in all flux sectors) are localized. However, states with a
finite density of vortices have a large degeneracy centered at
quasienergies ε = 0, π/T , due to the vortex core states (that
are not split even in the presence of disorder). Once we deviate
from the resonance condition, these states start hybridizing,
and we may expect them to delocalize.

In the clean system, moving away from the point of reso-
nant driving while staying in the anomalous phase causes the
bulk and Majorana bands to disperse, as states on different
plaquettes start to overlap. Upon adding disorder, the bulk
bands, exhibiting zero Chern numbers, can be completely
localized. To demonstrate this, we analyze the localization
behavior of the bulk states by computing the “two-terminal
conductance” of the system in a cylindrical geometry (see
Appendix A for details of the transport calculation). The
latter is obtained by treating the Majorana modes as if they
were complex fermions. The results of Fig. 5 show that the
conductance of the bulk states decreases exponentially with
system size at all values of quasienergy, signaling that the bulk
bands are indeed localized.

For the bands formed out of Majorana modes, which we
call “vortex bands” in the following, we find that 0 and π

modes show a qualitatively different behavior, depending on
the strength and sign of the coupling strengths Js and Ju. We
introduce a finite density of flux excitations by randomly flip-
ping the sign of each bond with a probability ρv . For JsT/4 =
π/2, JuT/4 = −0.12, and ρv = 0.5 the 0 modes form a con-
tinuous band centered around ε = 0, while π modes form
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FIG. 5. The average two-terminal conductance of a cylindri-
cal system of L × L unit cells, with periodic boundary conditions
along �ax , is plotted as a function of quasienergy. We use JsT/4 =
1.45, JuT/4 = 0.1, and a disorder strength δV T/4 = 1.0. The con-
ductance is peaked close to ε = 0.6, but decreases with increasing
system size at all values of quasienergy, indicating that bulk states
are localized. The inset shows a logarithmic-linear plot of the average
conductance versus system size for a fixed value ε = 0.6. The solid
line is a fit to an exponential decay a exp(−bL), with a � 0.42 and
b � 0.08. Each point is obtained by averaging over 1000 independent
realizations of disorder.

two symmetric bands, such that a gap develops at ε = π

(see Fig. 6). Replacing Ju → −Ju, or alternatively JsT/4 →
π − JsT/4, reverses the behavior of Floquet-Majorana states:
the system remains gapless at ε = π but shows a gap for
ε = 0. We remark that these are not exact symmetries of the
model for generic values of the hopping strengths.

Both types of vortex band are delocalized in the presence of
disorder. The gapped π bands of Fig. 6 carry a nonzero Chern
number C = ±1, as can be directly checked by counting the
number of chiral edge states at ε = π . Therefore they are
delocalized [66,67]. In contrast, the vortex band around ε = 0
is topologically trivial, but shows the features of a delocalized,

FIG. 6. Quasienergy spectrum of a 24 × 40 supercell, which is
repeated infinitely many times in the �ax direction, such that kx is a
good quantum number. We use a high density ρv = 0.5 of randomly
distributed vortices, obtained by randomly flipping the sign of each
bond with a probability 1/2, setting JuT/4 = −0.12 and JsT/4 =
π/2. Bulk states are shown in gray, and edge modes in blue. Only
states belonging to one edge are plotted.

FIG. 7. Average conductance as a function of system size at
ε = 0, JsT/4 = π/2, and JuT/4 = −0.12, for an L × L lattice with
periodic boundary conditions in the �ax direction. Each point is
obtained by averaging over 1000 independent vortex configurations
at fixed density ρv = 0.5. The conductance shows a positive scaling
with system size, consistent with a thermal metal phase in which
G ∝ ln L (solid line).

thermal metal phase. The latter has been shown to appear
also in static two-dimensional systems subject to particle-
hole symmetry [69], irrespective of whether time-reversal
symmetry is broken or not [70,71], and is characterized by a
logarithmic growth of conductance with system size. We show
this behavior in Fig. 7, where the two-terminal conductance
at ε = 0 is obtained by averaging over independent vortex
configurations at a fixed density of ρv = 0.5 vortices per
plaquette. We note here, however, that the existence of the
2D metal is disputable, as discussed in Refs. [72–74], which
argued that the logarithmic scaling of conductance may be due
to finite-size effects. This hypothesis is beyond our ability to
test, given the system sizes we can numerically access.

We conclude that at the exactly solvable resonant-driving
point of the anomalous topological phase, the Floquet-Kitaev
model is fully localized in all vortex sectors. However, in
the presence of perturbations away from the resonant driving,
such as Ju 	= 0, the numerical results summarized in Figs. 6
and 7 indicate that in sectors with a nonzero density of Z2

flux excitations, the many-body spectrum contains delocalized
states. These states lead either to mobility edges generated by
vortex bands with nonzero Chern numbers, or to the formation
of a thermal metal phase. Below, we argue that this behavior
is generic in sectors with a finite density of fluxes.

B. Delocalization at finite vortex density

We now present a general argument showing that sectors
of the many-body Hilbert space with a finite density of Z2

fluxes contain delocalized bulk states. These delocalized bulk
states are part of the bands formed by the coupling between
the 0 and π Majorana modes bound to the fluxes. Thus, the
behavior found numerically in Sec. V A is generic.

To see this, we consider the setup depicted in Fig. 8, where
a region near the middle of the system is occupied by a
finite density of fluxes. As before, we assume that the fluxes
are static, i.e., the flux through every plaquette commutes
with the Hamiltonian. The surrounding region is flux-free.
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FIG. 8. Setup discussed in Sec. V B, demonstrating the presence
of delocalized states in a region with a finite density of unpaired
fluxes. The middle region of a system in the anomalous phase is
occupied by a finite density of fluxes, while the outer region is flux
free. Depending on microscopic details, the inner region hosts either
bands with a nonzero Chern number (in which case a chiral edge
state appears at the boundary between the inner and outer regions),
or a thermal metal phase.

The flux positions in the central region are randomly chosen
from a certain probability distribution, assumed to satisfy the
following conditions: (1) the distribution is translationally
invariant in the interior of the central region, as well as along
its boundary; (2) the probability to find a flux in a certain
plaquette depends only on the presence or absence of other
fluxes within a finite circle around that plaquette; (3) for
any configuration of fluxes with a nonzero probability, it is
possible to find at least one flux whose removal produces a
new configuration with a nonvanishing probability. The last
condition means that the fluxes do not appear only in “bound
pairs,” i.e., there is a finite density of unpaired fluxes.2

We now show that in every flux configuration drawn from
such a distribution, not all the states in the central region are
localized. This follows from considering another flux config-
uration in which one of the fluxes in the interior of the central
region has been removed.3 Suppose that the old configuration
has an even number of fluxes. Since every flux carries a zero
mode (a mode at quasienergy ε = 0), the new configuration
must have one zero mode in the central region (a second zero
mode appears in the physical boundary of the system, which
we assume to be far away). This zero mode can either be delo-
calized over the entire central region, delocalized around the
boundary between the central region and the outer, flux-free
region, or localized around the plaquette of the removed flux.
In the latter case, since the distribution of flux configurations
is translationally invariant, there must be a finite density of
zero modes in the bulk; such zero modes cannot generically
be localized, since every pair of zero modes is precisely in
resonance, and any infinitesimal coupling hybridizes them
strongly. Therefore the zero mode generated cannot be local-
ized around the plaquette from which the vortex was removed.

2An example for a distribution that violates this condition is a distri-
bution with a finite density of nonoverlapping pairs of fluxes, where
the members of every pair occupy nearest-neighbor plaquettes. Then,
removing a single flux produces a configuration whose probability is
precisely zero. If all the fluxes are paired, their Majorana states can
all be localized. This is since each pair of Majorana modes form a
single complex fermion state with a finite on-site energy, and the
problem reduces to the usual Anderson model for localization.

3Since the total number of fluxes in the system is always even, this
means that a flux must appear at the boundary between the outer
region and vacuum.

Similar considerations hold for the original configuration if it
has an odd number of fluxes.

This implies that the zero mode is either delocalized over
the entire central region or around its boundary; since re-
moving a single flux cannot create a new delocalized state,
we conclude that either the bulk or the boundary must con-
tain delocalized states essentially for all flux configurations.
A delocalized bulk state near zero quasienergy corresponds
to the thermal metal phase. A delocalized state around the
boundary implies the existence of a Majorana band with a
nonzero Chern number away from zero quasienergy in the
central region; otherwise, there could be no stable delocalized
edge state between the interior and the exterior regions (where
the Chern numbers of all the bulk states are zero). Since the
Majorana band has nonzero Chern number, it must include
delocalized bulk states. Thus, in either case, the bands formed
by hybridizing the Majorana modes bound to the fluxes must
contain delocalized bulk states.

We remark that the argument above holds also for the
Majorana bands in the vicinity of quasienergy ε = π . Hence,
these bands must also contain delocalized states. Note also
that the same argument applies in the case of a static px + ipy

topological superconductor, as well. In such a superconductor,
vortex cores carry Majorana zero modes; in the mixed state of
such a superconductor, the Majorana modes form bands that
must contain delocalized states, consistently with the findings
of Refs. [55,75,76].

Hence, we conclude that the anomalous phase in the driven
Kitaev model cannot be fully localized in all flux sectors. This
implies that, strictly speaking, the system cannot be many-
body localized. Upon adding more generic perturbations that
do not commute with the number of fluxes on every plaquette,
the different flux sectors are no longer conserved. One may
then expect that the Floquet many-body eigenstates are all
delocalized, and the system heats up to infinite temperature
at sufficiently long times. However, a subtlety may arise if
the system is initially in a state with a zero density of fluxes.
Starting from such a state, a macroscopic number of fluxes
needs to be generated in order to delocalize the system; such a
process may take a macroscopically long time. We leave this
intriguing possibility to a future study.

VI. CONCLUSIONS

Periodically driven systems can host different topological
phases, including ones that do not have analogues in static
systems. It is natural to ask what new phases exist in strongly
interacting systems, such as spin systems. In this work, we
have investigated the topological and localization properties
of an interacting spin system, the Kitaev honeycomb model,
in the presence of strong driving.

Owing to the exactly solvable nature of the model, which
is mapped to a model of free Majorana fermions, we were
able to determine its phase diagram, which shows a number
of strong and weak topological phases. Among them, the
so-called anomalous topological phase is characterized by
chiral edge states coexisting with trivial bulk Floquet bands.
It shows a number of features unique to periodically driven
systems, such as the existence of pairs of Floquet-Majorana
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bound states at vortices, whose non-Abelian braiding proper-
ties resemble those of ordinary Majorana zero modes.

In the anomalous phase, we have studied a form of disorder
which keeps the model integrable. In the flux-free sector, all
bulk states remain strictly localized on the hexagonal pla-
quettes of the lattice due to their topologically trivial nature.
Majorana modes bound to isolated vortices are also unaffected
by disorder, forming flat bands at quasienergies ε = 0 and
ε = π .

In the presence of a finite density of vortices, however,
we have shown that the many-body spectrum necessarily
contains delocalized states, as a result of the hybridization
of the extensive number of Majorana modes centered around
quasienergy ε = 0 or ε = π . These Floquet-Majorana modes
can either form a thermal metal phase, or alternatively form
gapped Chern bands, which exhibit mobility edges due to their
topologically nontrivial nature.4

The fate of the system in the presence of generic inter-
actions, that spoil the integrability of the model, remains an
open question. On one hand, since the many-body spectrum
always contains delocalized states, one may naively think
that many-body localization is impossible—therefore, once
generic interactions are introduced, the system necessarily
thermalizes. On the other hand, thermalization requires the
presence of a finite density of vortices. If the system is
initialized in a vortex-free sector, it may stay localized for
a very long time. This is since the matrix elements of any
local operator between the initial state and the continuum
of delocalized states vanish; the thermalization process is
an infinitely high-order process, and thus it may become
infinitely slow in the thermodynamic limit. In that case, the
topological properties of the system in sectors with a finite
number of fluxes are stable over a finite range of generic
interactions. We leave a detailed study of this problem to a
future study.

Finally, it is interesting to study the topology and local-
ization behavior of the periodically driven Kitaev model in
the case of anisotropic coupling strengths Jx,y,z. While we
have considered couplings of equal magnitude for all bonds, a
wider range of topological phases may be reached by applying
strain or other types of distortions to the hexagonal lattice.

ACKNOWLEDGMENTS

The authors thank Adolfo G. Grushin and Zohar Nussinov
for helpful discussions. This work was supported by the
European Research Council under the European Union’s Sev-
enth Framework Programme (FP7/2007-2013)/ERC Project
MUNATOP, ERC synergy UQUAM project, the US-Israel
Bi-national Science Foundation, ISF Grant No. 1291/12 and
the Minerva Foundation. N.L. and E.B. acknowledge financial
support from the European Research Council (ERC) under the
European Union Horizon 2020 Research and Innovation Pro-
gramme (Grant Agreement No. 639172). N. L. acknowledges
support from the People Programme (Marie Curie Actions)

4This phenomenon is related to the absence of many-body localiza-
tion in models with certain types of topological order, such as anyon
chains. See Ref. [85].

of the European Union’s Seventh Framework Programme
(Grant No. FP7/2007-2013) under REA Grant Agreement
No. 631696, and from the Israeli Center of Research Excel-
lence (I-CORE) “Circle of Light.” I.C.F. acknowledges finan-
cial support from the DFG through the Würzburg-Dresden
Cluster of Excellence on Complexity and Topology in Quan-
tum Matter –ct.qmat (EXC 2147, project-id 39085490). We
acknowledge support from the DFG under Grant No. CRC
183 (project A01).

APPENDIX A: SCATTERING MATRIX FORMALISM

We characterize the topological phases of the periodically
driven Kitaev model by using the scattering matrix formalism.
The latter is described in detail in Ref. [23], so we only briefly
summarize it here. We consider finite lattices of L × W sites
indexed by pairs of integers (nx, ny) and construct a simplified,
fictitious scattering problem by defining absorbing terminals
on the sites at the top and bottom boundaries of the hexagonal
lattice in Fig. 1. The absorbers act after each full period of the
time evolution, enabling to associate a scattering matrix S to
the Floquet operator F as

S(ε) = P[1 − eiεF (1 − PT P)]−1eiεFPT , (A1)

where P is the projection operator onto the terminals, and the
superscript T denotes transposition.

Owing to the properties of the projection operator and
the unitarity of F , Eq. (A1) defines a unitary, quasienergy
dependent scattering matrix, which for two terminals takes the
form

S =
(

r t
t ′ r′

)
, (A2)

where r (′) and t (′) are amplitudes for reflection and transmis-
sion between the absorbers, respectively.

The scattering matrix can be used to determine localization
properties, obtained by computing the transmission through
the system, G = Tr t†t , where Tr is the trace. Furthermore, it
allows to compute the topological invariants of a phase, which
take the same form as in static systems [77–80], even in the
anomalous phase in which all bulk Floquet bands are topo-
logically trivial. The strong invariant is obtained by imposing
twisted boundary conditions in the direction perpendicular
to the terminals, connecting the left and right boundaries of
Fig. 1 as |L, ny〉 = eiφ|0, ny〉, with φ the twist angle. The
reflection subblock r of the scattering matrix in Eq. (A2) is
now a function of both φ and quasienergy ε, enabling to write
the strong topological index as the winding number of det r:

Wε = 1

2π i

∫ 2π

0
dφ

d

dφ
ln det r(ε, φ). (A3)

In addition to strong topological phases, the periodically
driven Kitaev model also shows weak phases, protected
by a combination of translation and particle-hole symmetry
Eq. (14). Given Eq. (A1), particle-hole symmetry constrains
the scattering matrix as

S(ε) = S∗(−ε) (A4)

for both periodic (φ = 0) and antiperiodic (φ = π ) boundary
conditions, meaning that the scattering matrix is real at the
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particle-hole symmetric quasienergies ε = 0, π . This enables
us to write weak topological indices as

νx,0,ε=0 = sign det r(ε = 0, φ = 0),

νx,π,ε=0 = sign det r(ε = 0, φ = π ), (A5)

where φ = 0 and φ = π denote periodic and antiperiodic
boundary conditions, respectively, and the subscript x refers to
the direction in which they are imposed. In a similar fashion,
one can define weak invariants for the other particle-hole
symmetric quasienergy, ε = π , as well as indices associated
to the edges parallel to ay: νy,0/π . The latter are obtained by
defining absorbing terminals on the left and right boundaries
of Fig. 1 and imposing (anti)periodic boundary conditions
along ay.

The strong invariant (A3) is defined for all quasienergies
at which there is a bulk mobility gap, such that det r(φ) 	= 0
for all φ, and counts the net number of chiral edge states.
In contrast, weak invariants (A5) can only be defined at ε =
0, π , due to the constraint Eq. (A4), and count the parity of
edge modes present at ki = 0 and ki = π , with i = x, y. At
a fixed quasienergy, weak invariants in the same direction
are not independent, being related by the parity of the strong
index: νi,0,ενi,π,ε = (−1)Wε , with ε = 0, π and i = x, y [81].
As such, there are in total six invariants characterizing a phase
(Wε=0, νx,π,ε=0, νy,π,ε=0,Wε=π , νx,π,ε=π , νy,π,ε=π ), which are
in general independent of each other [82], and a change in
any one of them is accompanied by a closing of the bulk
mobility gap at the associated quasienergy. However, in our
driving protocol both the uniform hopping term Ju as well as
the stroboscopic term Js are chosen to be isotropic, leading to
a model in which weak indices along the x and y directions are
equal. We are therefore left with four independent invariants,
which are used to label the topological phases of Fig. 2.

APPENDIX B: EQUALITY OF x AND y WEAK INVARIANTS

Here we prove that, in any phase of the Floquet-Kitaev
model, the weak invariants νx,k,ε and νy,k,ε are equal. We
consider the system in two different ribbon geometries, one
with zigzag edges parallel to the ax direction (which we refer
to as the “x ribbon”), and one with zigzag edges parallel to ay

(the “y ribbon”). Band structures obtained from an x ribbon
are shown both in Figs. 2 and 10. We will show that, for any
value of Js and Ju, the y-ribbon band structures are the same
as those of the x ribbon up to a mirror operation. Therefore, in
any gapped phase the edge mode structure is the same in both
geometries, which immediately implies equal weak invariants,
νx,k,ε = νy,k,ε.

Unlike the Floquet operator of the bulk system, which is a
2 × 2 matrix obtained from Eq. (8), in a ribbon geometry both
the Hamiltonian and the Floquet operator have a size N × N ,
where N is the number of sites in the finite direction of the
ribbon. The Floquet operator of the x ribbon reads

Fx(k) = e−i T
4 Hx,4 e−i T

4 Hx,3 e−i T
4 Hx,2 e−i T

4 Hx,1 , (B1)

where Hx,i(k) are the N × N ribbon Hamiltonians during the
four steps of the driving protocol, and k is the momentum
along the infinite direction of the ribbon. Similarly, Fy(k) is
obtained as a product of exponentials of Hy,i(k). Our goal in

the following is to show that the spectra of Fx(k) and Fy(−k)
are identical.

Figure 9 shows the four steps of the driving sequence of
x and y ribbons consisting of N = 6 sites along the finite
direction. We observe that, for any given step, the Hamilto-
nian of the x ribbon is identical to one of the Hamiltonians
characterizing the time evolution of the y ribbon. For instance,
during the first step of the x ribbon, hoppings connecting sites
inside the same 6 × 6 unit cell take the value Ju (dashed green
lines), whereas hoppings connecting neighboring unit cells
are equal to Ju + Js (red solid lines). The same structure of
hoppings can be found during the third driving step of the y
ribbon, such that Hx,1(k) = Hy,3(k). Another way to see this
is to note that the two lattices depicting Hx,1(k) and Hy,3(k)
can be mapped onto each other by a 60◦ rotation followed
by a mirror operation, such that the left edge of the y ribbon
becomes the bottom edge of the x ribbon. For the narrow
ribbons shown in Fig. 9, the two Hamiltonians can be written
down explicitly, enabling us to verify their equivalence:

Hx,1(k) = Hy,3(k) =

⎛
⎜⎜⎜⎜⎜⎝

0 t∗
1 0 0 0 0

t1 0 t∗
2 0 0 0

0 t2 0 t∗
1 0 0

0 0 t1 0 t∗
2 0

0 0 0 t2 0 t∗
1

0 0 0 0 t1 0

⎞
⎟⎟⎟⎟⎟⎠, (B2)

where t1 = iJu + i(Ju + Js)e−ik and t2 = −iJu.
It follows that the Floquet operators Fx(k) and Fy(k) are

constructed from the same Hamiltonians, but contain a differ-
ent order of steps with respect to each other. Specifically, as
can be seen from Fig. 9, the only difference is that steps 1 and
3 are interchanged, such that

Hx,1(k) = Hy,3(k),

Hx,2(k) = Hy,2(k),
(B3)

Hx,3(k) = Hy,1(k),

Hx,4(k) = Hy,4(k).

Furthermore, since the model consists of a bipartite lattice of
Majorana modes, during each step of the driving protocol the
ribbon obeys both a particle-hole symmetry,

Hd,i(k) = −H∗
d,i(−k) = −HT

d,i(−k), (B4)

with d = x, y and the superscript T denoting transposition, as
well as a sublattice symmetry,

Hd,i(k) = −SHd,i(k)S, (B5)

with S = diag(1,−1, 1,−1, . . . , 1,−1). Using the above two
symmetries as well as Eqs. (B3), it can be shown that Fx(k)
and Fy(−k) have identical eigenphases, since

Fx (k) = Uxy(k)F T
y (−k)U †

xy(k), (B6)

where Uxy(k) = exp [−iHx,4(k)T/4]S.
Notice that Eq. (B6) implies that the band structures of

the x and y ribbons are mirrored with respect to each other,
since the transformation between them involves changing
the sign of momentum, k → −k. As such, in phases with
nonzero strong invariants, the velocity of chiral modes will
be flipped when mapping an x ribbon to a y ribbon. This
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FIG. 9. Schematic representation of the Hamiltonians Hx/y,i(k) of the Floquet-Kitaev model during the four steps of the driving protocol,
for a ribbon infinite along ax (top row) or ay (bottom row). For both geometries, the unit cell of the ribbon consists of 6 sites, shown as
white and black circles (A and B sublattices, respectively). Adjacent unit cells are shown in light gray. During each step of the time-evolution,
nearest-neighbor hoppings may take the value Ju (green dashed lines) or Ju + Js (red solid lines). From the structure of the hoppings it follows
that the Hamiltonians of the x ribbon are identical to those of the y ribbon, but differ in their order. Steps 2 and 4 are identical, Hx,2(k) = Hy,2(k)
and Hx,4(k) = Hy,4(k), whereas steps 1 and 3 are interchanged, Hx,1(k) = Hy,3(k) and Hx,3(k) = Hy,1(k).

is consistent with their uni-directional nature however, since
the left boundary of the y ribbon is transformed into the
bottom boundary of the x ribbon. For example, a clockwise
propagating chiral mode will propagate in the −ax direction
on the bottom boundary, but in the +ay direction on the left
boundary. Flipping the sign of momentum however does not
change the weak invariants, which count the parity of the
number of edge modes present at k = 0, π .

APPENDIX C: QUASIPERIODICITY OF
THE PHASE DIAGRAM

The stroboscopic nature of the driving protocol leads to
a quasiperiodic structure of the phase diagram for Ju � Js,
as can be seen in Fig. 2. This periodicity is exact for Ju =
0 and can be understood at the resonant driving points. If
JsT/4 = π/2, during each segment of the driving a Majorana
is transfered with unit probability to a neighboring site. After
two driving periods it returns to its origin, resulting in the
formation of two flat bands at quasienergies −π/2 and π/2.
For JsT/4 = π Majoranas are transfered with unit probability
to the next site and then back, such that they return to the orig-
inal position at the end of the period. The quasienergy of the
flat bands of Floquet eigenmodes is ε = π . Each subsequent
increase of JsT/4 by π/2 corresponds to another full transfer
of a Majorana operator between the two neighboring sites. As
such, the Floquet operator is 2π -periodic:

F (JsT/4) = F (JsT/4 + 2πn). (C1)

This procedure generally allows to choose an arbitrarily slow
driving protocol, while still being able to observe the full
range of topological phases (see Fig. 10).

APPENDIX D: NON-ABELIAN STATISTICS
OF MAJORANA PAIRS

In time-independent systems Majorana modes exhibit non-
Abelian statistics, such that interchanging two or more zero
modes amounts to performing a unitary transformation on
the degenerate subspace spanned by their fermionic parities.
One of the key ingredients enabling this possibility is the

FIG. 10. For Ju = 0 phase diagram is 2π -periodic in JsT/4. For
JsT/4 = π/5 + δ spectrum returns to itself as δ = 2πn. The band
structures are computed in an infinite ribbon geometry (infinite along
�ax , width W = 40) and the color scale indicates the wavefunction
amplitude on the bottom 20 lattice sites.
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existence of an energy gap separating the many-body ground
state manifold from that of excited states. In the presence of
such a gap, the adiabatic theorem guarantees that a sufficiently
slow braiding process will not generate unwanted excitations
and the system will remain in its ground state at all times.

In a periodically driven system, one cannot speak of a
ground state since energy is not conserved. However, it is
still possible to consider the braiding properties of Floquet-
Majorana modes by making use of the Floquet adiabatic the-
orem (see Appendix E for details). According to the latter, a
sufficiently slow braiding process implemented starting from
an initial Floquet reference state will not generate additional
excitations relative to that state. Therefore, at any point during
the braiding process, the system will remain in the degenerate
manifold of that particular reference state.

In the following, we will study the non-Abelian statistics of
Floquet-Majorana modes occurring in the anomalous phase
of the periodically driven Kitaev model. In particular, we
will show that even though a single Z2 flux traps a pair of
Majoranas, one at ε = 0 and one at ε = π , the two types
of zero modes behave as two independent sets of anyons:
the fermion parity associated with each type of anyon is
separately conserved. This is in contrast to static time-reversal
invariant systems, in which Kramers pairs of Majorana modes
are not generally protected against such parity transfers [83].
We stress that throughout this Appendix we will only examine
the system in the presence of a finite number of vortices,
which implies a vanishing flux density in the thermodynamic
limit.

To proceed, we consider the driven Kitaev model in its
anomalous phase and in the presence of two well-separated
Z2 fluxes, labeled by j = 1, 2, each of which hosts a pair

of Majorana modes γ
(0)
j and γ

(π )
j at quasienergy ε = 0 and

ε = π , respectively. These vortex states are separated by a
quasienergy gap from bulk modes, which enables to define a
Floquet reference state whose degenerate manifold is spanned
only by the parities of the Majorana modes: a requirement
for any protected braiding operation. A necessary condition
for such a state is that the bulk Floquet bands must be either
fully occupied or fully empty. To see this, note that if any
Floquet band were only partially filled, the braiding process
could change the occupation numbers of states in that band
at vanishing quasienergy cost, thus producing entanglement
between bulk and vortex modes. For concreteness, we will
use an initial Floquet state in which the bulk band at negative
quasienergies is fully filled, while the one at positive energies
is completely empty.

To implement the vortex interchange, we consider a family
of time-periodic Hamiltonians H (λ, t ) = H (λ, t + T ) and as-
sociated Floquet operators F (λ) with 0 � λ � 1 parametriz-
ing the slow braiding process, λ̇ � 1/T . We choose the
Floquet operators such that they coincide at the beginning and
end of the interchange process, F (0) = F (1), as is common
for braiding operations also in static systems.

Due to the Floquet adiabatic theorem (see Appendix E),
transitions outside of the degenerate manifold (which the
reference state is a part of) are suppressed as long as the
braiding process is slow compared to the quasienergy gap,
λ̇ � �ε. This means that the occupation numbers of the
bulk states cannot change, since the bulk bands are separated

from each other and from vortex states by quasienergy gaps
and since they are assumed to be either completely fully or
completely empty. Another immediate consequence of the
existence of quasienergy gaps is that neither the parity of 0
modes nor that of π modes can change, and the two sets
of Majoranas behave as independent anyons. Therefore their
braiding properties can be deduced in a manner analogous to
that of Majorana modes in static systems. After completing
the vortex interchange, the operators transform as

γ
(0)

1 → s0,1γ
(0)

2 ,

γ
(π )

1 → sπ,1γ
(π )

2 ,
(D1)

γ
(0)

2 → s0,2γ
(0)

1 ,

γ
(π )

2 → sπ,2γ
(π )

1 ,

where s j = ±1 since the Majorana operators are Hermitian
and therefore cannot pick up complex phases. Furthermore,
by performing the gauge transformation γ

(0)
2 → s0,1γ

(0)
2 and

γ
(π )

2 → sπ,1γ
(π )

2 we can always set s0,1 = sπ,1 = 1.
Importantly, if one of the remaining signs was positive,

sα,2 = 1, the parity of Majorana modes at quasienergy α

would be violated. To see this, note that if sα,2 = 1 then the
fermionic creation operator d†

α = γ
(α)

1 + iγ (α)
2 transforms as

d†
α → idα after the vortex interchange. As such, the parity

pα = 2d†
αdα → −pα is explicitly broken. We conclude that

the remaining signs must be negative, sα,2 = −1, such that
Eq. (D1) describes a braiding process identical to that of static
systems, with the Majorana zero and π modes behaving as
independent anyons.

APPENDIX E: FLOQUET ADIABATIC THEOREM

In this section, we briefly review the quantum adia-
batic perturbation theory, closely following the discussion of
Ref. [84] and using the same notation. For ease of presentation
we begin by discussing the adiabatic theory in the case of
static Hamiltonians, before moving to the periodically driven
systems discussed in the main text.

Consider a gapped system initialized in its nondegenerate
ground state and subjected to a Hamiltonian H (λ), where λ

is a slowly varying parameter. One possible example is to
consider a topological superconductor with a fixed fermionic
parity and only two well-separated Majorana zero modes, in
which case λ would describe the slow interchange of the Ma-
joranas. It is convenient to go to a moving frame with respect
to λ by defining rotated states |ψ̃〉 = V †(λ)|ψ〉, where the
unitary operator V (λ) diagonalizes the instantaneous Hamil-
tonian as H̃ (λ) = V †(λ)H (λ)V (λ). Applying this rotation to
the time-dependent Schrödinger equation (h̄ = 1 throughout)

i
d

dt
|ψ〉 = H (λ)|ψ〉 (E1)

leads to

i
d

dt
|ψ̃〉 = H̃m(λ)|ψ̃〉, (E2)

where the so called moving frame Hamiltonian

H̃m(λ) = H̃ (λ) − λ̇Ã(λ) (E3)
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and Ã(λ) = iV †(λ)∂λV (λ) is known as the adiabatic gauge
potential. If there are no level crossings for any value of λ,
then H̃ (λ) cannot lead to transitions between the instanta-
neous eigenstates, since it is diagonal by definition. The only
possible transitions then occur due to the adiabatic gauge
potential, and have amplitudes that can be estimated using first
order perturbation theory. The transition amplitude between
two instantaneous eigenstates |n(λ)〉 and |m(λ)〉 reads [84]

αnm ∝ λ̇

En − Em
〈n(λ)|V (λ)Ã(λ)V †(λ)|m(λ)〉, (E4)

where the unitary operator V (λ) is responsible for rotating the
states to a λ-independent basis, and En,m are the energies of
the two levels. As expected, level transitions are suppressed if
the system is varied slowly with respect to its energy gap, i.e.,
when λ̇ � �E .

The same qualitative result is obtained when applying
adiabatic perturbation theory to Floquet systems, although its
derivation is slightly more involved. As in the main text, we
now consider a family of Hamiltonians H (λ, t ) = H (λ, t +
T ) which depend periodically on time for a fixed value of λ,
but which also have a second, implicit time dependence due to
the fact that λ itself changes slowly in time. Again following
Ref. [84], we begin by considering the system at a fixed value
of λ, and use Floquet’s theorem to write the time evolution
operator as

U (t, 0) = P(t ) exp[−itHF ]P†(0), (E5)

where P(t ) = P(t + T ) is the time-periodic micromotion op-
erator, which describes the time evolution within a driving
period, and HF is the so called Floquet Hamiltonian. Note that
both operators depend on the choice of initial time. However,
this choice is just a gauge degree of freedom, so for simplicity
we choose an initial time t0 = 0 which means setting P(0) = 1
throughout the following.

Going to a moving frame with respect to the micromotion
operator, again for fixed λ, allows to write the Floquet Hamil-
tonian as

HF (λ) = P†(λ, t )H (λ, t )P(λ, t ) − iP†(λ, t )
∂

∂t
P(λ, t ), (E6)

with eigenstates defined as

HF (λ)|nF (λ)〉 = εn(λ)|nF (λ)〉. (E7)

Note that for fixed λ the Floquet Hamiltonian is a time-
independent operator, but one which has an unbounded spec-
trum, since the quasienergies are only defined modulo 2π .

As in the static case, we can evaluate the effect of a
slowly varying λ by considering the moving frame of the

Floquet Hamiltonian, i.e., the unitary operator V (λ) which
diagonalizes H̃F (λ) = V †(λ)HF (λ)V (λ) for every λ. To reach
this moving frame however, two separate rotations are needed:
the first with respect to the micromotion operator and the
second with respect to λ. By making the substitution

|ψ̃〉 = V †(λ)P†(λ, t )|ψ〉 (E8)

in the time-dependent Schrödinger equation we obtain

i
d

dt
|ψ̃〉 = (H̃F (λ) − λ̇ÃF (λ, t ))|ψ̃〉. (E9)

As before, an adiabatic gauge potential ÃF (λ, t ) is responsible
for transitions between instantaneous eigenstates, but in the
Floquet setting it takes a more complicated form:

ÃF (λ, t ) = iV †(λ)
∂

∂λ
V (λ)

+ iV †(λ)P†(λ, t )

[
∂

∂λ
P(λ, t )

]
V (λ). (E10)

The first part of Eq. (E10) has the same interpretation as
in the static case, and describes level transitions due to the
slowly varying λ. The second one is unique to Floquet systems
and describes transitions produced by the fact that, when
λ changes in time, the micromotion operator is no longer
periodic.

Perturbation theory shows that transition amplitudes will
be suppressed as the difference between quasienergies in-
creases. However, the spectrum of the Floquet Hamiltonian is
unbounded and contains infinitely many physically equivalent
quasienergy levels. To take all possible transitions between
them into account, we Fourier transform the gauge potential
as

ÃF (λ, t ) =
+∞∑

q=−∞
e2π iqt/T ÃF (λ, q), (E11)

with q an integer labeling the harmonics. Then the transition
amplitudes are given by

αmn ∝
+∞∑

q=−∞
e2π iqt/T λ̇

εn − εm + 2πq/T

×〈nF (λ)|V (λ)ÃF (λ, q)V †(λ)|mF (λ)〉. (E12)

Therefore, if a Floquet reference state is separated by a
quasienergy gap �ε from other states and the braiding process
is slow compared to this gap, λ̇ � �ε, then level transitions
are suppressed.
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