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The generalized statistical dynamical theory of x-ray scattering by imperfect single crystals with randomly dis-
tributed Coulomb-type defects has been extended to characterize structure imperfections in the real multilayers of
arbitrary thickness in Bragg diffraction geometry. The recurrence relations for the coherent amplitude reflection
and transmission coefficients of such multilayers, which consist of any number of layers with constant strain and
randomly distributed defects in each one, have been derived within the concept of the dynamical wave field, i.e.,
the so-called Ewald-Bethe-Laue approach, with rigorous accounting for boundary conditions at layer interfaces.
The analytical expression for the differential dynamical diffuse component of the reflection coefficient of an
imperfect multilayer system has been obtained as well. This expression establishes direct connection between
the distribution of the diffuse scattering intensity in a momentum space and statistical characteristics of defects
in each layer. In addition, the integrals from differential diffuse scattering intensity over the Ewald sphere and
over vertical divergence have been found, which correspond to diffuse components in measurements of rocking
curves and reciprocal space maps, respectively. The developed theory provides the dynamical description for the
one- and two-dimensional angular distributions of the mutually consistent coherent and diffuse components of
x-ray scattering intensities, which are measured by the high-resolution double- and triple-crystal diffractometers,
respectively, from imperfect films, multilayer structures, superlattices, etc. Examples of simulated rocking curves
for the imperfect superlattice with defects of several types and reciprocal space map for the ion-implanted sample
of yttrium iron garnet film with defects are given and discussed.
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I. INTRODUCTION

The nondestructive x-ray diffraction methods are widely
applied to determine characteristics of structural defects,
chemical compositions, and strain distributions in various
materials. The objects of such investigations are both the tradi-
tional as-grown and/or modified single-crystalline structures,
as well as newly developed thin films, multilayer systems,
superlattices, etc [1–5].

In particular, the measurements of rocking curves and
reciprocal space maps in Bragg diffraction geometry, which
make use of the high-resolution double- and triple-crystal
diffractometers in combination with powerful x-ray sources,
respectively, are the most effectively used experimental tech-
niques (see, e.g., [Refs. [6–19]).

The efficiency of any x-ray diffraction method is deter-
mined to a large extent by the availability of the analytical
expressions, which give an adequate description of measured
rocking curves or reciprocal space maps. For this reason, the
various theoretical models of x-ray diffraction were developed
to analyze the diffraction patterns measured from perfect
and imperfect crystalline bulk and multilayer structures with
inhomogeneous strain distributions.

First of all, the x-ray diffraction models based on simple
analytical expressions of the kinematical scattering theory
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should be mentioned. These models are devoted to per-
fect or almost perfect, i.e., nearly defect-free, thin multi-
layer systems or single-crystalline structures with smooth
inhomogeneous strain fields [20,21]. In such approaches the
alone parameter related to structural imperfection was the
disorder factor caused by random static atom displacements.
In addition, the more general kinematical diffraction for-
mulas have been derived with the purpose of including a
description of structure imperfections like random, contin-
uous, or discrete fluctuations from the average superlattice
parameters [22,23].

As a next step, the analytical solutions of dynamical
Takagi-Taupin equations have been obtained for perfect mul-
tilayers in the semikinematical approximation [24–29]. Be-
sides, the rigorous analytical solutions of these equations have
been found in the cases of perfect crystals with strain fields of
specific profile forms [30,31].

Within the scope of the purely dynamical consideration—
which is necessary to describe x-ray diffraction by multilayer
systems of the thickness exceeding an extinction length—the
recurrence relations between coherent reflection coefficients
of such systems, consisting of any number of layers with
constant strains, have been derived by use of both Takagi-
Taupin equations and Ewald-Bethe-Laue approaches [32–44].

Particularly, important generalizations of the dynamical
theory have been made to include the cases of highly asym-
metric and grazing-incidence and/or exit x-ray diffraction
[41,42], extremal diffraction at Bragg angles near zero or π/2
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[41,43], and wide-angle diffraction with a large number of
Bragg reflections [44].

In addition, some approaches were proposed to solve an-
alytically the inverse problem of x-ray scattering in Bragg
diffraction geometry [45–47]. These approaches aimed to de-
termine an arbitrary strain profile in crystal by using measured
rocking curves, so the phase information was obtained in
Ref. [45] from the observed reflection intensity via a logarith-
mic Hilbert transform to determine the strain distribution in a
SiGe superlattice. A new numerical technique to compensate
for the dynamical effects in experimental x-ray diffraction
intensity profiles was proposed in Ref. [46], where an iter-
ative algorithm of the strain determination in near-surface
distorted layers was developed. The method based on the
semidynamical approximation using the Fourier transform of
the x-ray reflection amplitude was also proposed for the de-
termination of depth-dependent strain distributions and static
Debye-Waller factor of multilayer crystals from experimental
x-ray diffraction data using an iteration algorithm [47].

It is important to emphasize that only in some of the above-
mentioned theoretical approaches the influence of structure
imperfections was taken into account via decreasing the
coherent scattering amplitude due to a static Debye-Waller
factor. However, all these approaches ignore the effect of
immediate contribution of the diffuse scattering intensity
from defects of real crystalline structures to measured x-ray
diffraction intensity. However, this effect, together with an
additional attenuation of the coherent scattering amplitude
due to diffuse scattering, can cause substantial changes in the
characterization results for strain parameters, chemical com-
positions, etc. Moreover, the application of diffuse scattering
techniques has been proven to be an excellent tool for struc-
tural characterization of mesoscopic structures like superlat-
tices with quantum dots, which enables one to investigate
their shape, size, inner and outer strain fields, and positional
correlation [3,4,48–51].

For this reason, the theoretical models of x-ray diffraction
by multilayer systems or single-crystalline structures with
inhomogeneous strain fields, which take the presence of ran-
domly distributed defects into account, have been developed
by using both kinematical and dynamical diffraction theories
[1,3–5,50–60].

Particularly, the dynamical models were based either di-
rectly on Takagi equations [52] or on the differential version
of Kato’s statistical dynamical theory [51,53–60].

It is worth remarking that this differential version was
formulated by Bushuev [61] to describe the angular diffraction
intensity distributions in a case of incident plane wave, in
contrast to the version formulated earlier by Kato [62] for
an incident spherical wave which described the integrated
diffraction intensities from imperfect crystals with mosaiclike
structure only. These theoretical diffraction models were suc-
cessfully used to treat the measurement data from imperfect
crystal structures with heavy distortions caused by mosaiclike
imperfections [58]. However, some difficulties are encoun-
tered when establishing quantitative relationships between the
observed x-ray diffraction patterns and statistical character-
istics of crystal imperfections like the randomly distributed
defects with static Coulomb-type displacement fields, i.e.,
their size, concentration, strength, etc.

The origin of such kind of difficulties is that these models
are fundamentally two dimensional; i.e., they consider the x-
ray scattering processes exceptionally in the coherent diffrac-
tion plane. However, the correct quantitative description of
the diffuse scattering processes from any type of randomly
distributed finite-size defects, which always occur with photon
momentum transfers in all three space dimensions, requires
the corresponding three-dimensional (3D) space considera-
tion. Moreover, also the second derivatives of wave field
amplitudes in the wave equation, which are neglected in the
so-called Takagi-Taupin approximation, where the smooth-
ness of these amplitudes and strain fields at the distance of the
extinction length was supposed, should be retained to consider
correctly the behavior of coherent waves at layer interfaces
with large strain gradients.

Presumably, just for these reasons a new formalism, based
on the Dyson equation for the coherent wave field amplitude
and Bethe-Salpeter equation for the incoherent (diffuse) scat-
tering amplitude, has been proposed to describe the dynamical
x-ray diffraction in statistically disturbed crystals [63,64].

It is remarkable that, perhaps for similar reasons, Kato also
has reformulated his previous version of the statistical dynam-
ical theory without using the Takagi-Taupin approximation
on a physically sounder basis of the concept of the Green’s
function [65].

The above-mentioned difficulties are fundamentally absent
in the generalized statistical dynamical theory of x-ray diffrac-
tion by imperfect single crystals with randomly distributed
Coulomb-type defects [66,67].

This theory is based on the Ewald-Bethe-Laue approach
[68], where the scattering problem is considered in the 3D
momentum space, and makes use of the Krivoglaz method of
fluctuating waves of defect concentration [69], which enables
establishing direct analytical relationships between Fourier
components of the fluctuating part of crystal polarizability and
defect characteristics. In consequence, this theory provides the
explicit analytical expressions in the 3D momentum space for
coherent and diffuse scattering amplitudes with direct connec-
tions to statistical defect characteristics, which are well suited
to be adopted for the description of the diffraction patterns
measured by high-resolution double- and triple-crystal x-ray
diffractometers (see, e.g., Refs. [70,71]).

The purpose of the present work is to extend the general-
ized statistical dynamical theory of x-ray diffraction by imper-
fect crystals with Coulomb-type defects [66,67] to the case of
real single-crystalline multilayers of arbitrary thickness with
inhomogeneous strain fields and randomly distributed defects.

The article has the following structure. In Sec. II, the main
relations of the generalized statistical dynamical theory are
briefly outlined for the case of Bragg diffraction geometry
in imperfect crystals with randomly distributed Coulomb-type
defects. In Sec. III, the recurrence relations are derived for the
coherent amplitude reflection and transmission coefficients of
the imperfect multilayer system consisting of any number of
layers with nearly constant strains and randomly distributed
defects in each one.

The analytical expression for the diffuse component of
reflectivity of such systems, which is immediately connected
with statistical characteristics of defects in each layer, is ob-
tained in Sec. IV A. In addition, the corresponding expressions
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are obtained for the diffuse scattering intensity distributions
measured by the high-resolution double- (Sec. IV B) and
triple-crystal diffractometers (Sec. IV C).

The derived formulas are used to simulate rocking curves
for the imperfect InGaAs/GaAs superlattice with defects
(Sec. V A) and a reciprocal space map for the imperfect
epitaxial yttrium iron garnet film implanted with fluorine ions
(Sec. V B), respectively. A short Summary and Conclusions
are given in Sec. VI.

II. BASIC RELATIONS OF THE GENERALIZED
STATISTICAL DYNAMICAL THEORY

A. Coherent scattering amplitude

Real single crystals, epitaxial films, and multilayer systems
from the structural point of view are characterized by the
presence of intrinsic point defects, growth defects, intention-
ally introduced impurities, inhomogeneous strain fields due to
lattice misfits or composition variations, etc. If the thickness
of any region of interest in such objects is comparable with
the extinction length, the fully dynamical consideration is
required for the correct interpretation of observed diffraction
patterns, which always consist of coherent and diffuse com-
ponents.

In the generalized statistical dynamical theory of x-
ray scattering by imperfect single crystals with randomly
distributed Coulomb-type defects [66,67] the perturbation
method was applied to solve the wave equation in momentum
space. The total polarizability of a crystal with randomly
distributed defects was represented as the sum of average
and fluctuating (random) parts. Similarly, the wave field in
the crystal was subdivided into average and fluctuating parts,
which correspond to coherent and diffusely scattered waves,
respectively. Then the wave equation in momentum space
could be solved separately for coherent and diffuse wave
amplitudes.

Particularly, the coherent wave field in such imperfect
crystals can be represented for each polarization state (σ and
π ) in two-beam approximation as a sum of transmitted DT(r)
and diffracted (scattered) DS(r) waves:

D(r) = DT(r) + DS(r), (1)

DT(r) =
∑

δ

Dδ
0e−iKδ

0r, DS(r) =
∑

δ

Dδ
He−iKδ

Hr, (2)

where r is the space coordinate, Kδ
0 and Kδ

H in Eqs. (2)
are wave vectors of strong Bragg waves, and δ = 1, 2. The
amplitudes of transmitted (Dδ

0) and diffracted (Dδ
H) coherent

plane waves are found from the set of basic equations for the
strong Bragg waves [66,67]:

(−2ε0 + χ0 + �χ00)D0 + (CEχ−H + �χ0H)DH = 0,

(CEχH + �χH0)D0 + (−2εH + χ0 + �χHH)DH = 0. (3)

Here ε0 and εH are excitation errors, χ0 and χ±H are
Fourier components of the crystal polarizability, C = 1 or
cos(2θB) for σ and π polarization, respectively, θB is the
Bragg angle, and E = exp(−LH) is the static Krivoglaz-
Debye-Waller factor. Complex dispersion corrections �χGG′

(a)

(c)

(b)

FIG. 1. Schematic diagram of relations between the wave vectors
of incident, transmitted, and diffracted coherent plane waves in the
single-crystal plate (a), arbitrary single layer of a multilayer crystal
system (b), and epitaxial film on the substrate (c).

appear due to diffuse scattering (G and G′ = 0 or H, where H
is the reciprocal lattice vector).

After solving the homogeneous equation set (3) and im-
posing boundary conditions at entrance and exit surfaces of
the crystal plate of thickness d0 [see Fig. 1(a)] we obtain the
amplitudes of coherent plane waves constituting two dynami-
cal wave fields:

Dδ
0 = (−1)δE0

Bδ′

B1 − B2
, Dδ

H = cδDδ
0, (4)

Bδ = cδe−iK�δ d0 , cδ = −−2γ0�δ + χ0 + �χδ
00

CEχ−H + �χδ
0H

, (5)

where E0 is the amplitude of an incident plane wave with the
wave vector K, K = 2π/λ, λ is the x-ray wavelength, and
δ′ �= δ.
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Accommodations �δ = εδ
0/γ0 of the wave vectors of

strong Bragg waves, Kδ
H = Kδ

0 + H and Kδ
0 = K + K�δn,

which belong to the δth sheet of the dispersion surface, are
described by the expression

�δ = 1

2γ0

(
χ0 + �χδ

00

) + λ

2�
[y + (−1)δ

√
y2 − 1], (6)

y = (α − α0)
√

b/σ , � = λ
√

γ0|γH|/σ , (7)

α = −�θ sin 2θB, 2α0 = χ0 + �χδ
HH + (

χ0 + �χδ
00

)
/b,

σ 2 = (
CEχH + �χδ

H0

)(
CEχ−H + �χδ

H0

)
, (8)

where n is the inner normal to the entrance crystal surface, �

is the complex extinction length, �θ is the angular deviation
of the investigated crystal from the exact Bragg position,
b = γ0/|γH| is the parameter of diffraction asymmetry, and γ0

and γH are direction cosines of wave vectors of incident and
scattered (K′) plane waves, respectively.

The amplitude EH of the diffracted coherent plane wave in
vacuum, which is generated by the crystal wave field DS(r)
can be found from the corresponding boundary condition at
the entrance surface:

DS(r) = EH exp(−iK′r)|z=0, (9)

K′ = Kδ
H − Kεδ

Hγ −1
H n, (10)

εδ
H = εδ

0γH/γ0 + α. (11)

Then, the normalized coherent scattering amplitude in the
reflection direction can be written by using Eqs. (2), (4), (9),
and (10) as follows:

r(�θ ) = b−1/2 EH

E0
= ζb1/2 e−iK�1d0 − e−iK�2d0

B1 − B2

,

ζ = (CEχH + �χH0)(CEχ−H + �χ0H)−1. (12)

Similarly, after imposition of the boundary condition at
the exit surface for the transmitted coherent plane wave in
vacuum, which is generated by the crystal wave field DT(r),

DT(r) = Eout
0 exp(−iKr)|z=d0 , (13)

we obtain the normalized coherent scattering amplitude in the
transmission direction:

t (�θ ) = Eout
0

E0
= e−iK (�1+�2 )d0

c1 − c2

B1 − B2

. (14)

The expressions for amplitude reflection (12) and trans-
mission (14) coefficients are valid at arbitrary crystal thick-
ness. These coefficients are related with characteristics of
the crystal defect structure via both static Krivoglaz-Debye-
Waller factor E and complex dispersion corrections to the
wave vectors of strong Bragg waves due to diffuse scattering,
�χδ

GG′ . The latter can be subdivided into real and imaginary
parts �χδ

GG′ = Pδ
GG′ − iμδ

GG′/K [66].

The coefficients of absorption due to diffuse scattering can
be calculated in the case of Bragg diffraction geometry as
follows [66,70]:

μHH(�θ ) ≈ C2V

4λ2

∫
K ′=K

dSK′ S(q)/K2 ≡ μds(�θ ),

μ00(�θ ) ≈ bμHH(�θ ),

μ0H(�θ ) ≈ μH0(�θ ) ≈ μHH(�θ )Reff/(Reff + Re�), (15)

where dSK′ = K2d�K′ is the surface element on the
Ewald sphere, which is perpendicular to the K′ direc-
tion in reciprocal space. The correlation function S(q) ≈
Re〈δχq−H+2Gδχ−q+H−2G′ 〉 is dependent on Fourier compo-
nents of the fluctuation part of crystal polarizability δχG+q,
where angular brackets denote averaging on the statistical
ensemble of defects, and q is a complex momentum trans-
fer. The expressions for absorption coefficient due to dif-
fuse scattering μds(�θ ) and the effective radius of a certain
type of defects Reff will be defined below in Secs. IV B
and IV A, respectively. The real parts of the dispersion
corrections �χδ

GG′ are approximately described by relations
Pδ

GG′ (�θ ) ≈ K−1μδ
GG′ (�θ ) [66].

The expressions for �χδ
GG′ provide the possibility to per-

form correct calculations of angular dependencies of absorp-
tion effects because of diffuse scattering for strong Bragg
waves in crystals with microdefects. The simultaneous pres-
ence of several types of defects in a crystal leads to sum-
mation of their contributions in corresponding formulas like
equations for μds and LH.

B. Dynamical diffuse scattering amplitude

Diffusely scattered waves are generated because of scat-
tering of both strong Bragg (coherent) and diffusely scattered
waves on the fluctuating part of the static displacement field
of crystal atoms, which is caused by chaotically distributed
defects. In crystal, analogously to coherent waves, the dif-
fusely scattered waves form a dynamical wave field too. In
the two-beam approximation of diffraction, the amplitudes of
diffusely scattered plane waves Dq and DH+q satisfy the set of
inhomogeneous equations [66,67]:

(−2εδ
0q + χ0 + �χ ′δ

00

)
Dq + (

CEχ−H + �χ ′δ
0H

)
DH+q

= −(
δχqDδ

0 + Cδχ−H+qDδ
H

)
,(

CEχH + �χ ′δ
H0

)
Dq + (−2εδ

Hq + χ0 + �χ ′δ
HH

)
DH+q

= −(
CδχH+qDδ

0 + δχqDδ
H

)
, (16)

where εδ
0q and εδ

Hq are the excitation errors of the diffusely
scattered waves, δχG+q are the fluctuating Fourier compo-
nents of the crystal polarizability (G = 0, ±H), and �χ ′δ

GG′
are the dispersion corrections accounting for multiple diffuse
scattering processes.

After solving the inhomogeneous equation set (16) and
imposition of boundary conditions at entrance and exit sur-
faces of the crystal plate for Bragg diffraction geometry,
one can find the dynamical diffuse scattering amplitudes
in transmission (G = 0) and diffraction (G = H) directions
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(a) (b)

FIG. 2. Relations between the wave vectors of coherent (Kδ
0 and

Kδ
H) and diffusely scattered plane waves (Kδ

0 + qδτ and Kδ
H + qδτ )

with momentum transfers qδτ on dispersion branches for the asym-
metric Bragg diffraction geometry of the absorbing crystal (Ge 333,
Cu Kα1, asymmetry angle ψ = 5◦). Angular deviations �θ and �θ ′

of the wave vectors of incident (K) and diffusely scattered (K′) plane
waves in vacuum, respectively, from their exact Bragg reflection
directions (shown by dashed lines) lead to the deviation k of the K′

vector from the reciprocal lattice point H . Two of four possible cases
of the angular deviation combinations are shown: (a) �θ > 0 and
�θ ′ > 0, and (b) �θ > 0 and �θ ′ < 0.

(G′ = 0 and H):

fG(K′, K) =
2∑

δ=1

2∑
τ=1

∑
G′

Dδ
G′F δτ

GG′ (qδτ ), qδτ = Kδτ
0q − Kδ

0,

(17)

where F δτ
GG′ (qδτ ) are the partial amplitudes of the scattering

of strong Bragg plane waves with wave vectors Kδ
0 and Kδ

H
into the diffuse ones within the crystal, having wave vectors
Kδτ

0q = Kδ
0 + qδτ and Kδτ

Hq = Kδτ
0q + H, respectively. The vec-

tors qδτ = k + K (�′
τ − �δ )n are the corresponding complex

momentum transfers, �′
τ = εδτ

Hq/γH are the accommodations
of the wave vectors of diffusely scattered waves, and the
vector k = K′ − K − H determines the deviation of the wave
vector K′ of a diffusely scattered wave in vacuum from
the reciprocal lattice point H (see Fig. 2). The hyperbola
branches shown in Fig. 2 picture the result of the intersection
of the dispersion surface sheets for diffusely scattered waves
with the coherent scattering plane (K, H). It should also be
remarked that the vectors qδτ , k, and K′ have the compo-
nents perpendicular to this plane; they not shown in Fig. 2.
Moreover, the only real parts of the qδτ vectors are shown.
Note also that for the sake of clarity we neglect possible dif-
ferences because of different dispersion corrections between
the branches of the dispersion surfaces for diffusely scattered
waves and the same branches of the dispersion surface for
coherent waves. Besides, the double superscript on the wave
vectors of diffusely scattered waves shown in Fig. 2 was
used to point out that both of these vectors are equal, i.e.,
K1τ

0q = K2τ
0q, etc., although obtained in two different ways:

from the different wave vectors of strong Bragg waves and
different momentum transfers, namely, K1τ

0q = K1
0 + q1τ and

K2τ
0q = K2

0 + q2τ , respectively.
The expression (17) can be simplified substantially in the

limiting cases of thin or thick crystals (μ0d0 
 1 or μ0d0 > 1,
respectively, where μ0 = K|χi0| is the photoelectric absorp-
tion coefficient). Thereby, for the diffuse scattering amplitude
in the diffraction direction by supposing δχ−H+q ≈ −δχH+q
we approximately obtain

fH(K′, K) ∼= CV K2

4π
F dyn(�θ )δχH+q. (18)

Here, the dynamical factor F dyn describes the modulation
of diffuse scattering amplitude, which is caused by the inter-
ference of strong Bragg waves:

F dyn(�θ ) =
{

1 − √
ζb{y − sgn[Re(y)]

√
y2 − 1}, μ0d0 � 1

1, μ0d0 
 1
. (19)

The interference absorption coefficient μi in the complex
momentum transfer q = k + iμin describes the extinction
effect for diffusely scattered waves and is given by the rela-
tionship

μi(�θ,�θ ′) = μ0

2γ0

b + 1

2

E

|g| [ri(z) + ri(z
′)], (20)

where the next notation was used:

ri(z) =
√

1

2
(
√

u2 + v2 − u), u = (z2 − g2)E−2 + æ2 − 1,

v = 2(zgE−2 − p),

z = �θ sin(2θB)

C|χrH|
√

b, z′ = �θ ′ sin(2θB)

C|χrH|
√

b,

g = − |χi0|
|χrH|

√
b + 1/

√
b

2C
, æ = |χiH|

|χrH| ,

p = æ cos νH, cos νH = χ ′
rHχ ′

iH + χ ′′
rHχ ′′

iH

|χrH| · |χiH| ,

|χrH| =
√

χ ′2
rH + χ ′′2

rH, |χiH| =
√

χ ′2
iH + χ ′′2

iH,

where χ ′
rH, χ ′

iH and χ ′′
rH, χ ′′

iH are real and imaginary parts
of the Fourier components of the complex crystal polarizabil-
ity χ = χr + iχi, respectively.
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The interference absorption coefficient (20) can be es-
timated as μi ∼ π/� near the exact Bragg directions for
the wave vectors of incident and diffracted plane waves,
and as μi ∼ μ0(b + 1)/(2γ0) beyond these directions. This
coefficient is an analog of the artificial cutoff parameter in
kinematical theory, which removes a nonphysical divergence
at k → 0 in kinematical expressions for diffuse scattering
intensity distributions, but it appears within the dynamical
theory in a natural way.

III. COHERENT COMPONENT OF THE DYNAMICAL
REFLECTIVITY OF AN IMPRFECT

MULTILAYER SYSTEM

A. Dynamical wave field in an arbitrary layer

The relatively simple analytical description of the dynam-
ical x-ray diffraction in real imperfect multilayer systems
with defects and inhomogeneous strain fields can be achieved
due to their subdivision into virtual laminae with randomly
distributed defects and constant average strain in each lamina,
i.e., by using the so-called layer approximation. Then the re-
currence relations between coherent components of amplitude
reflection and transmission coefficients of such multilayer
crystal system can be derived from the dynamical theory of
x-ray diffraction by imperfect single crystals as well as the
expression for the diffuse scattering amplitude [66,67,72].

Indeed, in accordance with Ewald-Bethe-Laue approach
one can consider relations between the wave fields existing
in each layer by imposing corresponding boundary conditions
at the surfaces of adjacent layers. In the single crystal, which
contains randomly distributed Coulomb-type defects (i.e., di-
latation centers like point defects as well as two- and three-
dimensional clusters, new phase particles, etc.), the wave field
can be represented in the two-wave approximation as the sum
of two transmitted and diffracted coherent plane waves and
corresponding diffusely scattered ones. The coherent wave
field in an arbitrary layer of the imperfect multilayer system
can be written in a similar way.

Let the multilayer system consists of substrate ( j = 0)
and M layers ( j = 1 to M), [see Fig. 1(b)], with randomly
distributed defects in each layer. Then, in the case of Bragg
diffraction geometry the coherent wave field in the jth layer,
which is bounded by plane surfaces z = z j and z = z j−1, can
be written for each polarization state (σ and π ) as follows
(δ = 1 and 2):

Dj (r) = DT j (r) + DS j (r), (21)

DT j (r) =
∑

δ

Dδ
0 j exp

(−iKδ
0 jr

)
, (22)

DS j (r) =
∑

δ

Dδ
H j exp

(−iKδ
H jr

)
. (23)

The wave vectors of transmitted (Kδ
0 j) and diffracted (Kδ

H j)
coherent plane waves in Eqs. (22) and (23) can be represented
as follows:

Kδ
0 j = K0, j+1 + Kj+1�

j
δn ≈ K0, j+1 + K�

j
δn,

Kδ
H j = Kδ

0 j + H j, (24)

where K0, j+1 = Kj+1 = K (1 + χ0, j+1)1/2 ≈ K is the modulus
of the wave vector of the plane wave incident on the jth layer
with the reciprocal lattice vector H j . In turn, the wave vector
of the plane wave outgoing from the jth layer back into the
( j + 1)th layer is defined as follows:

KH, j+1 = Kδ
H j − Kj+1ε

δ
H jγ

−1
H n, (25)

εδ
H j = εδ

0 jγH/γ0 + α j, εδ
0 j = γ0�

j
δ . (26)

Accommodations of the wave vectors of strong Bragg
waves in the jth layer, Kδ

0 j and Kδ
H j , are described by the

expression

�
j
δ = 1

2γ0

(
χ0 j + �χδ

00 j

) + λ

2� j

[
y j + (−1)δ

√
y j

2 − 1
]
,

� j = λ(γ0|γH|)1/2/σ j, σ 2
j = (CEjχH j + �χH0 j )

× (CEjχ−H j + �χ0H j ), (27)

where the index j denotes the connection of the corresponding
quantity with the jth layer.

The normalized angular deviation y j in Eq. (27) is defined
by deviations �H of the reciprocal lattice vector of substrate
H ≡ H0 ( j = 0) due to sample rotation and �H j of the recip-
rocal lattice vector H j = H0 + �H j due to the average strain
caused by defects or chemical composition in the jth ( j = 1
to M) layer different from that in substrate, respectively (see
Fig. 3):

y j = (α j − α0 j )
√

b/σ j, (28)

α j = (K j + H j )(�H + �H j )/Kj
2

≈ −(�θ + �θ j ) sin(2θB),

α0 j = 1

2

[
χ0 j + �χHH j + 1

b
(χ0 j + �χ00 j )

]
, (29)

�θ j = (ε j
⊥cos2ψ + ε

j
||sin2ψ ) tan θB + sgn(1 − b)(ε j

⊥ − ε
j
||)

× sin ψ cos ψ, (30)

where �θ ≈ �H/H (with �H⊥H) is the angular deviation
of the substrate from the exact Bragg position due to sample
rotation, �θ j is the angular deviation of the jth layer from the
substrate orientation due to the strain, ε

j
⊥ and ε

j
|| are normal

and parallel strain components in the jth layer, and ψ is the
angle between the crystal surface and reflecting planes. It
should be emphasized that the additional average strain in the
jth layer can be caused not only by differences in chemical
composition of layers but also due to randomly distributed
defects of various types.

B. Recurrence relation for amplitude reflection coefficients

Consider now x-ray diffraction in the system consisting of
a substrate ( j = 0) and only one layer ( j = 1) [see Fig. 1(c)].
Amplitudes of the transmitted and diffracted coherent waves,
which form the coherent wave field in this layer for each
polarization state, i.e., σ and π , can be found from the bound-
ary conditions for all the waves entering into the layer from
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FIG. 3. Schematic plot of the integration path of the diffuse
scattering intensity in a momentum space, where the dash-dotted line
represents the intersection of the coherent scattering plane (K, H)
with the integration plane tangent to the Ewald sphere, and k0 j is the
deviation of the Ewald sphere from the reciprocal lattice point H j . At
|k0 j | � km j the integration area includes both Huang (|k0 j + k′| �
km j) and Stokes-Wilson (|k0 j + k′| � km j) scattering regions.

both its sides, i.e., from the entrance (z1 = 0) and substrate
(z0 = z1 + d1) surfaces:

DT1(r) =
∑

δ

Dδ
01e−iKδ

01r = E0e−iKr|z=z1 ,

DS1(r) =
∑

δ

Dδ
H1e−iKδ

H1r = Dout
H0e−iKH1r|z=z0 , (31)

where Dout
H0 is the amplitude of the diffracted coherent wave

outgoing from the substrate, and the wave vectors of transmit-
ted and diffracted coherent waves in the layer are connected
with the wave vector of the diffracted coherent wave in
vacuum K′ via the relation

Kδ
H1 = K′ + Kεδ

H1γ
−1
H n = K′ + K�1

δn + Kα1γ
−1
H n.

(32)

After substituting Eqs. (22)–(24) into the equation set
(31), supposing KH1 ≈ K′ and accounting for the equality
of tangential components of the wave vectors at the layer
interfaces, we obtain the following equation set:

D1
01 + D2

01 = E0,

c1
1D1

01e−iK�1
1d1 + c2

1D2
01e−iK�1

2d1 = Dout
H0eiKα0γ

−1
H d1 . (33)

The solution of the equation set (33) gives the amplitudes
of the wave field in the layer:

Dδ
01 = (−1)δ

E0B1
δ′ − Dout

H0eiKα0γ
−1
H d1

B1
1 − B1

2

, (34)

B j
δ = cδ

je
−iK�

j
δd j , (35)

where the relations known from the generalized statistical
dynamical theory of x-ray diffraction by imperfect single
crystals were taken into account [66] [cf. Eqs. (4)–(6)]:

Dδ
H j = cδ

jD
δ
0 j, (36)

cδ
j = (ζ jb)1/2

[
y j + (−1)δ

√
y j

2 − 1
]
. (37)

Now one can determine the amplitudes of the transmitted
and diffracted coherent waves outgoing from the layer into the
substrate and vacuum, respectively, by substituting Eq. (34)
into the corresponding boundary conditions:

DT1(r) =
∑

δ

Dδ
01e−iKδ

01r = Dout
01 e−iK00r|z=z0 , (38)

DS1(r) =
∑

δ

Dδ
H1e−iKδ

H1r = EHe−iK′r|z=z1 . (39)

By using the expressions for the wave vectors of diffracted
coherent plane waves (25) and approximate relation KH, j−1 =
Kj−1 = K (1 + χ0, j−1)1/2 ≈ K , Eqs. (38) and (39) can be re-
duced to the following form:

D1
01e−iK�1

1d1 + D2
01e−iK�1

2d1 = Dout
01 , (40)

c1
1D1

01 + c2
1D2

01 = EH. (41)

Substituting Eq. (34) into Eqs. (40) and (41), we obtain the
amplitude of the transmitted coherent plane wave outgoing
from the layer, which is incident on the substrate, and the
amplitude of the coherent plane wave, which is diffracted by
the system of one layer on the substrate, respectively:

Dout
01 = E0t1 + Dout

H0eiKα0γ
−1
H d1

r1

ζ1

√
b
, (42)

EH = E0

√
br1 + t1

e1
Dout

H0eiKα0γ
−1
H d1 . (43)

Here, the quantities r j and t j are the amplitude reflection
and transmission coefficients of the jth layer, respectively:

r j = ζ jb
1/2 e−iK�

j
1d j − e−iK�

j
2d j

B j
1 − B j

2

, (44)

t j = e j

c1
j − c2

j

B j
1 − B j

2

, (45)

e j = exp
[−iK

(
�

j
1 + �

j
2

)
d j

]
. (46)

Both the expressions (42) and (43) involve the amplitude of
the coherent plane wave, which is diffracted by the substrate,
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Dout
H0. This amplitude can be found in two steps. First, as far

as the amplitude of the coherent plane wave incident on the
substrate is known, Din

00 ≡ Dout
10 , one can write, accounting for

the definition of substrate reflectivity in Eq. (12),

Dout
H0eiKα0γ

−1
H d1 =

√
br0Din

00. (47)

Second, substituting Eq. (42) into this expression, we ob-
tain the equation with respect to the unknown amplitude Dout

H0:

Dout
H0eiKα0γ

−1
H d1 =

√
br0

(
E0t1 + Dout

H0eiKα0γ
−1
H d1

r1

ζ1

√
b

)
. (48)

The solution of Eq. (48) has the following form:

Dout
H0 = E0

√
br0

t1
1 − ζ1

−1r1r0
e−iKα0γ

−1
H d1 . (49)

After substituting Eq. (49) into Eq. (43) and by using the
amplitude reflectivity definition in Eq. (12) we obtain the
relationship between the amplitude reflection coefficients of
the imperfect one-layer system R1 and substrate r0:

R1 = r1 + e1
−1t12r0

1 − ζ1
−1r1r0

. (50)

The above-described procedure of matching the wave
fields in the adjacent layers can be continued by adding a
new upper layer and considering the one-layer system as a
new substrate with amplitude reflection coefficient (50) and
so on. Thus, we can obtain the recurrence relation between
coherent amplitude reflection coefficients of two imperfect
multilayer systems consisting of any number of M and M − 1
layers for the case of arbitrary asymmetrical Bragg diffraction
geometry:

Rj = r j + Rj−1
(
e j

−1t j
2 − ζ j

−1r j
2
)

1 − ζ j
−1r jR j−1

, (51)

where j = 1 to M, and R0 ≡ r0.
The dynamical amplitude reflection and transmission co-

efficients of the jth layer in Eq. (51) can be rewritten in the
alternative form after substituting Eqs. (27), (35), and (37) into
Eqs. (44) and (45):

r j = √
ζ j

[
y j + i

√
y j

2 − 1 cot
(
Aj

√
y j

2 − 1
)]−1

, (52)

t j = √
e j

[
cos

(
Aj

√
y j

2 − 1
) − i

y j√
y j

2 − 1

× sin
(
Aj

√
y j

2 − 1
)]−1

. (53)

Here, the notation Aj = πd j/� j was used, and the ampli-
tude absorption and phase factor (46) was rewritten as follows:

e j = exp
[−iK

(
χ0 j + �χδ

00 j

)
d j/γ0 − 2iA jy j

]
. (54)

The structure of formula (51) is similar to that of the
known recurrence relation for perfect multilayer systems with
different strains in the layers [34,36,39]. The main difference
is that the dynamical amplitude reflection and transmission
coefficients in Eq. (51) take into account the influence of
additional strain due to randomly distributed defects in the

imperfect layers and substrate, as well as the absorption
effects due to diffuse scattering.

Thus, the coherent component of reflectivity for the im-
perfect multilayer crystal system, which consists of M layers
with randomly distributed defects, can be represented in the
two-wave approximation for Bragg diffraction geometry as
follows:

Rcoh(�θ ) = |RM (�θ )|2. (55)

Here, the amplitude reflectivity of the upper Mth layer
RM (�θ ) is determined by using the recurrence relation (51)
starting from the amplitude reflection coefficient of the sub-
strate. The latter can be written according to Eq. (52) for the
sufficiently thick substrate (i.e., at μ0

0d0 � 1, where μ0
0 is the

photoelectric absorption coefficient in substrate) as

r0(y0) ≈
√

ζ [y0 − sgn(y0r )
√

y0
2 − 1]. (56)

Here, the quantity y0 denotes the normalized angular devi-
ation of the substrate from its exact Bragg reflection position
[see Eq. (28), j = 0]; quantities y0r = Rey0 and y0i = Imy0

are the real and imaginary parts of y0, respectively.

C. Recurrence relation for amplitude transmission coefficients

The derivation of the recurrence relation between the co-
herent amplitude transmission coefficients of the imperfect
multilayer system can be carried out in the same way as
described above for the reflection coefficients. Namely, the
amplitude transmission coefficient of the one-layer system
T1 can be determined by using the definition of amplitude
transmission coefficient in Eq. (14):

T1 = Eout
0 /E0 = Din

00t0/E0, (57)

where the amplitude of the plane wave incident on the sub-
strate can be determined by substituting Eq. (49) into Eq. (42)
with account for the identity relation Din

00 ≡ Dout
10 :

Din
00 = E0

t1
1 − ζ1

−1r1r0
. (58)

Then, after substituting Eq. (58) into Eq. (57), we obtain
the relationship between the amplitude transmission coeffi-
cients of the imperfect one-layer system and substrate:

T1 = t1t0
1 − ζ1

−1r1r0
. (59)

Further, the recurrence relation between coherent ampli-
tude transmission coefficients of two imperfect multilayer
systems consisting of any number of M and M − 1 layers can
be written as follows:

Tj = t jTj−1

1 − ζ j
−1rj R j−1

, (60)

where j = 1 to M, T0 ≡ t0, and R0 ≡ r0.
It should be noted here that this relation can be useful in

the interpretation of the experimental observations like those
reported in Ref. [73] for epitaxial CdF2/CaF2 superlattices
investigated at Laue and Bragg diffraction geometries. It is im-
portant to emphasize that in such kind of measurements both
reflection and transmission coefficients in Bragg diffraction
geometry contain the information on defect characteristics
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and, consequently, both ones can be used to analyze x-ray
diffraction measurements.

However, it is more important to point out here that the
majority of x-ray diffraction measurements on various mul-
tilayer structures have been performed in Bragg diffraction
geometry (see, e.g., Refs. [1–6,8–16,48–51]), and, that the
availability of the analytical expressions connecting the coher-
ent component of reflection and transmission coefficients with
statistical characteristics of defects in each layer via both static
Krivoglaz-Debye-Waller factor and coefficient of absorption
due to diffuse scattering can be useful for the quantitatively
correct interpretation of such measurements.

IV. DIFFUSE COMPONENT OF REFLECTIVITY
FOR AN IMPERFECT MULTILAYER SYSTEM

A. Differential diffuse scattering intensity

As can be seen from Eq. (17), the coherent waves with am-
plitudes Dδ

G(�θ ) are the sources of diffusely scattered waves.
Therefore, the expression for the diffuse scattering amplitude
from the jth layer in the imperfect multilayer crystal system
also can be written similarly:

fH j (K
′, K ) = F abs

j

∑
δ

∑
G j

Dδ
G j

(�θ )F δ
H j G j

(k), (61)

where G j = 0, H j , F abs
M = 1, and the absorption of transmit-

ted and scattered waves in the layers lying above the jth layer
is described at j = 0 to (M–1) by the factor

F abs
j =

M∑
i= j+1

exp(−μidi ). (62)

The normal absorption coefficient in Eq. (62) includes
both the linear photoelectric absorption coefficient μ

j
0 and the

absorption coefficient due to diffuse scattering in the jth layer:

μ j = 1

2

(
μ

j
0 + μ

j
ds

)( 1

γ0
+ 1

|γH|
)

. (63)

If the correlation between defect distributions in different
layers is absent, then the diffuse component of differential
reflectivity of the multilayer system can be represented as

RDS(k) = 1

γ0S|E0|2
M∑

j=0

〈| fH j |2〉 j
, (64)

where angular brackets denote averaging over a random distri-
bution of defects in the jth layer, and S is the entrance surface
area of the crystal. Substituting Eq. (61) into Eq. (64) and
using the simplified expression (18) for the dynamical diffuse
scattering amplitude, we obtain

RDS(k) ≈ 1

γ0S

(
CK2

4π

)2 M∑
j=0

F abs
j F dyn

j Vj
2〈|δχH j+q|2〉 j

, (65)

where Vj = Sd j , and the factor of the dynamical modulation
of diffuse scattering amplitude in the jth layer, F dyn

j , is
described by Eq. (19) where all the parameters are related to
this layer.

To perform in Eq. (65) averaging over a random distri-
bution of defects of a certain type in the jth layer we use

the method of fluctuation waves of defect concentration [69],
according to which, at small defect concentration c j 
 1
the approximate expression is valid in the Huang scattering
region, i.e., at k 
 km j ,

δχH j+q ≈ iE jχH j (H jU jq)c j q, (66)

where Fourier components of fluctuating defect concentration
and static atom displacement field caused by a single defect
of a certain type in the jth layer are defined as follows:

c j q = 1

Nj

Nj∑
t=1

(ct j − c j ) exp(iqRt j ),

U jq = 1

vc

∫
drU j (r) exp (iqr).

Here, Nj is the number of unit cells in layer j; vc is the
unit cell volume; Rt j is a radius vector of an atom in the unit
cell with number t in layer j, in which the center of the defect
is located; the random number ct j = 1 for the last case, and
ct j = 0 otherwise.

The quantity km j = 1/R j
eff gives the boundary k = km j

between Huang and Stokes-Wilson scattering regions in layer
j [67,70]. In Fig. 3, this boundary is described by the red
circle with larger radius, which is determined by small defects
in the jth layer. The red circle with a smaller radius km

describes the corresponding boundary for large defects in
the substrate ( j = 0). Here, the effective radii of defects are
defined as Reff = E

√
HAC and Reff = ERL

√
H |b| for clusters

and dislocation loops, respectively, where AC = �εR3
C is the

cluster strength, � = (1 + ν)(1 − ν)−1/3, ν is the Poisson
ratio, ε is the strain at the cluster boundary, RC is the cluster
radius, b is the Burgers vector, and RL is the dislocation loop
radius (the index j was dropped for brevity).

After averaging over a random distribution of defects in
Eq. (65), we obtain, approximately

RDS(k) ≈ c j vc
(πCEj |χH j |)2

γ0λ4

M∑
j=0

F abs
j F dyn

j Fj (q)p j (d j ) d j,

(67)

The effective layer thickness, where the diffuse scattering
intensity is formed, is controlled by the factor

p j (d j ) = 1 − exp(−2μi j d j )

2μi jd j
. (68)

In Eq. (67), the following notation was used,

Fj (q) = F H
j (q) ≡ |H jU jq|2, (69)

which is supposed to be valid only in the Huang scattering
region at k � km j .

Equation (69) holds for spherically symmetric clusters. In
the case of dislocation loops with asymmetric displacement
fields Eq. (67) should be averaged over random orientations
of Burgers vectors. Then, after spherical averaging over such
orientations [74], Eq. (69) can be rewritten in the form
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describing the diffuse scattering from both types of defects:

Fj (q) = F H
j (q) ≡ Hj

2

(
B1 + B2

∣∣H0
j q

∣∣2

|q|2
)

1

|q|2 , (70)

where H0
j = H j/Hj is the unit vector. The parameters in

Eq. (70) are defined for spherical clusters as follows:

B1 = 0, B2 = (4πAC/νc). (71)

For dislocation loops, the definitions hold:

B1 = 4
(
π |b|R2

L

/
νc

)2
/15, B2 = βB1,

β = (3ν2 + 6ν − 1)(1 − ν)−2/4, (72)

(the index j at the parameters was dropped here for brevity).
To extend the consideration of momentum transfers k up

to include the Stokes-Wilson scattering region, i.e., the region
of asymptotic diffuse scattering at k � km j , the expression in
Eq. (70) should be replaced by the following one [67,70]:

Fj (q) = F SW
j (q) ≡ F H

j (q)k2
m j

/|q|2. (73)

In such a way the correct description of the asymptotic
behavior of the differential diffuse scattering intensity in both
Huang (∼1/k2) and Stokes-Wilson (∼1/k4) scattering regions
is achieved; in addition the continuous matching of this inten-
sity at the boundary between these regions is provided.

The approach for the calculation of diffuse scattering inten-
sity from defects, which was described above, can be used to
analytically estimate the thermal diffuse scattering intensity
distribution. Such simplified model can be used, when the
consideration is restricted to the sufficiently close vicinity of
the reciprocal lattice point considered, where the condition
h̄ωq/kBT 
 1 holds [70].

At such condition, the only acoustic branch of phonon dis-
persion relations can be considered and the phonon frequency
can be calculated as ωq = vSq, where vS is a phonon velocity
[75]. The expression for the thermal diffuse scattering inten-
sity can be reduced then to an analytical form, which is similar
to that for spherical clusters and has the only distinction that
the constants in Eq. (70) are put equal to B1 = kBT /(mv2

S) and
B2 = 0, where m is an atom mass [70].

Here, this approach was slightly modified for the appli-
cation to crystal structures with the complicated basis con-
sisting of different atoms. Namely, when, for example, the
GaAs structure is considered, for the “effective clusters” of
two types—which replace all the actual atoms in the Ga
and As sublattices, respectively—the radii RC were chosen
of the order of atomic size. The quantitative criterion for
determining the values of these radii was chosen such that cal-
culated static Krivoglaz-Debye-Waller factors E = exp(−LH)
for each atom sort were equal to the corresponding thermal
Debye-Waller factors E = exp(−MH). The latter ones were
calculated by using the known Debye-Waller B coefficients (B
factor), which have been found for Ga and As atoms in GaAs
crystals at room temperature [76], by using relationships for
crystals with a cubic lattice:

MH = β(h2 + k2 + l2), β = B

4a2
,

where h, k, l are Miller indices and a is the lattice parameter.

Herewith, the value of “strain” ε at such “cluster” boundary
was put equal to 〈u2〉1/2/RC , where 〈u2〉1/2 is the root-mean-
square displacement of vibrating atoms. The last was found
from the same B coefficients by using the known relation-
ship in the isotropic approximation for cubic crystals B =
8π2〈u2〉/3 (see, e.g., Ref. [77]). At the same time, the expo-
nent of static Krivoglaz-Debye-Waller factor E = exp(−LH)
should be put to zero in the case, when the thermal diffuse
scattering intensity distributions are calculated by using the
final expressions in Secs. III B and IV B, for the purpose of
avoiding the double use of the thermal Debye-Waller factor,
which already is included in the structure factor and corre-
sponding Fourier component of the crystal polarizability.

B. Diffuse scattering intensity integrated over Ewald sphere

When the rocking curve of the imperfect multilayer system
is measured by the high-resolution double-crystal diffrac-
tometer with widely open detector window, the diffracted x-
ray intensity is integrated over exit angles, i.e., over the Ewald
sphere near the considered reciprocal lattice point H . The
corresponding “integral” diffuse component of the measured
reflection coefficient can be determined as follows:

Rdiff (�θ ) =
∫

K ′=K
RDS(k)d�K′ (74)

where d�K′ is a solid angle in the K′ direction.
To perform the integration in Eq. (74), where the integrand

is given by Eq. (67), one should replace the Ewald sphere near
the considered reciprocal lattice point H by a plane tangent
to the Ewald sphere at the endpoint of the wave vector K′ (in
the case k 
 K ′). Then an element of surface area in Eq. (74)
dSK′ = K2d�K′ can be replaced by a plane two-dimensional
area element dk′ of the reciprocal space. Further, the mo-
mentum transfer k can be decomposed into the components
parallel (k0) and perpendicular (k′) to the wave vector K′
(see Fig. 3). Then for any jth layer the relation k = k0 j + k′
holds, and the integration over k′ can be performed in the
polar coordinate system chosen in the plane tangent to the
Ewald sphere. Thus, we obtain the diffuse component of the
rocking curve measured by the high-resolution double-crystal
diffractometer with widely open detector window:

Rdiff (�θ ) =
M∑

j=0

F ext
j F abs

j R j
diff (�θ ). (75)

As can be seen, the integral diffuse component of the
reflectivity of the imperfect multilayer system in Eq. (75)
appears to be the sum of corresponding integral diffuse com-
ponents of all the layers with weight coefficients accounting
for absorption and extinction. It should be emphasized that, in
turn, the integral diffuse component of the reflectivity of the
jth layer is proportional to the absorption coefficient due to
diffuse scattering from defects in this layer:

R j
diff (�θ ) = μ

j
ds(k0 j )p′

j (d j )d j/γ0. (76)

If the substrate is thick (μ0d0 � 1) and layers are thin
(μ jd j 
 1, j = 1 to M), the diffuse reflectivities in Eq. (76)

235304-10



GENERALIZED STATISTICAL DYNAMICAL THEORY OF … PHYSICAL REVIEW B 99, 235304 (2019)

can be represented as follows:

R0
diff = μ0

ds(�θ )

(1 + b)μ0
0

, R j
diff = μ

j
ds(�θ )d j

γ0
. (77)

In Eqs. (76) and (77), the absorption coefficient due to
diffuse scattering from defects in the jth layer is described
by the following expression:

μ
j
ds(k0 j ) = c jC

2Ej
2m0 jJ

j (k0 j ),

m0 j = πvc

4
(Hj |χrH j |/λ)2, (78)

J j (k0 j ) = 1

πHj
2

∫
dk′Fj (q), (79)

p′
j (d j ) = 1 − exp(−2μ jd j )

2μ jd j
. (80)

As a rule, the angular width of diffuse scattering in-
tensity distribution ∼km/K is significantly larger as com-
pared with the width of the total reflection range, W =
2|χrH|[√b sin(2θB)]−1, where the influence of dynamical ef-
fects in diffuse scattering is substantial. Therefore, when
integrating in Eq. (79), the dependence of the interference
absorption coefficient μi on exit angles �θ ′ can be neglected
because its influence is smoothed due to integration, and the
quantity μi in Eq. (67) can be replaced by its limiting value in
the jth layer at |�θ ′| � W :

μ j (�θ ) = μ0 j

2γ0

b + 1

2

[
Ej

ri(�θ )

|g j | + 1

]
. (81)

Then the equalities q = k0 j + k′ + iμ jn and |q|2 = k2
0 j +

k′2 + μ2
j hold, with the shortest distance from the recipro-

cal lattice point H j to the Ewald sphere given by k0 j =
K (�θ + �θ j ) sin(2θB), and the integration in Eq. (79) can
easily be performed:

J j (k0 j ) =
{

J j
H(k0 j ) + J j

H−SW(k0 j ), at |k0 j | � km j

J j
SW(k0 j ), at |k0 j | � km j

,

(82)

where the angular dependencies of the integral diffuse scat-
tering intensity in one-dimensional Huang and Stokes-Wilson
scattering regions (|k0 j | � km j and |k0 j | � km j , respectively)
are described as follows:

J j
H(k0 j ) = b2 ln

k2
m j + μ2

j

k2
0 j + μ2

j

+ (
b3k2

0 j + b4μ
2
j

)

×
(

1

k2
m j + μ2

j

− 1

k2
0 j + μ2

j

)
, (83)

J j
H−SW (k0 j ) = b2 − 1

2

b3k2
0 j + b4μ j

2

k2
m j + μ j

2
, (84)

J j
SW (k0 j ) = k2

m j + μ j
2

k2
0 j + μ j

2

(
b2 − 1

2

b3k2
0 j + b4μ j

2

k2
0 j + μ j

2

)
. (85)

The coefficients bi as well as the parameters km j and μ j

in Eqs. (83)–(85) are connected with defect characteristics via

the following relationships:

b2 = B1 + 1
2 B2cos2θB, b3 = B2

(
1
2 cos2θB − sin2θB

)
,

b4 = B2
(

1
2 cos2θB − cos2ψ

)
, (86)

where coefficients B1 and B2 for two types of defects are given
in Eqs. (71) and (72).

It should be remarked that the absorption coefficients due
to diffuse scattering in Eq. (77) above are the sums of cor-
responding coefficients in the case of several defect types
randomly distributed in each layer. A similar superposition
law is supposed to be valid for the exponent of the static
Krivoglaz-Debye-Waller factor as well. The last one is also
immediately connected with defect characteristics by the
following relationships for dislocation loops and spherical
clusters, respectively [69,78]:

LH
∼= 1

2 nLR3
L(Hb)3/2, (87)

LH
∼=

{
0.525 nCvCn0η

4, at η � 1.9

nCvCn0η
3, at η > 1.9

,

η =
√

�|ε|HRC, n0 = 4πRC
3/(3vc), (88)

where nL = cL/vc and nC = cC/vc are number densities of
dislocation loops and spherical clusters (cL and cC are their
concentrations); RL and RC are their radii, respectively.

The above-obtained formulas establish analytical relations
between coherent and integral diffuse components of the
reflection coefficients measured by high-resolution double-
crystal diffractometers from imperfect multilayer structures in
Bragg diffraction geometry, on the one hand, and statistical
characteristics of defects in each layer, on the other hand. Of
course, for full consistency these relations should be com-
pleted by known expressions for the additional average strain
caused by randomly distributed defects of various types. In
particular, the additional linear strain caused by circular pris-
matic dislocation loops and spherical clusters, respectively, is
described by simple expressions [69]:

εL = π

3
|b|R2

LnL, εC = �εR3
CnC, ε ≈ 1

3

�vc

vc
. (89)

Thus, the closed set of the analytical relationships is com-
pleted, which can provide the dynamical description of mu-
tually consistent coherent and diffuse components of rocking
curves measured by the high-resolution double-crystal x-ray
diffractometer from imperfect multilayer systems. In conse-
quence, it becomes possible to determine reliably both struc-
tural parameters of multilayers and characteristics of their
defects by using the obtained formulas for the quantitative
analysis of the rocking curves.

C. Diffuse scattering intensity integrated over
vertical divergence

When the differential two-dimensional x-ray diffraction
intensity distributions, i.e., reciprocal space maps, are mea-
sured by the triple-crystal diffractometer, the diffracted x-
ray intensity is integrated only over vertical divergence. The
corresponding diffuse component of the measured reflection

235304-11



S. I. OLIKHOVSKII et al. PHYSICAL REVIEW B 99, 235304 (2019)

coefficient of the imperfect multilayer system can be deter-
mined then as follows:

rdiff (κ) =
∫

dϕRDS(k), (90)

where k = κ + kyey; the vector κ = kxex + kzez lies in the
coherent scattering plane (K, H); the unit vectors ey and
ez ≡ n are directed perpendicularly to this plane and crystal
surface, respectively; the unit vectors ex and ey lie in the
crystal surface; and ky = Kϕ.

After substituting Eq. (67) into Eq. (90) and carrying
out the integration, we obtain the diffuse component of the
differential x-ray diffraction intensity distribution from an
imperfect multilayer system in the scattering plane, i.e., the
diffuse component of the measured reciprocal space map:

rdiff (κ) =
M∑

j=0

F ext
j F abs

j r j
diff (κ j ), (91)

where the diffuse reflection coefficient of the jth layer in the
two-dimensional Huang scattering region (κ j � km j) is given
by the expression

r j
diff (κ j ) = Mj[AH(κ j ) + AH,S−W(κ j )],

Mj = c jm0 jC
2E2

j p(d j )
Kdj

πγ0
(92)

In Eqs. (91) and (92), the vector κ j = κ + �H j describes
the deviation of the wave vector K′

j of a diffusely scattered
wave from the reciprocal lattice point H j in the jth layer,
where �H j = H j − H0 is the deviation from the reciprocal
lattice vector H0 of the substrate, H0

0κ=kx sin ψ + kz cos ψ ,
and H0

j = H j/H j is a unit vector; km j and above mentioned
vectors are presented in Fig. 3.

The terms AH(κ j ) and AH,S−W(κ j ) in Eq. (92) describe
contributions from diffuse scattering intensity in Huang and
Stokes-Wilson scattering regions after the integration over
vertical divergence, respectively:

AH(κ j ) = 2B1 j + B2 ja(κ j )√
κ2

j + μ2
i j

arctan

√
k2

m j − κ2
j√

κ2
j + μ2

i j

+ B2 ja(κ j )

√
k2

m j − κ j
2

κ j
2 + μij

2
,

AH,S−W(κ j ) = B1 j + 3
4 B2 ja(κ j )√

κ2
j + μ2

i j

⎡
⎣

⎛
⎝π

2
− arctan

√
k2

m j − κ2
j√

κ2
j + μ2

i j

⎞
⎠k2

m j + μ2
i j

κ2
j + μ2

i j

−
√

k2
m j − κ2

j√
κ2

j + μ2
i j

⎤
⎦ − 1

2
B2 ja(κ j )

√
k2

m j − κ2
j

κ2
j + μ2

i j

,

a(κ j ) =
(
H0

jκ j
)2 + μ2

i j

(
H0

j n
)2

κm
2 + μ2

i j

, (93)

Similarly, for the diffuse reflection coefficient of the jth
layer in the two-dimensional Stokes-Wilson scattering region
(κ j � km j) one can obtain

r j
diff (κ j ) = MjAS−W(κ j ), (94)

AS−W(κ j ) = π

2

[
B1 j + 3

4
B2 ja(κ j )

]
k2

m j + μ2
i j(

κ2
j + μ2

i j

)3/2 . (95)

Note that components kx and kz of the vector κ are con-
nected with angular deviations of the investigated (ω) and
analyzer (η) crystals from their exact reflecting positions by
simple linear relationships. In the case of an asymmetric
Bragg diffraction geometry, these relationships have the fol-
lowing form:

kx = −K[η sin(θB + ψ ) − 2ω sin θB cos ψ],

kz = −K[η cos(θB + ψ ) + 2ω sin θB sin ψ].

Thus, the analytical formulas obtained above in this sub-
section establish direct explicit relationships between the dif-
fuse components of reciprocal space maps measured by the
high-resolution triple-crystal diffractometer from imperfect
multilayer structures in Bragg diffraction geometry, on the
one hand, and strain, chemical composition, and statistical
characteristics of defects in each layer, on the other hand.
In combination with the derived analytical formulas for the

coherent amplitude reflection coefficient they form the base
for the dynamical description of mutually consistent coherent
and diffuse scattering and quantitative analysis of measured
reciprocal space maps for the sake of the reliable structural
characterization of investigated imperfect multilayer systems.

V. DISCUSSION

A. Simulation of the rocking curve for InGaAs/GaAs
superlattice with defects

The formulas obtained above in Secs. III B and IV B
were used to simulate the rocking curve for the imperfect
superlattice with defects, which consists of five periods of
two layers, including 8 monolayers (ML) of InxGa1−xAs with
In concentration x = 0.4 (Fig. 4) or x = 0.2 (Fig. 5), and
60 ML of GaAs, respectively, and was grown on a GaAs
substrate. The simulated rocking curves have been calculated
for the symmetrical (004) reflection of characteristic Cu Kα1

radiation accounting for the convolution with an instrumen-
tal function of a typical high-resolution x-ray double-crystal
diffractometer (DCD) [70].

Several types of structure imperfections have been chosen
to demonstrate their influence on the high-resolution rocking
curves measured from the imperfect superlattice. First of
all, thermal atom vibrations are inevitably present at room
temperature [Fig. 4(a)]. In addition, Fig. 4(b) shows the
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FIG. 4. Simulated rocking curves (R) and their coherent (Rcoh) and diffuse (Rdiff ) components for the (004) reflection of Cu Kα1 radiation
from the imperfect InGaAs/GaAs superlattice containing structural defects of various types: thermal atom vibrations (a) and dislocation loops
in GaAs substrate (b).

influence of dislocation loops randomly distributed in the
GaAs substrate. Further, the changes in the rocking curve due
to diffuse scattering from the disk-shaped inclusions of InAs
particles (disk thickness tP = 1 nm), which can be present in
the In0.4Ga0.6As layers of imperfect superlattice, were ana-
lyzed (Fig. 5). Characteristics of defects, including radius R,
number density n, and strain at the cluster boundary ε, as well
as corresponding diffraction parameters, namely, the exponent
LH of static Krivoglaz-Debye-Waller factor E = exp(−LH),
and maximal value of normalized absorption coefficient due
to diffuse scattering in the jth layer under consideration,
mj = μds(�θ j )/μ0, are given in Table I.

As can be seen in Fig. 4(a), where the calculated rocking
curve (R) as well as its coherent (Rcoh) and diffuse (Rdiff ) com-
ponents are shown for the perfect In0.4Ga0.6As superlattice on
the perfect GaAs substrate, the contribution of thermal diffuse
scattering intensity is distributed almost uniformly over a full
angular range. Its magnitude is relatively small and becomes
distinguishable, as compared with the coherent component,
only on the far tails of the rocking curve.

FIG. 5. Simulated rocking curve (R) and its coherent (Rcoh) and
diffuse (Rdiff ) components for the imperfect In0.2Ga0.8As superlattice
containing disk-shaped InAs particles (see Table I); symmetric GaAs
(004) reflection, and Cu Kα1 radiation. The peak of the diffuse
component of multilayers is located at the Bragg angle, which
corresponds to the structure of In0.2Ga0.8As layers, and disposed
between two satellites on the coherent component; mainly the right
decreasing tail of the diffuse scattering intensity distribution can be
seen in the considered angular range.

It should be noted that this picture would not be substan-
tially changed when the optical branch of phonon dispersion
relations is included into the consideration, since the contri-
bution of optical phonons to the thermal Debye-Waller factor
does not exceed several percent [77].

It is worthwhile to note also that the contribution to the
total rocking curve due to the diffuse scattering from point
defects, both in the substrate and superlattice layers, should
be expected, in general, even smaller as compared with the
contribution of thermal diffuse scattering intensity at room
temperature.

Vice versa, the contribution of the diffuse scattering inten-
sity from dislocation loops of submicrometer sizes in GaAs
substrate is concentrated mainly under the substrate peak.
Namely, its magnitude, as it was calculated for the circular
prismatic dislocation loops randomly distributed in the GaAs
substrate, with Burgers vector b = 1/2〈110〉, is substantial at
both substrate peak and nearest superlattice satellites and is
remarkable even at far satellites [see Fig. 4(b)].

However, the most remarkable changes in the rocking
curve shape features are caused by the inclusions of InAs
particles in the layers of In0.2Ga0.8As solid solution (Fig. 5).
When choosing the characteristics of the disk-shaped InAs
inclusions in the simulation, we took into account the ne-
cessity to fulfill the requirements of the present dynamical
diffraction theory [66]. Namely, to satisfy the possibility of
representing the crystal polarizability as the sum of average
and fluctuating parts, the exponent of the static Krivoglaz-
Debye-Waller factor must be sufficiently small; i.e.,

LH 
 1. (96)

In addition, to satisfy the superposition principle for the
static displacement fields from the bounded defects, the aver-
age distance between defects r0 must be significantly larger
than the defect radius R0; i.e.,

r0 = (c/vc)−1/3 � R0. (97)

In the present simulation, these parameters were cho-
sen equal to LH ≈ 0.108, r0 = 5nm, and R0 = 79 nm,
respectively.

It should be noted here that the restrictions (96) and (97)
are well satisfied for the case of dislocation loops in the GaAs
substrate considered above as well; see Table I. However, the
inequality (97) evidently does not hold in the case of the
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TABLE I. Characteristics of defects in the imperfect In0.4Ga0.6As (No. 1 and 2) and In0.2Ga0.8As (No. 3) superlattice structures: radius
(R), number density (n), and strain at the cluster boundary (ε), as well as corresponding diffraction parameters: exponent of static Krivoglaz-
Debye-Waller factor (LH) and normalized coefficient of absorption due to diffuse scattering [mj = μ

j
ds(0)/μ0].

No. Type of defects R (nm) n (cm−3) ε LH mj

1 Thermal Ga atom vibrations 0.143 2.2 × 1022 0.064 0.028 2.0 × 10−5

Thermal As atom vibrations 0.145 2.2 × 1022 0.059 0.024 1.8 × 10−5

2 Dislocation loops in GaAs substrate 300 5 × 1010 0.051 2.0
3 InAs particles in In0.2Ga0.8As layers 5 2 × 1015 0.056 0.108 0.082

cluster model for the thermal diffuse scattering described in
Sec. IV A. Just for this reason, to obtain reliable analytical
estimations of the corresponding intensity distribution, the
radii of effective clusters in this model were varied to provide
the equality between the calculated static Krivoglaz-Debye-
Waller factor and the known thermal Debye-Waller factor.

It should be emphasized that in the simulation procedure
we took into account the mass conservation law for indium
atoms; i.e., the InAs inclusions were supposed to be formed
at the cost of indium atoms in the In0.2Ga0.8As layers. Thus,
the thickness of imperfect In0.2Ga0.8As layers with InAs in-
clusions remains unchanged as compared with perfect ones.
At the same time, the loss of indium atoms from In0.2Ga0.8As
matrix at the chosen parameters of InAs precipitates was so
small that the change of the Bragg angle for these layers was
only about 0.2 arc sec. As a consequence, the fine oscillation
structure of the coherent component of the simulated rocking
curve, which is only slightly distorted due to the small value
of exponent of the static Krivoglaz-Debye-Waller factor, does
not change remarkably as compared with the rocking curve of
the perfect superlattice.

In turn, the immediate contribution of diffuse component to
the total rocking curve of the imperfect In0.2Ga0.8As superlat-
tice remarkably affects the shape of the rocking curve as can
be seen in Fig. 5. The maximum of diffuse scattering intensity
from In0.2Ga0.8As layers is located between two satellites at
the Bragg angle corresponding to the In0.2Ga0.8As layers,
i.e., nearly at the angular deviation from the substrate peak
�θ ≈ −3700 arc sec. Therefore, we see mainly the right tail
of the symmetric diffuse scattering intensity distribution in the
angular range considered, which can be visually perceived as
the asymmetric one.

It should be noted finally that the influence of the coeffi-
cient of absorption due to diffuse scattering on the attenuation
of the coherent waves is negligibly small for the thermal
diffuse scattering and relatively small for diffuse scattering
from InAs inclusions in the InGaAs layers (see Table I).
Only for dislocation loops in the GaAs substrate, the coef-
ficient of absorption due to diffuse scattering in the close
vicinity of substrate peak takes a value comparable with the
coefficient of photoelectric absorption (cf. parameters mj in
Table I).

B. Simulation of the reciprocal space map
for ion-implanted garnet film

The formulas obtained above in Secs. III B and IV C were
used also to simulate the reciprocal space map for the epitaxial

single-crystal yttrium iron garnet (YIG) film grown on a
gadolinium gallium garnet (GGG) substrate and implanted
with F+ ions. The corresponding strain profile created in YIG
film due to implantation with 90-keV F+ ions at dose D =
6 × 1013 cm−2 is shown in Fig. 6 (for details see Ref. [79]).

The strain profile in the implanted subsurface layer of
ion-implanted YIG film was supposed to be formed due to
strain fields from secondary radiation defects like small spher-
ical amorphous clusters. This fluctuating strain field from
randomly distributed clusters can be represented as the sum
of smooth “in average” and random components, which are
homogeneous in the plane parallel to the film surface and
inhomogeneous along the surface normal.

The depth profile of the average component of normal
strain can be calculated through the depth-dependent average
concentration of clusters nC(z):

ε⊥(z) = 3�εnC(z)R3
C,

where ε is the strain at the cluster boundary and RC is the
cluster radius. When calculations of the diffraction intensity
were performed, the implanted layer was subdivided into
virtual laminae with randomly distributed defects and constant
average strain in each lamina (Fig. 6).

The depth profile of the so-called amorphization factor
is described by the static Krivoglaz-Debye-Waller factor.
Namely, the exponent of this factor is calculated according
to Eq. (88) through characteristics of clusters in the implanted
layer, and its dependence on depth is described by the distri-
bution of cluster concentration.

In addition, the depth dependence of the attenuation of
the coherent component of diffraction intensity from the
implanted layer is described along similar lines. Namely, the

FIG. 6. Strain profile in the YIG film implanted with 90-keV F+

ions at the dose D = 6 × 1013 cm−2.
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FIG. 7. Calculated reciprocal space map (in center), its coherent
component (left), and longitudinal cross section (right) for 444
reflection of Cu Kα1 radiation from YIG/GGG film system implanted
with 90-keV F+ ions at the dose D = 6 × 1013 cm−2. Coherent peaks
created from YIG film, GGG substrate, and ion-implanted layer
are denoted by letters F , S, and L, respectively. Contours of equal
intensity around these peaks are formed due to diffuse scattering
from growth defects in the substrate and film, as well as owing to
secondary radiation defects in the ion-implanted layer.

coefficient of absorption due to diffuse scattering is calculated
through characteristics of clusters in the implanted layer by
using Eqs. (78)–(86), where c = nC(z)/vc should be put.

This diffraction model provides the physically clear con-
nections between defect characteristics and diffraction pa-
rameters sensitive to crystal structure imperfections. The
self-consistency between coherent and diffuse components
of diffraction intensity is provided by such a model
too.

As can be seen in Fig. 7, the diffuse scattering intensity
distribution on the map is the superposition of three distribu-
tions. The first two are the regularly shaped diffuse scattering
intensity distributions from microdefects, namely, randomly
distributed clusters and dislocation loops of submicrometer
sizes, in YIG film (of 5.33 µm thickness) and GGG substrate
around corresponding reciprocal lattice points, respectively.
The third is the irregularly shaped additional diffuse scattering
intensity distribution caused by spherical amorphous clusters
in the implanted YIG film layer (see defect characteristics in
Table II).

It should be noted that the irregular shape of the diffuse
scattering intensity distribution from spherical clusters in
the implanted layer is formed due to their inhomogeneous
concentration distribution in this layer. This inhomogeneity
causes corresponding one-dimensional inhomogeneous in-

TABLE II. Characteristics of dislocation loops and spherical
clusters in GGG substrate and YIG film implanted with 90-keV F+

ions.

Layers RC (nm) nC (cm−3) RL (nm) nL (cm−3)

GGG substrate 8 1.0 × 1014 90 1.2 × 1012

YIG film 10 1.0 × 1014 5 1.0 × 1015

Implanted layer 1.7 6.0 × 1019

average strain field (see Fig. 6) and leads to smoothing and
deformation of the double-drop form known for equidistant
lines of the diffuse scattering intensity distributions from
spherical clusters.

Similar, to some extent, nonuniform distributions of the
diffuse scattering intensity were observed on some experi-
mental reciprocal space maps. For example, one can point
out the maps measured from GGG crystals implanted with
100-keV He+ ions [80] or yttria-stabilized zirconia (YSZ)
crystals irradiated with 4-MeV Au2+ ions [81]. The diffuse
scattering intensity distributions observed in these investi-
gations were significantly elongated as compared with that
simulated above, which should be expected due to the smaller
strain gradient at the significantly larger implantation depth.

VI. SUMMARY AND CONCLUSIONS

The generalized statistical dynamical theory of x-ray
diffraction by the imperfect single crystals containing ran-
domly distributed defects has been extended to character-
ize structural imperfections in real multilayers of arbitrary
thickness as well as single crystals or crystalline films with
inhomogeneous strain fields. The theoretical model developed
for the case of Bragg diffraction geometry takes into account
the presence of randomly distributed point defects and mi-
crodefects of various types as well as the existence of arbitrary
inhomogeneous strain fields, in particular, with sharp profiles,
i.e., with large strain gradients.

The proposed analytical derivation of the recurrence rela-
tions for coherent amplitude reflection and transmission coef-
ficients of such multilayer systems, which consist of any num-
ber of real or virtual layers with nearly constant strains and
randomly distributed defects, is based on the Ewald-Bethe-
Laue consideration of the dynamical wave field in crystal
structures with rigorous accounting for boundary conditions at
layer interfaces. These relations and the analytical expressions
obtained for diffuse components of reflection coefficients
are immediately connected with statistical characteristics of
defects in each layer due to using the Krivoglaz method of
fluctuating waves of defect concentration.

Thus, the possibility is provided for the physically sound
self-consistent dynamical description of coherent and dif-
fuse components of the rocking curves and reciprocal space
maps, which are measured by the high-resolution double-
and triple-crystal diffractometers from imperfect multilayer
crystal structures, respectively. As a consequence, the way
is opened to significantly increasing the physical value of
quantitative characterization results, which are obtained for
structural imperfections in imperfect multilayers and single-
crystalline structures with inhomogeneous strain fields by
using the most informative and sensitive x-ray diffraction
techniques.
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