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Low-dissipation edge currents without edge states

Justin C. W. Song1,2,* and Giovanni Vignale3,4,5

1Division of Physics and Applied Physics, Nanyang Technological University, 637371 Singapore, Singapore
2Institute of High Performance Computing, Agency for Science, Technology, and Research, 138632 Singapore, Singapore

3Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
4Center for Advanced 2D Materials, National University of Singapore, 117542 Singapore, Singapore

5Yale-NUS College, 16 College Avenue West, 138527 Singapore, Singapore

(Received 28 May 2018; revised manuscript received 18 October 2018; published 6 June 2019)

We propose that bulk free carriers in topologically trivial multivalley insulators with nonvanishing Berry
curvature can give rise to low-dissipation edge currents, which are squeezed within a distance on the order of the
valley diffusion length from the edge. This happens even in the absence of edge states [topological (gapless) or
otherwise], and when the bulk equilibrium carrier concentration is thermally activated across the gap. Physically,
the squeezed edge current arises from the spatially inhomogeneous valley orbital magnetization that develops
from valley-density accumulation near the edge. While this current possesses neither topology nor symmetry
protection and, as a result, is not immune to dissipation, in clean enough devices it can mimic low-loss ballistic
transport.
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I. INTRODUCTION

In bulk band insulators, carrier transport is exponentially
activated, leading to a severely muted current response when
an electric field is applied [1]. However, this adage fails
spectacularly in topological matter where gapped bulk bands,
characterized by a nontrivial topology [2,3], support gapless
edge states [3–6], which can carry dissipationless charge
currents along the edges of the sample. As a result, such
edge currents have become synonymous with topologically
nontrivial bulk bands as expected from the principle of bulk-
edge correspondence [3,6–8].

Here we argue that in the presence of Bloch-band Berry
curvature, bulk free carriers in a multivalley gapped insulator
can conspire to produce a charge current that is squeezed
close to sample boundaries in the absence of edge states
(Fig. 1). The squeezed edge current (SEC) [Fig. 1(b)] has low
(but finite) dissipation and occurs even when the equilibrium
chemical potential is in the gap with a thermally activated
bulk. As a result, SEC can act as a current conduit shunting
the nominally insulating bulk to produce unusual nonactivated
resistivity characteristics at low temperature.

We expect SEC to naturally manifest in topologically
trivial insulators possessing well-separated Bloch-band Berry
curvature distributions [9] in the Brillouin zone (e.g., in
Fig. 1), such that the total integrated curvature is zero. These
systems do not possess gapless topologically protected edge
states. Instead, the Berry curvature in each of the valleys
enables valley Hall currents to be induced by an applied
electric field and produce a valley density accumulation (of
bulk carriers) near the edge of the sample, while the net charge
density remains zero. The valley density gradient perpendicu-
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lar to the edge produces a charge current flowing along the
edge. This induced charge current (transverse to the valley
density gradient) can be viewed as an anomalous transverse
diffusion of carriers, with off-diagonal diffusion constants of
different signs in different valleys—a characteristic of carriers
possessing finite Berry curvature.

SEC appears only in finite-sized samples (e.g., Hall-bar
type geometries) and vanishes in the infinite bulk or when
measurements exclude edge currents (e.g., Corbino geome-
tries); see Fig. 2. While located close to sample boundaries,
we emphasize that SEC arises from bulk carriers; it occurs
in the absence of localized edge modes of either topological
(gapless) edge state origin or from other sources (e.g., band
bending [10,11], gapped edge modes on rough boundaries
[12]). Instead, SEC is intimately tied to a current-induced bulk
and out-of-local-equilibrium magnetization buildup (pointing
out-of-plane) at sample edges that has been recently measured
in gapped Dirac systems [13,14]. The resulting out-of-local-
equilibrium (magnetoelectric) currents are the origin of the
nonactivated transport characteristics we unveil below.

While gapped graphene-type systems are not the only
examples of this type of behavior, they present natural experi-
mental targets due to their high quality, ease of manipulation,
lack of topological gapless edge states, and clear observations
of bulk valley Hall currents [15–17]. Indeed, a recent exper-
iment that infers edge-type currents in topologically trivial
systems [18] provides strong indications of SEC in gapped
Dirac systems; see discussion below.

II. INHOMOGENEOUS VALLEY HALL CURRENTS

We begin by recalling that the position and velocity opera-
tors within a Bloch band (l) and valley (α) are

r̂lα = i
∂

∂k
+ Alα (k), v̂lα = 1

ih̄
[r̂lα, Ĥ ], (1)
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FIG. 1. Squeezed edge currents in a topologically trivial insula-
tor. (a) Berry curvature hot spots in topologically trivial insulator
bands with zero net Berry flux over the entire Brillouin zone,
e.g., (shown) Berry curvature, �lα hot spots for gapped graphene
with broken inversion symmetry; l = ± are conduction and valence
bands. (b) A charged squeezed edge current (SEC), jc(r), can flow
along the sample edges [Eq. (9)] even in a gapped finite-sized device
(inset) without edge states. (c) Carriers in highlighted bands at
α, α′ experience opposite signs of Berry curvature and contrasting
transport characteristics (see text). (d) Density imbalance between
flavors/valleys can accumulate at sample edges over a width deter-
mined by the flavor/valley diffusion length ξ , Eq. (7). We have used
�lα for a gapped Dirac material (see text) so that σ v

H>0 and Dv
H<0

[Eqs. (4) and (5)].

where Alα (k) = i〈ulα (k)|∇kulα (k)〉 is the Berry connection
of the band and valley under consideration. We note that the
band velocity reproduces the familiar 〈ulα (k)|v̂lα|ulα (k)〉 =
dεlα (k)

h̄∂k − h̄−1e�lα (k) × E, where �lα (k) = ∇k × Alα (k) is
the Berry curvature, εlα is the band energy, and −e<0 is the
electron charge. The Berry curvature is of order λ2, where λ

plays the role of an effective “Compton wavelength,” inversely
proportional to the gap at the band extrema (an explicit
expression for “gapped graphene” will be given later). The
above expressions are invariant under a gauge transformation
that multiplies the Bloch wave function by a k-dependent
phase.

We now construct the current density fluctuation operator
at wave vector q (for a single particle) as follows: ĵlα (q) =
− e

2 (v̂lαe−iq·r̂lα + e−iq·r̂lα v̂lα ). We will be interested in current
distributions that are slowly varying on the scale of λ. In this
regime, we can expand ĵlα (q) to first order in q:

ĵlα (q) = −ev̂lα + i

2
e[(q · r̂lα )v̂lα + v̂lα (q · r̂lα )]. (2)

While the first term in Eq. (2) is the homogeneous current
(q = 0), see Eq. (1), the second term only becomes relevant
in an inhomogeneous system. Taking the latter’s expectation
value for state |ulα (k)〉 yields a purely transverse current iq ×
mlα (k), where mlα (k) = − e

4 (r̂ × v̂ − v̂ × r̂) is the magnetic
moment [19]; see Appendix B.

The full physical current density in real space jlα (r) pro-
ceeds directly from Eq. (2). Performing an inverse Fourier
transformation and averaging over a nonequilibrium state

described by the inhomogeneous electron distribution func-
tion flα (k, r) yields

jlα (r) =
∑

k

[
−e

∂εlα (k)

h̄∂k
+ e�lα (k)

h̄
× eE

]
flα (k, r)

+
∑

k

∂ flα (k, r)

∂r
× mlα (k). (3)

The first term of Eq. (3) is the familiar homogeneous current
(including a homogeneous Hall current driven by an electric
field) [20]. The second term is the current driven by an elec-
tron density gradient and exists even in the absence of direct
mechanical forces, such as an applied electric field [21,22].
The latter is the Hall diffusion current, which must necessarily
accompany electric-field-driven Hall currents whenever the
density is nonuniform.

We emphasize that Eq. (3) is the full physical current
that can be measured using local probes (e.g., via scanning
nitrogen vacancy center microscopy [23]). Even so, we note
that in transport experiments, the charge current collected by
leads attached to device boundaries is sensitive to the net
charge current moving through the cross section of the device.
For example, charge transport is insensitive to circulating
currents that may occur deep in the bulk, as illustrated in
Ref. [24] by integrating through a device cross section.

As a result, to ensure that we capture the transport of charge
we explicitly take a cross section over the entire sample and
integrate the net current flowing through it; see below. As we
will see, this leads to SEC freely flowing in the same direction
along the edges (Fig. 1), being fed by external contacts.

III. SQUEEZED EDGE CURRENTS

In order to illustrate SEC, we focus on a prototypical non-
topological insulator: a gapped Dirac material where inversion
symmetry is broken (e.g., gapped graphene on hexagonal
boron nitride) with a Hamiltonian around each of the val-
leys as Hα = vh̄(kxτx + αkyτy) + 
τz (where τx,y,z are Pauli
matrices) and α = ±1 for K, K ′ valleys, respectively; see
Fig. 1. The Berry curvature is concentrated in hot spots close
to the two inequivalent valleys α = {K, K ′} and is given by
�lα (k) = −αλ2

2

3

ε3
l (k)

ẑ, where λ = h̄v



. The magnetic moment

is given by m�α (k) = e
h̄εk,���α (k) (see Appendix C). For

brevity, we will drop the vector notation for Berry curva-
ture since �(k) = �(k)ẑ in two-dimensional systems. Total
charge current (c) is determined by jc ≡ ∑

l,α jl,α and the
total valley current (v) is jv ≡ ∑

lα αjl,α , where α = 1 for
K and α = −1 for K ′. Similarly, we write charge and valley
densities as nc ≡ ∑

l,α nlα and nv ≡ ∑
l,α αnlα; here nlα (r) =∑

k(−e) flα (k, r) is the charge density in l, α.
Since �lα (k) changes sign in going from α = K to α = K ′,

the flow of charge currents is particularly sensitive to the
imbalance of distribution function between valleys. To see
this, using Eq. (3), we construct the total charge and valley
currents in each band l explicitly as

jc = −D∇nc + σE − Dv
H [(∇nv ) × ẑ],

jv = −D∇nv + [
σ v

H

]
ẑ × E − Dv

H [(∇nc) × ẑ], (4)
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where D is the ordinary longitudinal diffusion constant of
carriers within the bands, σ is the longitudinal conductivity,
and [σ v

H ] = (e2/h̄)
∑

k,l,α α�lα f (0)
lα (k) is the valley Hall con-

ductivity; f (0)
lα (k) is the Fermi-Dirac function f (0)

lα (k) = (1 +
exp{[εl (k) − μlα]/(kBT )})−1 with μlα the (quasi)chemical
potential. Crucially, Dv

H is the valley Hall diffusion constant,
which captures the transverse current flow arising from an
inhomogeneous distribution function in each of the valleys:
jlα = −Dlα

H ∇nlα × ẑ, where for gapped graphene we have

Dlα
H =

∑
k εl (k)�lα (k) ∂ f (0)

lα (k)
∂μlα

h̄
∑

k
∂ f (0)

lα (k)
∂μlα

. (5)

Since �lα (k) changes sign when either the band index or the
valley index is switched, D+,α = D−,α

H = αDv
H , where Dv

H ≡
Dl=+,α=+1

H . Summing jlα over l and α gives the inhomoge-
neous charge current as written in Eq. (4).

When an electric field is applied along the sample, the
bulk valley Hall effect produces a valley Hall current that
must be canceled by a valley density gradient perpendicular
to the sample boundaries. This dramatically impacts charge
transport characteristics. The profiles of density imbalance be-
tween valleys in each band nv (r) obey the diffusion equation

∂t nv (r) − D∇2nv (r) + nv (r)

τv

= −∇ · ([
σ v

H

]
ẑ × E

)
, (6)

where τv is the intervalley scattering time between valleys that
captures the rate at which disparate parts (at K and K ′) of the
Fermi surface equilibrate with each other. In the nondegener-
ate limit, the longitudinal diffusion can be estimated as D =
kBT η/e, where η is the mobility; here we have used the same
diffusion constant in both conduction and valence bands for
simplicity. Different diffusion constants can be implemented
with no qualitative change to the results below.

Considering a long Hall bar, L � W , we treat nv (r)
and E(r) as independent of y along the bar; this reduces
Eq. (6), in the steady state, to a one-dimensional differen-
tial equation, with the density jumping from a finite value
to zero at x = ±W/2. Further, by focusing on regions far
away from contacts, we treat the electric field as uni-
form. As a result, nv (r) is driven only by delta-function
sources at the boundaries x = ±W/2: −∇ · ([σ v

H ]ẑ × E) =
−[σ v

H ]E [δ(x − W/2) − δ(x + W/2)], where E = E ŷ. We note
that σ v

H is maximal when the chemical potential is in the gap
[25].

The solution of the differential equation is found by ele-
mentary means to be

nv (x) = −
[
σ v

H

]
Eτv

ξ cosh (W/2ξ )
sinh

(
x

ξ

)
(7)

for |x| � W/2, and 0 otherwise. Here ξ = √
Dτv is the valley

diffusion length. As shown in Fig. 1(d), valley density accu-
mulates at the edges.

We emphasize that our diffusive treatment is valid only
when the spatial profile of nv, jc is slowly varying on the scale
of the Compton wavelength λ = h̄v/
, the typical length
scale of the wave packets close to the band edge in a gapped
Dirac model. λ 	 6 × 10−8 m for v = 106 m s−1 and half-gap

size 
 = 10 meV. The typical scale of nv (r) variation is
captured by the diffusion length ξ . As a result, we expect
that our semiclassical diffusive picture holds as long as ξ �
λ. Using the nondegenerate form of longitudinal diffusion
constant D = kBT η/e we find that this occurs for large enough
temperatures

T � T0, kBT0 = eλ2

ητv

. (8)

Using a mobility η = 1 m2/(V s), τv = 10 ps we estimate
kBT0≈0.4 meV (T0≈5 K). Below this temperature scale (set
by T0), a fully quantum mechanical treatment is needed, which
is beyond the scope of the present work. In spite of this, the
temperature regime 
 > T > T0 (in which our treatment is
valid) defines a large and technologically important tempera-
ture regime.

Applying the inhomogeneous valley density profile in
Eq. (7) to Eq. (4) yields a charge current density flowing along
the edge (see Fig. 1) as

jSEC
c (r) = jSEC

c (r)ŷ, jSEC
c (r) = Dv

H∂xnv (r). (9)

In the limit ξ � W , jSEC
c (r) form squeezed quasi-one-

dimensional channels flowing along the edges of the Hall
bar. Crucially, Eq. (9) yields two squeezed current channels
flowing in the same direction as shown in Fig. 1; jSEC

c (r) flows
along E. This demonstrates that the diffusion current arising
from the inhomogeneous electron distribution [see Eq. (3)] is
not circulating, but contributes to total charge transport in the
device.

Integrating the current density over one of these SEC chan-
nels and writing E = V/L, where V is the voltage drop over
length L, yields ISEC = ∫ W/2

0 jSEC
c (x)dx = −Dv

Hσ v
HτvV/(ξL).

ISEC constitutes a distinctly new parallel channel for current
to flow in the Hall bar. We note that −Dv

Hσ v
H is positive; see

Fig. 1. Adding the current flowing in the bulk, as well as
accounting for contact resistance, we find the device resis-
tance

R−1 = R−1
bulk + R−1

SEC, RSEC = (ρ1dL) + Rcontact, (10)

where ρ1d = ξ/(|Dv
Hσ v

H |τv ), and Rbulk is the resistance of the
bulk. Crucially, Dv

H , σ v
H arise from the Berry curvature of the

bands and exhibit a nonactivated behavior in temperature,
even when the chemical potential is in the gap. As we will
see, this yields ρ1d that does not exponentially rise at low
temperatures in stark contrast with Rbulk that exponentially
rises at low temperatures.

IV. LOW-DISSIPATION SEC CHANNELS

In the nondegenerate limit μlα, kBT � 
, we estimate
σ v

H≈2e2/h for an almost fully filled band (accounting for spin
degeneracy). Similarly, Dv

H can be estimated from Eq. (5) in
the same limit as

Dlα
H ≈ α

h̄v2

2

F (β̃ ), F (β̃ ) = −β̃2Ei(−β̃ )

(1 + β̃ )exp(−β̃ )
, (11)

where β̃ = 
/kBT , Ei(x) = − ∫ ∞
−x dte−t/t is the exponen-

tial integral, and we have approximated (1 + exp[β̃])−1 ≈
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FIG. 2. Low-dissipation squeezed edge channels. (a) One-
dimensional resistivity of a single squeezed edge current (SEC) chan-
nel along the edge of gapped graphene device [Eq. (12)] shown for
τv = 10 ps (red dashed) and τv = 1 ps (blue dashed). τv in between
these two values occupy the shaded orange region. Red and blue dots
indicate temperature T0 above which the semiclassical treatment is
valid for the respective τv [see Eq. (8)]. (b) Device resistance for
a Hall-bar device (red, L = 1 μm and τv = 10 ps) and a Corbino
device (black). For illustration we used parameters 
 = 15 meV,
η = 2 m2/(V s), and σ v

H = 2e2/h. Here we have taken a value of
Rcontact = h/e2 for illustration; other Rcontact values can be used with
no qualitative changes.

exp[−β̃] for β̃ � 1. Interestingly for small T , F → 1, re-
flecting the (band) geometrical origin of anomalous transverse
diffusion. We note that σ v

H , Dv
H do not vary significantly for

E-induced shifts in μlα < 
; sizable valley imbalances along
the edge can accumulate in the linear response regime.

Writing Dv
H = Dl,(α=+1)

H [see Eq. (5)] yields the resistivity
of the quasi-1D channels along the sample edges

ρ1d(T ) = ρ0

β̃1/2F (β̃ )
, ρ0 = 2
3/2(η/e)1/2

h̄v2τ
1/2
v |σ v

H | , (12)

where ρ0 is the characteristic 1D resistivity; see also
Appendix E.

The term ρ0 is nonuniversal and depends on the rate
of relaxation of different parts of the Fermi surface at K
and K ′ encoded in the intervalley scattering time τv . In a
bulk homogeneous sample with few short-range impurities,
intervalley scattering can be long (on the order of ten to
several tens of picoseconds [15–17]). Further, it has been
noticed in Ref. [26] that the notion of valleys is preserved
for generic edge terminations in graphene since generic ter-
minations are described by zigzag-type boundary conditions.
Even so, the specific edge termination configuration may
enable enhanced intervalley scattering (as compared with the
bulk), for example through edge roughness or via indirect
scattering processes through flat or weakly dispersive edge
states [27], and the value of τv can be accordingly reduced
close to edges. For these reasons, in Fig. 2 we have chosen to
illustrate SEC by presenting the values of ρ1d(T ) associated
with a range of values of τv∼1–10 ps. Strikingly, even for
relatively fast intervalley scattering τv∼1 ps, ρ1d can still take
on small values ρ1d ∼ h/e2 μm−1; see Fig. 2(a) (red curve).
In contrast, the bulk resistance exponentially rises at low tem-
peratures, Rbulk ∝ exp(
/kBT ), where 
 is the half-gap size.
As a result, for small gap sizes of tens of meV, sufficiently
short lengths, and low temperatures, SEC possesses a very

small resistivity [dominating R−1 in Eq. (10)] and can mimic
a low-dissipation quasi-one-dimensional channel that shunts
the bulk; see Fig. 2(b).

We note that in the low-temperature regime where
(ρ1dL) � Rcontact, Eq. (10) is dominated by the contact re-
sistance; see Fig. 2(b). As a result of the low dissipation
in the SEC channel, current-voltage characteristics in a two-
terminal geometry may display only very weakly L-dependent
characteristics.

V. DISCUSSION

It is useful to point out some of the conceptual differences
between conventional bulk transport in electronic systems
and SEC. Bulk carrier transport in electronic systems is typi-
cally characterized by a homogeneous flow of current density
through the sample that is sustained by an electric field that
accelerates the charge carriers. This electric field displaces
the Fermi surface in momentum space so that larger current
density corresponds to a larger relative displacement of the
Fermi surface in momentum space. In contrast, SEC arises
from an inhomogeneous flow of current density running along
the edges of the device. For SEC, the charge carriers are
not accelerated along the flow direction (y); instead SEC is
sustained by an inhomogeneous valley density profile nv (x) in
real space (along x) induced by an electric field (along y).

Crucially, larger SEC current corresponds to a larger local
steady-state valley density (close to the edges in real space);
see Eq. (9). Interestingly, as detailed below, even in the linear
response regime, this steady-state out-of-equilibrium valley
density can be far larger than equilibrium density of thermally
activated carriers when the chemical potential is in the gap
and at low temperatures. This is in stark contrast to what
is expected in conventional bulk transport, where electronic
density is kept uniform and close to its equilibrium value even
when current is flowing through. Where does this large density
of carriers come from? As we now argue, the increased local
steady-state valley density can be fed by the source/drain
contacts that inject carriers that are shunted along the SEC
channels. This can be understood as follows. Charge transport
occurs when carriers are injected from a source contact, and
removed at a drain contact. After short time transients, the de-
vice reaches a steady state with the amount of current injected
(at source contact) equal to the amount of current removed
(at drain contact), resulting in a steady-state distribution of
carriers. For our system, this steady-state out-of-equilibrium
distribution of carriers is determined by Eq. (6), allowing
sizable steady-state local valley densities to be accumulated
along the edges.

We now estimate the maximal valley density, n∗
v , that can

be accumulated along the edges [as determined by Eq. (6)]
concentrating on the regime of μ in the gap and kBT < 
.
To proceed, we note that the validity of linear response theory
requires that the values of D, σ v

xy (as well as Dv
H when consid-

ering the SEC current; see below) used do not change much
as valley density is accumulated at the edge of the sample. For
gapped graphene with equilibrium chemical potential initially
in the gap, this requires the electric-field-induced change in
the quasi-Fermi levels (close to the edges) to satisfy δμK,K ′

e,h �

. This is because the relevant transport coefficients for SEC
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(D, σ v
xy, and Dv

H ) do not vary appreciably as chemical potential
is changed inside the gap [28]; in fact, σ v

xy and Dv
H both

reach their maximal values inside the gap. The condition on
quasi-Fermi levels can be immediately translated into one
for density so that linear response is satisfied for nv � n∗

v ,
where n∗

v = N
∫ ∞



dεν(ε){1 + exp[(ε − 
)/kBT ]}−1, where
ν(ε) is the density of states, and N is the valley/flavor and
spin degeneracy. Using the density of states of a gapped Dirac
cone, we obtain

n∗
v = N [12 ln(2)kBT 
 + π2(kBT )2]/(24πv2h̄2). (13)

Unusually, n∗
v ∝ T can be much larger than the thermally ac-

tivated carrier density at equilibrium [neq
T ∝ exp(−
/kBT )].

As discussed above, this steady-state nv builds up and is fed
by the source/drain contacts that inject/remove a steady flow
of carriers.

A related quantity is the critical SEC, I∗, that can be carried
by the system through the SEC channels along the edges
(ISEC � I∗) in order to remain in the linear response regime.
The term jSEC

c is directly proportional to the amplitude of
nv (x), see Eq. (9), and integrating over the SEC channel width
we obtain the critical SEC current as

I∗ = eDv
H n∗

v ≈ eN
2h

kBT ln 2 + O(T 2/
), (14)

where we have used the value of Dv
H in Eq. (11) for small

T , substituted Eq. (13), and kept the leading terms in T .
Taking N = 4 and taking kBT = 1 meV, we obtain sizable
I∗∼0.053 μA, allowing significant SEC to be run through
the device with low dissipation. Interestingly, we note that
I∗ vanishes as T → 0, indicating that while SEC resistivity
slowly decreases as T decreases, the amount of current these
channels can sustain (in the linear response regime) also
vanishes.

The nonactivated conductance, as well as nonactivated
valley density, sustained at the edges of the sample of SEC
is distinct from that of conventional transport. Indeed, the fact
that valley densities n∗

v that can be sustained are far larger than
the thermally activated density at equilibrium neq

T suggests that
SEC is an out-of-local-equilibrium effect; nevertheless it can
still possess linear response characteristics, as detailed above.

SEC here replicates the unusual transport characteristics
found in recent gapped graphene-type structures (G/hBN and
gapped bilayer graphene devices) [18]. For example, Fig. 1
mirrors the sharp spatial edge current distribution in gapped
graphene-type structures found in Ref. [18] using Josephson
current spectroscopy. Further, a saturation of device resistance
(up to a few resistance quanta) was measured in Hall bars even
at low temperatures (∼10 K), while Corbino geometry mea-
surements of the same samples showed fully activated behav-
ior; this directly reproduces SEC characteristics in Fig. 2(b).
Further, we note that recent Kerr-rotation microscopy in
biased monolayer MoS2 shows magnetization accumulated
along edges [13,14], another signature of valley imbalance
accumulation and SEC along the edge. We emphasize that
while neither gapped graphene (G/hBN or gapped bilayer
graphene) nor MoS2 possess topological gapless edge states,
they possess strong Berry curvature close to their band edges,
enabling the unusual quantum-geometry-mediated transport
(such as SEC) in these systems [13,14,18].

Bloch-band quantum geometry can play a crucial role in
charge transport of time-reversal-invariant materials as epit-
omized by SEC that mimic ballistic edge channels without
(spectral) edge states. SEC exhibits striking nonactivated be-
havior even in nominally bulk insulating and topologically
trivial devices. Additionally, SEC also mediates spin-free
magnetoelectric coupling, an unusual characteristic of these
“trivial” insulators with nonvanishing Berry curvature; band
geometry naturally interlaces charge and magnetization de-
grees of freedom even in a spin-orbit-free system.
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APPENDIX A: COVARIANT DERIVATIVE AND
ANOMALOUS VELOCITY

As a warm-up, we briefly review the covariant derivative.
Our starting point is the gauge-invariant (physical) position
operator in the Bloch representation

r̂lα = i
∂

∂k
+ Alα (k), (A1)

where Alα (k) = i〈ulα (k)|∂kulα (k)〉 is the Berry connection
of the band and valley under consideration. We note that i ∂

∂k
is the canonical (non-gauge-invariant) position operator in the
momentum representation. Crucially, different components of
r̂ do not commute with each other. In particular,

[r̂i, r̂ j] = i
(
∂ki [Alα] j − ∂k j [Alα]i

) ≡ iεi jk�k, (A2)

where the Berry curvature is

�i ≡ εi jk∂k j [Alα]k. (A3)

In the presence of an applied electric field, the Hamiltonian
reads as Ĥ = εn(k) − (−e)E · r̂. Here −e<0 is the electron
charge, and E is the electric field. Writing the velocity as v̂ =
1
ih̄ [r̂, Ĥ ], we obtain

〈v̂i〉 = 1

ih̄
〈[ri, Ĥ ]〉 = 1

h̄

∂εn(k)

∂ki

− ie

h̄
〈[r̂i, r̂ j]〉Ej (A4)

= 1

h̄

∂εn(k)

∂ki
+ e

h̄
εi jkE j�k, (A5)

where the second term is the anomalous velocity.

APPENDIX B: MAGNETIC MOMENT AND
INHOMOGENEOUS CURRENT DENSITY

In this Appendix, we discuss the relationship between the
magnetic moment and the inhomogeneous current density in
Eq. (2) of the main text.
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We begin by noting that the magnetic moment

m̂ = − e

4
(r̂ × v̂ − v̂ × r̂)

= ie

4h̄
(r̂ × [r̂, Ĥ ] − [r̂, Ĥ ] × r̂), (B1)

where Ĥ is the Hamiltonian and v̂ = −ih̄−1[r̂, Ĥ ]. It is im-
portant to notice that at this stage the operator r̂ is not yet
projected on a given band. Thus, interband matrix elements
of r̂ are still included. However, the Hamiltonian is diagonal
in the band representation. The magnetic moment can be
reexpressed in component form as

mi = ie

4h̄
εi jk (r̂ j r̂kĤ − r̂ j Ĥ r̂k − r̂ j Ĥ r̂k + Ĥ r̂ j r̂k ), (B2)

where a sum over repeated indices is implied. This can be
recast as

iεi jkq jmk

= e

2h̄
q j[r̂iĤˆr j − r̂ j Ĥ r̂i]

− e

2h̄
q j

[
Ĥ (r̂i r̂ j − r̂ j r̂i )

2
+ (r̂i r̂ j − r̂ j r̂i )Ĥ

2

]
. (B3)

Now we make use of the commutation relation

r̂ × r̂ = i�̂, (B4)

where �̂ is the Berry curvature operator defined as the covari-
ant derivative of the Berry connection in the full Hilbert space,
to rewrite mi as

mi = − ie

2h̄
εi jk r̂ j Ĥ r̂k − e

4h̄
[�̂iĤ + Ĥ�̂i]. (B5)

We can now take the diagonal matrix element of this operator
in the band of interest, say lα, and noting that r̂ = i∇k, where
∇k = ∂k − iA(k) is the covariant derivative (still an operator
in the full Hilbert space), and that the diagonal matrix element
of �̂ is

�lα (k) = i〈∇kulα (k)| × |∇kulα (k)〉, (B6)

we recover the well-known formula [19,20]

mlα (k) = ie

2h̄
〈∇kulα (k)|[εlα (k) − Ĥ ] × |∇kulα (k)〉. (B7)

Similarly, we write the q-linear part of the current density
operator in Eq. (2) of the main text (denoted by ĵ(1)

q,i) in
component form as

ĵ (1)
q,i = i

e

2
qi(v̂ j r̂i + r̂iv̂ j )

= e

2h̄
qi(r̂ j Ĥ r̂i − Ĥ r̂ j r̂i + r̂i r̂ j Ĥ − r̂iĤ r̂ j ). (B8)

After some algebra, this can be recast in the following form:

ĵ (1)
q,i = e

2h̄
q j[r̂iĤ r̂ j − r̂ j Ĥ r̂i]

− e

2h̄
q j

[
Ĥ (r̂i r̂ j − r̂ j r̂i )

2
+ (r̂i r̂ j − r̂ j r̂i )Ĥ

2

]

+ e

2h̄
qi

[
Ĥ

r̂ir̂ j + r̂ j r̂i

2
− r̂i r̂ j + r̂ j r̂i

2
Ĥ

]
. (B9)

The first two lines of this equation reproduce Eq. (B3) ex-
actly. The last line is, in general, nonzero, but vanishes when
averaged in a single band because the Ĥ operators become
numbers Ĥ → εlα (k), and what remains is the difference of
two identical terms. We conclude that[

ĵ (1)
q,i

]
lα = iεi jkq jmlα,k (B10)

or, in real space,

[ĵ(1)(r)]lα = ∇r × mlα (r). (B11)

Taking mlα (r) = ∑
k flα (k, r)mlα (k) we recover Eq. (3) of

the main text.

APPENDIX C: MAGNETIC MOMENT
FOR GAPPED GRAPHENE

Here we briefly derive (for the convenience of the reader)
the well-known relation between Berry curvature and the
magnetic moment for gapped graphene, namely,

m�α (k) = e

h̄
εk,���α (k). (C1)

Equation (C1) can be shown in a straightforward fashion by
recalling that the magnetic moment is

〈M̂〉�,α = ie

2h̄
〈∇ku�α (k)|e[ε�(k) − Ĥ ] × |∇ku�α (k)〉. (C2)

Noting that for the two-band, particle-hole symmetric system
ε�=+(k) = −ε�=−(k), we have

ε�(k) − Ĥα = 2ε�(k)|un �=�,α (k)〉〈un �=�,α (k)|. (C3)

Inserting into Eq. (C2) we obtain

〈M̂〉�,α = ieε�

h̄

[〈∂u�,α

∂kx

∣∣∣∂u�,α

∂ky

〉
−

〈∂u�,α

∂ky

∣∣∣∂u�,α

∂kx

〉]
, (C4)

where we have applied the resolution of the identity.
Recalling that the Berry curvature is simply ��α (k) =
i〈∇ku�α (k)| × |∇ku�α (k)〉, we obtain Eq. (C1).

APPENDIX D: ALTERNATIVE DERIVATION OF
INHOMOGENEOUS CURRENT DENSITY:

VELOCITY MATRIX ELEMENT

In this section, we discuss an alternative algebraic deriva-
tion of the inhomogeneous current density by expanding
the velocity matrix element at finite q. For brevity, we will
suppress the flavor index α leaving only the band index l
without loss of any generality. While less compact than the
above discussion (using the magnetic moment operator), this
alternative approach explicitly shows how the accumulation of
geometric phases at finite q leads to the anomalous transverse
diffusion.

We proceed by considering the current dynamics in Bloch
bands with a spatially varying out-of-equilibrium carrier den-
sity in the absence of an applied magnetic field. The current
density jl (r) = e

∑
q v(l )

q eiq·r can be expressed in terms of its
Fourier harmonics as

v(l )
q =

∑
k

c†
k−,l〈l, k−|v̂|l, k+〉ck+,l , h̄v̂ = ∂Ĥ

∂k
, (D1)
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where v̂ is the velocity operator, Ĥ is the Hamiltonian, k± =
k + q/2, and c†

k,l is a creation operator for quasiparticles in

band l with corresponding (Bloch) wave function 〈r|c†
k,l |0〉 =

〈r|l, k〉eik·r. The crystal wave functions 〈r|n, k〉 = ul,k(r) are
periodic over the unit cell.

As we now demonstrate, the phases accumulated by quasi-
particles in the bands can play a crucial role in their transport,
producing anomalous current flow when the carrier density is
inhomogeneous. To illustrate this, we first note that the wave
function 〈r|l, k + q〉 can be expanded, to leading order in q, as

〈r|l, k〉 +
(〈

r

∣∣∣∣∂ul,k

∂ki

〉
− iAl,i(k)

〈
r

∣∣∣∣ul,k

〉)
qi + · · · , (D2)

where we have expressed the expansion in component
form, and Al,i(k) = Al (k) · x̂i is the ith component of the
Berry connection Al (k) = i〈ul,k|∂k|ul,k〉 (i.e., Al in the x̂i

direction). Notice that the Taylor expansion in k is done using
the covariant derivative, ∇k = ∂k − iAl (k); this is needed to
ensure that the calculated current is physical, i.e., invariant
under a “gauge transformation” of the crystal wave function,
ul,k(r) → e−iχ (k)ul,k(r).

Applying the expansion of the wave function at small q
described in Eq. (D2) to the velocity matrix element, we
obtain

〈l, k−|v̂i|l, k+〉 = 〈l, k|v̂i|l, k〉 + [
C(l )

i j (k)
]
(iq j ) + O(q2),

(D3)
where h̄〈l, k|v̂i|l, k〉 = ∂εl (k)

∂ki
is the group velocity, and

[
C(l )

i j (k)
]
(iq j ) =

[〈
∂ul,k

∂k j

∣∣∣∣v̂i|ul,k〉 − 〈ul,k|v̂i

∣∣∣∣∂ul,k

∂k j

〉]
q j

2

− 2i〈ul,k|v̂i|ul,k〉A j
q j

2

=
∑

m

[〈
∂ul,k

∂k j

∣∣∣∣um,k

〉
〈um,k|v̂i|ul,k〉

− 〈ul,k|v̂i|um,k〉
〈
um,k

∣∣∣∣∂ul,k

∂k j

〉]
q j

2

− 2i〈ul,k|v̂i|ul,k〉A j
q j

2
. (D4)

In the last line we have inserted the resolution of the identity∑
m |um,k〉〈um,k| = 1 into the terms of the square parentheses.
In order to proceed, we note that when m = l , the square

parentheses cancel with the last term since 〈ul,k| ∂ul,k

∂k j
〉 =

−iA j . As a result, only terms with m �= l remain in Eq. (D4).
Using the identity for the interband matrix element

h̄〈ul,k|v̂i|um,k〉 =
〈
ul,k

∣∣∣∣∂um,k

∂ki

〉
[εl (k) − εm(k)], l �= m,

(D5)

where εl (k) is the quasiparticle energy in band l , yields

C(l )
i j = − i

2h̄

∑
m �=l

〈
∂ul,k

∂ki

∣∣∣∣um,k

〉
[εl (k) − εm(k)]

〈
um,k

∣∣∣∣∂ul,k

∂k j

〉

− c.c. (D6)

Comparing this with the well-known expression for the
magnetic moment [19,20]

〈M̂〉 = ie

2h̄
〈∇kulα (k)|[εlα (k) − Ĥ ] × |∇kulα (k)〉 (D7)

yields Eq. (3) of the main text.

APPENDIX E: ESTIMATE OF CHARACTERISTIC
SEC RESISTIVITY

In the following we give a simple estimate of the character-
istic SEC resistivity. Recalling Eq. (12) of the main text, we
have the resistivity of the SEC channel

ρ1d(T ) = ρ0

β̃1/2F (β̃ )
, ρ0 = 2
3/2(η/e)1/2

h̄v2τ
1/2
v |σ v

H | , (E1)

where ρ0 is the characteristic 1D resistivity and can be esti-
mated as

ρ0 = 0.48
(
[meV]/10)3/2{η[m2/(V s)]}1/2

(τv[ps]/10)1/2

[
h

e2
μm−1

]
,

(E2)

where we have used v = 106 m/s, and taken |σ v
H | = 2e2/h.

We note that for narrow-gapped Dirac materials

∼10 meV, ρ0 can be as small as fractions of the quantum
of resistance h/e2. As a result, at low temperatures, ρ1d(T )
in Eq. (E1) yields low-dissipation squeezed edge channels.
When the value of ρ0 in Eq. (E1) for such narrow-gapped
Dirac materials is substituted into Eq. (10), we find the
low-dissipation ρ1d L can become far smaller than Rcontact. As
a result, RSEC [red line in Fig. 2(b)] becomes dominated by
Rcontact and tends to the Rcontact [dashed line in Fig. 2(b)] value
at low temperature.

As discussed in the main text, this behavior was recently
seen in gapped graphene-type structures [18], where a sat-
uration of device resistance (up to a few resistance quanta)
was measured in Hall bars even at low temperatures (∼10 K;
where SEC is operative), while Corbino geometry measure-
ments (where edge contributions are eliminated) of the same
samples showed fully activated behavior.

In contrast, for large gapped Dirac materials 
∼1 eV, ρ0

can be many times larger; for example, taking 
 = 1 eV,
η = 1 m2/(V s), and τv = 1 ps, we obtain a very resistive
channel ρ0≈40 M� μm−1. These values are so large as to
be comparable with the bulk resistance, making SEC an
ineffective current shunt to bulk charge current conduction.

As a result, we conclude that narrow-gapped Dirac materi-
als (e.g., G/hBN or gapped bilayer graphene) at low temper-
ature are ideal platforms to observe low-dissipation squeezed
edge currents (as seen in Fig. 2 of the main text; compare also
with Hall bar device resistances observed in Ref. [18]).
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