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Spin relaxation time of donor-bound electrons in a CdTe quantum well
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Low-temperature spin relaxation time of electrons localized on iodine donors placed in the middle of a 8-nm
CdTe quantum well is studied by using the photoinduced Faraday rotation technique, for donor concentrations
in the range from 1 × 109 cm−2 to 3.6 × 1011 cm−2. A maximum relaxation time of the order of 20 ns is found
at a doping concentration near the metal-insulator transition. Adapting the theoretical description developed
for bulk GaAs [R. I. Dzhioev et al., Phys. Rev. B 66, 245204 (2002)] to a quantum well, we have fitted
the experimental results taking as a parameter the spin-orbit constant in CdTe. A satisfactory fit is obtained
with αso = 0.079 ± 0.011, which is also very close to the calculated theoretical value. A comparison of the
experimental spin relaxation times measured previously in bulk CdTe to those predicted by the theory is done.
Finally, we compare the predicted spin relaxation times in bulk CdTe to those predicted in one of the most studied
bulk semiconductor materials: GaAs, and in (less studied) ZnSe.
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I. INTRODUCTION

Dopants in semiconductor devices control their electric,
optical or magnetic properties. The inevitable device down-
scaling brings dopant impurities in the foreground, not only
for classical electronics, but also for quantum information
and communication [1,2]. Indeed, the shallow paramagnetic
impurities are promising candidates for basic units of the
quantum computers, i.e., for qubits, due to their easy scal-
ability and homogeneity. In recent years, a large number of
studies has been centered on impurities in silicon showing
long spin lifetimes [3,4], but due to an indirect band gap,
these impurities cannot be optically addressed. In contrast, the
direct-band-gap semiconductors exhibit efficient optical tran-
sitions. Impurities in GaAs have been largely studied in the
past. In 1977 Weisbuch reported experimental studies on spin
relaxation of electrons localized on donors or acceptors [5].
They showed up spin relaxation times up to 30 ns in lightly
doped n-type crystals of GaAs. Subsequent measurements
made by Kikkawa and Awschalom [6] reported times around
130 ns at nd = 1016 cm−3. All these results motivated inten-
sive research on the influence of doping on spin relaxation
times. In bulk GaAs, a complete study of the doping concen-
tration influence on the relaxation time of localized electrons
was performed by Dzhioev et al. [7] and recently revisited
by Belykh et al. [8]. In Ref. [7], the spin relaxation times
were measured using the Hanle effect with nd spanning the
range from 1014 to 1017 cm−3, whereas in Ref. [8] pump-
probe experiments were used for a similar study. Recently, the
spin-noise spectroscopy performed in bulk n-GaAs samples
at low temperatures and with concentrations in the insulating
regime, resulted in smaller spin relaxation times than those
obtained by Hanle measurements [9]. A detailed comparison
of the Hanle experiment and spin-noise spectroscopies has
been performed by Crooker et al. [10].

The influence of the doping concentration on the spin
relaxation time has been studied at low temperature in other

bulk materials such as ZnO [11], InSb [12], InAs [13], GaN
[14,15], and ZnSe [16], for different doping values in the
insulating regime and beyond the metal-insulator transition.
Recently, a study in the insulating regime was performed in
bulk CdTe by Sprinzl et al. [17], reporting a nonmonotonous
behavior exhibiting a maximum value of the spin relaxation
time of 2.5 ns at nd = 4.9 × 1016 cm−3 and a minimum value
of 40 ps at nd = 1.5 × 1013 cm−3.

From the theoretical point of view, the influence of doping
on the spin relaxation time at low temperature has been
explained as the interplay of different relaxation mechanisms:
in the insulating regime and at high doping concentration, the
anisotropic exchange interaction mechanism dominates, while
at low doping density, the hyperfine nuclear interaction is the
most important mechanism [7,18,19]. In the metallic regime,
the spin relaxation is dominated by the D’yakonov-Perel
mechanism: the spin lifetime reaches a second maximum near
the metal-insulator transition, and at higher doping concentra-
tions, the spin relaxation time decreases with concentration.

In order to avoid other relaxation mechanisms appear-
ing in wurtzite materials, such as GaN or ZnO [20], and
make comparisons to one of the most studied systems, bulk
GaAs, we have centered our study on CdTe. This compound
crystalizes in the same crystal structure as GaAs, however
the spin-orbit interaction is higher than in GaAs, and other
parameters that determine the spin relaxation time are very
different from those of GaAs (effective mass, electron Landé
factor, Bohr radius, etc.). In this article, we present a study
of the spin relaxation time dependence on the concentration
of electrons localized on donors located in the middle of
a 8-nm CdTe quantum well (QW). In this kind of nanos-
tructure, the localization of the electron wave function is
significantly enhanced with respect to three-dimensional (3D)
systems [21–24]. Moreover, QWs are also known to purify the
optical selection rules for circularly polarized light, and then
allow one to obtain a higher optical orientation degree of the
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electron spins than in 3D materials. We found a relaxation
time approximately 10 times larger than the maximum relax-
ation time reported in bulk CdTe in Ref. [17]. By adapting the
bulk theoretical description of two main mechanisms playing
a dominant role in the spin relaxation times of electrons bound
to donors in the insulating regime at low temperature, in
the case of a QW, we estimated from experimental data the
value for the dimensionless spin-orbit constant in CdTe: αso =
0.079 ± 0.011. We calculated the electronic spin relaxation
time in bulk CdTe to compare it with available experimental
results [17], which are at least one order of magnitude smaller
than the spin relaxation time found in our QW system and
two orders of magnitude smaller than those predicted by the
theory for a bulk system. We showed that the theoretical spin
relaxation times in bulk CdTe are larger than in QWs, when
the same mechanisms are considered. We then discuss the
possible sources of additional spin relaxation mechanisms that
can be present during experimental measurements. Finally,
we discuss and compare theoretical and experimental results
in a very well-studied semiconductor, GaAs, to another less
studied bulk semiconductor, ZnSe. From the theoretical calcu-
lation developed here, this II-VI material appears to be a good
candidate for observation of long electron spin relaxation
times, of the order of μs.

II. SAMPLES AND PHOTOLUMINESCENCE
CHARACTERIZATION

Each of the six studied samples consist of a 8-nm thick
CdTe QW confined between CdMgTe barriers grown by
molecular beam epitaxy on a (100)-oriented GaAs substrate.
The samples were doped with iodine donors placed in the cen-
tral plane of the QW, with different nominal concentrations:
(A) undoped, (B) 3.2 × 1010 cm−2, (C) 9.7 × 1010 cm−2,
(D) 1.6 × 1011 cm−2 (E) 2.9 × 1011 cm−2, and (F) 3.6 ×
1011 cm−2.

Figure 1 shows the photoluminescence (PL) spectra of
the samples A, C, and E, obtained after excitation with a
5-mW 633-nm He-Ne laser, at the temperature T = 10 K.
The free-exciton emission at 1.625 eV (X) dominates the PL
spectrum of the intentionally undoped sample A, as is shown
in Fig. 1(a). A residual concentration of donors in this sample
is revealed by a second peak at 1.621 eV, associated with the
donor-bound exciton transition (D0X ) (see Kheng et al. [25]).
The energy difference between the free-exciton peak and the
D0X one gives the binding energy ≈ 4 meV to form the D0X
complex. The shoulder at lower energy is associated with the
formation of excitons bound to neutral acceptors (A0X ) [26];
indeed, the introduction of donor impurities in the QW creates
compensation sites, inducing the presence of acceptor sites,
which in our case are probably cadmium vacancies. For the
intermediate doping concentration, sample C [see Fig. 1(b)],
a shoulder associated with the exciton transition at 1.615 eV
is still visible in the high-energy part of the D0X broad band.
At higher donor concentration, only a broad peak associated
with the D0X transition is visible [see Fig. 1(c)].

The full width at half maximum of the D0X PL band
increases with the increasing donor concentration, from
2.6 meV for sample A to 6.2 meV for sample E. The ex-
citon PL band also broadens, weakens, and finally vanishes

FIG. 1. PL spectra, at 2 K, of 8-nm CdTe QWs containing in
their center planes, different donor concentrations: (a) sample A:
1 × 109 cm−2, (b) sample C: 9.7 × 1010 cm−2, and (c) sample E:
2.9 × 1011 cm−2.

when the concentration of donor increases. When comparing
Figs. 1(a) and 1(b), we underline that the energy of the
X transition is slightly different; this is because of the Mg
content in the barrier: for sample A, the Mg content is 18%,
while it is 11% for sample C (and also for the other samples).

III. SPIN DYNAMICS MEASUREMENTS

To study the spin dynamics of resident electrons in our
sample, we used the photoinduced Faraday rotation (PFR)
technique. The light source is a Ti:Sapphire laser beam with
a 2-ps pulse duration and a 76-MHz repetition rate, which is
split into pump and probe beams. The pump beam is σ + /σ−
modulated at 500 kHz with an electro-optic modulator, in
order to avoid nuclear spin polarization by the optical orienta-
tion of the electrons. The probe beam is linearly polarized, and
its intensity is modulated with an acousto-optic modulator at 3
kHz. The rotation angle of the probe beam polarization is ana-
lyzed after transmission by an optical bridge. A double lock-in
amplifier is used in order to improve the signal-to-noise ratio.
After removal of its GaAs substrate, the studied sample is
placed in a liquid-helium cryostat. A superconducting split
coil immerged in the cryostat is used to apply a magnetic
field in Voigt geometry (in the plane of the sample, and
perpendicular to the light propagation direction).

Figure 2 shows the PFR signal obtained at low temperature,
T = 2 K, in the presence of a transverse magnetic field
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FIG. 2. PFR signals as a function of the pump-probe delay for
samples A–F. The PFR signals were obtained at T = 2 K, B = 0.5 T,
using the following optical energies: (A) 1.622 eV, (B) 1.613 eV, (C)
1.611 eV, (D) 1.615 eV, (E) 1.617 eV, and (F) 1.612 eV.

of 0.5 T for the six studied samples. The common pump
and probe energy is always tuned to the D0X transition in
order to create mainly donor-bound exciton complexes, and
to probe the D0X optical transition, since the band-width of
the used mode-locked Ti:Sapphire laser is less than 1 meV.
The focus spot area is (90 μm)2 and the energy fluence
of the pump pulses is 0.09 μJ cm−2. Figure 2 shows that for all
the samples, an oscillatory signal with an envelope time larger
than the lifetime of the D0X complex TR (∼200 ps Ref. [26]) is
observed. This long-lasting signal is the signature of the spin
polarization of electrons bound to donors D0. The mechanism
involved in the creation of this electron polarization has been
discussed in Ref. [23].

When a transverse magnetic field B is applied in the QW
plane, the Larmor frequency associated to the carriers is

�e,h = g⊥
e,hμB

h̄
B, (1)

where μB is the Bohr magneton, h̄ is the reduced Planck
constant, and g⊥

e,h is the transverse electron (hole) Landé
factor. For holes the Landé factor g⊥

h is almost zero in a
8-nm CdTe QW [27], so the field induces a spin precession
of the resident electrons bound to the donors, but not of the
D0X complex since the D0X complex contributes to the spin
dynamics by its hole.

The electronic spin dynamics of D0 is described by the
equation [23]

d �S⊥
dt

= ��e ∧ �S⊥ − �S⊥
T ∗

2

+ J (t )

TR
�ez, (2)

where �S⊥ is the transverse component (to the magnetic field)
of the electronic spin, ��e is the Larmor precession vector of
the electrons, T ∗

2 is the spin decoherence time of the electronic
spins, and J (t ) = J0e−t/τ is one third of the average kinetic
momentum of the ensemble of D0X complexes; τ is the
decay time of the difference between the D0X+3/2 and D0X−3/2

populations.

The solution of Eq. (2), for times much larger than τ , is

Sz(t ) = A2e−t/T ∗
2 cos(�et ), (3)

but for times of the order of τ , the next expression fits the PFR
signal:

Jz(t ) + Sz(t ) = A1e−t/τ + A2e−t/T ∗
2 cos(�et ). (4)

The first nonoscillatory component is clearly seen in Fig. 2,
especially in samples with high concentrations of donors (see
Fig. 2, curves C–F). However, when the sample contains a
low concentration of donors it is possible to observe another
additional oscillatory component of the PFR signal, having a
frequency similar to the electron one and with a very short
damping time. This additional component corresponds to the
oriented exciton spins (see Fig. 2, curve A).

Figure 3(a) shows the PFR signal at different magnetic
fields for sample D. For low magnetic fields, the oscillatory
behavior of the PFR signal is also observed at negative de-
lays. This means that the damping time of the oscillations is
comparable to the repetition period 13.2 ns of the laser, and
this damping time decreases for increasing magnetic fields.

We have fitted expression (4) to all the PFR curves.
Figure 3(b) shows the dependence of �e on the applied
magnetic field. A linear fit of the data gives g⊥

e = 1.45. In
Fig. 3(b) we present the other fitting parameter, 1/T ∗

2 , as a
function of the magnetic field, which is proportional to the
magnetic field due to the inhomogeneities of the g⊥

e values,
as it is shown below. Assuming a Lorentzian distribution of
g⊥

e factors, the experimentally determined T ∗
2 is related to the

zero-field decoherence time T2(0) as follows:

1

T ∗
2

= 1

T2(0)
+ �ge

μB

h̄
B. (5)

From a linear fit to the expression (5) of the spin dephasing
rates 1/T ∗

2 , shown in Fig. 3(b), we obtain the corresponding
spin decoherence time T2(0) for each sample. Note that, when
we extrapolate T ∗

2 to zero magnetic field, we expect T ∗
2 (0) =

T2(0) = T1 where T1 is the longitudinal spin relaxation time.
Figure 3(c) shows the fit of Eq. (4) to the PFR signal at
B = 0.5 T. The characteristic time, τ , of the D0X complex is
equal to 60 ps and does not change very much as a function
of magnetic field or doping concentration. This time contains
two contributions: the recombination rate of D0X and the hole
spin flip rate in the D0X state. The lifetime of D0X has been
measured in a previous publication for a sample containing
approximately 1011 cm−2 [26]. We have no information about
the evolution of D0X lifetime with the doping concentration,
so we cannot draw a conclusion about the spin flip rate
dependence on the doping concentration of the D0X complex.
In the following we denote T2(0) = τs.

Figures 4(a) and 4(b) show the PFR signals for different
magnetic fields and for the samples E and F, respectively.
Both samples E and F are near the metal-insulator transition.
The metal-insulator transition in 3D materials has been cal-
culated to appear for donor distances around three times the
Bohr radius [28]; with this criterion, samples A-E are in the
insulator regime, and sample F is in the metallic regime. We
underline that the PFR signals are longer lasting for sample F
than for sample E, and as a consequence, we find a τs much
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FIG. 3. (a) PFR signals for sample D as a function of the pump-
probe delay, obtained at T = 2 K for several values of the transverse
magnetic field. The PFR curves are vertically shifted for clarity. (b)
Experimental data of the D0 Larmor frequency (diamonds) and the
inverse of the spin decoherence time T ∗

2 (circles). A linear fit accord-
ing to Eq. (5) leads to T2(0) = 12.5 ± 0.8 ns and �g⊥

e = 0.0077 ±
0.0002. A linear fit to Eq. (1) leads to the value g⊥

e = 1.45. (c) PFR
signal (black points) obtained at B = 0.5 T and T = 2 K. The red
solid line is the fit of the expression: 0.08 exp(−t/20)cos(0.06 t ) +
0.031 exp (−t/2550) cos (0.06 t )) + 0.04 exp(−t/60) to the experimen-
tal data, t in picoseconds; only two terms are analyzed in Sec. III, the
first oscillatory term corresponds to the exciton contribution.

longer for sample F than for sample E. This peculiarity was
also observed in bulk GaAs [7].

Figure 5(a) shows the spin relaxation time measured in
samples A–F (full disks) and in one sample with the same
characteristics and studied by using the same technique in
Ref. [23], with a donor concentration of 1.2 × 1011 cm−2

FIG. 4. PFR signals measured at 2 K in (a) sample E and (b)
sample F, as a function of the pump-probe delay for several values of
the transverse magnetic field. The curves are shifted for clarity.

(full diamond). The spin relaxation time versus concentration
shows a nonmonotonous behavior similar to the one found in
bulk GaAs [7] and later in bulk CdTe [17]. The most remark-
able feature of the dependence is a pronounced maximum of
the relaxation time (∼20 ns) at a donor concentration of about
1.2 × 1011 cm−2. In bulk CdTe the maximum (2.5 ns) appears
at the concentration of 5 × 1016 cm−3 [17], which corre-
sponds approximately to a surface concentration of 1.4 ×
1011 cm−2. We also notice that for low doping concentrations
in bulk CdTe, 1.5 × 1013 cm−3 (∼1 × 109 cm−2), Ref. [17]
reported τs = 40 ps, which is 100 times smaller than the spin
relaxation time we measured in a 8-nm QW (4.5 ns). We
also underline that, as it was remarked in the study carried
out by Dzhioev et al. [7] in bulk GaAs, after the metal-
insulator transition, another maximum of the spin relaxation
time appears. We have observed the same phenomenon with
sample F, for which τs = 14.4 ns; this spin relaxation time is
larger than τs = 4.1 ns measured in sample E.

Figure 5(b) shows the dependence of the g⊥
e values on

the doping concentration. We observe a similar dependence
as the one shown by the spin relaxation time. This has been
already noticed in bulk CdTe [17], and it is an indication of
a strong correlation of the g⊥

e values with the spin relaxation
mechanisms. But the reason in not clear yet, and more studies
are needed in this subject.
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FIG. 5. (a) Measured spin relaxation times in samples A–F (full
disks); the full diamond represents a measurement of Ref. [23]. The
black solid line represents the spin relaxation time as a function
of the doping concentration according to Eq. (12). The relaxation
mechanisms for electrons bound to donors in the insulating regime
are also represented: hyperfine interaction, τsn + T e

� [see Eq. (12)]
(dashed line), and anisotropic exchange interaction, Eq. (10) (dotted
line). (b) Transverse electron Landé factor g⊥

e as a function of the
doping concentration (full disks).

IV. DISCUSSION

For bulk GaAs in the insulating regime and at low tem-
perature [7,19], the dependence of the spin relaxation time
on the doping concentration was explained as a result of two
main relaxation mechanisms: the hyperfine interaction and the
anisotropic exchange interaction. In this section, we adapt the
theory developed for bulk crystals to a QW structure.

At low doping concentration, the donors are isolated and
the electron spin relaxation via hyperfine interaction with
the nuclei is the dominant relaxation mechanism. It was
shown that for an ensemble of localized electrons, the spin
polarization firstly drops down to 10% of its initial value
within a characteristic time 2T e

� and afterwards, the electronic
spin polarization reaches a constant value of 1/3 of its initial
value, keeping it during a time of the order of a microsecond

(Ref. [29]). T e
� is written as [30]

T e
� = h̄

√
3NL

2n
∑

i Ii(Ii + 1)(Ai )2Pi
, (6)

where Ai are the hyperfine constants, Ii are the nuclear spin
quantum numbers, Pi the abundance of the nuclear species,
and NL is the number of nuclei within the wave-function
envelope of an electron. The sum runs over all nuclei of
the crystal basis and for each nucleus over its nonvanishing
nuclear spin. For CdTe, a unit cell contains one Cd and one
Te atom. The stable isotopes of cadmium and tellurium with
nonzero nuclear spin are Cd111, Cd113, Te123, and Te125; they
all have a nuclear spin I = 1/2. Both Cd isotopes have almost
the same hyperfine constant, ACd = 31 μeV, and they have
together a natural abundance of PCd = 25%. The hyperfine
constant of Te123 and Te125 is ATe = −45 μeV, and they have
an abundance of PTe = 8%. To calculate NL = 2VL/� with �

being the volume of a unit cell and VL being the effective
volume defined as [∫ |�(�r)|4d�r]−1 [29], we take �(�r) as a
modified hydrogenic envelope wave function for the electron
in a finite QW of thickness L [see the Appendix]. We took
an effective mass m∗ = 0.11m0 (with m0, the free electron
mass) [31] and a dielectric constant of εr = 10.2 [32]. Then,
a variational calculation allows us to obtain for L = 8 nm,
T e

� = 5.6 ns, with a barrier Mg concentration xMg = 11%.
(Note that for sample A, xMg = 18%, leading to a higher
QW confinement and T e

� = 5.3 ns). We emphasize that the
experimental value for T2(0) obtained in sample A is very
close to this estimation: the spin relaxation time for sample
A is mostly limited by the hyperfine interaction.

For intermediate doping concentrations (samples B and
C in Fig. 5), the main electronic spin relaxation mechanism
is associated with the tunnel jumps of the electronic spin
and with the hyperfine interaction. Each donor site has its
own nuclear environment and each set of nuclear spins in the
vicinity of a donor corresponds to an average nuclear field,
i.e., an effective local magnetic field whose orientation and
intensity depend on the considered donor site. The electron
spin undergoes, at a given site, a rotation around the effective
hyperfine field during the correlation time τc. Then, the elec-
tronic spin is rotated around a different axis after each jump,
and the spin relaxation rate in this regime is given by [33]

1

τsn
= 3

2

τc(
T e

�

)2 , (7)

where τc has been estimated as a function of the exchange
constant J (r) [7]:

τc ≈ h̄

ξJ (rc)
, (8)

with rc the average characteristic distance between interacting
donors: rc = b(n2D)−1/2 or rc = b(n3D)−1/3 in 2D and 3D
respectively, and b and ξ are numerical factors of the order of
unity. b is expected to be between 0.54 and 0.8, and a value
of ξ = 0.8 has been taken in bulk GaAs performing the fit of
the experimental data [7].
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In our case, we consider the exchange energy 2J (r) of a
pair of donors inside an infinite QW of thickness L [34]:

2J (r) = 2J0E∗
h [1 + (AR)2]

β

2 exp[−γ R − βAR arctg (AR)],

(9)

with R = r/a∗
B, r is the distance between donors, a∗

B =
4.91 nm is the bulk Bohr radius, E∗

h = 29 meV is the Hartree
energy, and 2J0 = 1.34 is the splitting energy in E∗

h units
between the ground state and the first excited state of a
helium atom in a QW of thickness L = 8 nm. The parame-
ters A = 0.71, β = 1.8, and γ = 0.23 are extracted from an
interpolation method between 2J0 and the exchange energy at
large distances between the donors in an infinite QW [34].
We are confident that taking an infinite QW to calculate
2J(r) is a reasonable approximation for our CdTe QWs of
8-nm thickness. Indeed, this thickness implies that the barriers
strongly confine the wave function of a donor-bound electron
centered in the QW, because of the value a∗

B = 4.91 nm of the
bulk Bohr radius. This wave function is quasi-entirely located
inside the QW, with only a small portion overflowing in the
barrier, and it should then possess a shape very similar to
the one of the wave function in an infinite QW; a mark of
this fact comes from the value of the Bohr radius in the QW
center plane for finite barriers, 4.5 nm (see Appendix), which
is very close to the one calculated in an infinite QW, 4.4 nm
[34]. As the exchange energy 2J(r) depends on the overlap of
electron wave functions for two donors separated by a distance
r, our calculated 2J(r) in an infinite QW is expected to be an
acceptable approximation of the exact one.

As the concentration is increased to approach the metal-
insulator transition (samples D and E), a second mechanism of
spin relaxation becomes important. This mechanism is due to
the anisotropic exchange interaction between two neighboring
donors. During each exchange interaction, the spin-orbit inter-
action generates a rotation of an angle θ , simultaneous and in
the opposite direction, of each of the two electron spins that
exchange their positions on the donors. To each pair of donors
corresponds an axis and an angle of rotation. The expression
for the ensemble spin relaxation time due to this mechanism
is given by [7]

1

τsa
= 2

3

θ2

τc
. (10)

In semiconductor structures (QWs or quantum dots), θ is
written as follows [35]:

θ = 2αsoh̄√
2m∗

e Eg

〈
k2

z

〉
r, (11)

where m∗
e is the effective electron mass, Eg is the band gap

energy, r is the distance between the donors, αso is the spin-
orbit constant, and 〈k2

z 〉 is the average value of the squared z
component of the electron wave vector.

As we have already remarked, Fig. 5(a) shows that after
the metal-insulator transition (sample F), there is an increase
in the spin relaxation time. In this regime, the mechanism
that governs the spin relaxation time at low temperature for
electrons is the D’yakonov-Perel mechanism, the theory of
which will be not discussed in this article.

The solid line in Fig. 5(a) represents a fit of the experimen-
tal data to the theoretical relaxation time of donor-bound elec-

trons at low temperature, in the insulating regime, taking into
account the hyperfine and anisotropic exchange interactions:

τs =
(

1

τsn + T e
�

+ 1

τsa

)−1

, (12)

with τsn and τsa given by the expressions (7) and (10). The
model (12) agrees with the experimental data using reasonable
values of the parameters: T e

� = 5.3 ns, b = 0.8, ξ = 0.1, and
θ = (0.022 ± 0.003) r

a∗
B
.

From the prefactor found in the expression of θ , it is pos-
sible to deduce, using Eq. (11), a range of values for the spin-
orbit constant αso in CdTe. We obtain finally αso = 0.079 ±
0.011, taking Eg = 1.606 eV and 〈k2

z 〉 = 6.1 × 10−2 nm−2

calculated using a hydrogenic wave function inside of a finite
QW of thickness L = 8 nm (see the Appendix). This value for
αso is close to the one that can be extracted from the theoretical
values reported in the literature for the spin splitting of the

6 conduction band in CdTe: γc = 11.75 eV Å
3

[36] and
γc = 8.5 eV Å

3
[37]; using the relation [38]

αso = 2γc

h̄3

√
2m∗3

e Eg, (13)

one obtains αso = 0.073 and αso = 0.053, respectively.
Now, we use our experimental value of the spin-orbit

constant, αso = 0.079, to plot in Fig. 6(a) the predicted spin
relaxation time in bulk CdTe [solid line in Fig. 6(a)], and make
a comparison with the available experimental values. We have
used Eq. (12) and the corresponding expressions for θ and J
in 3D [34,39], taking for the parameters b and ξ the values
0.7 and 0.8 respectively, which are in the range proposed
by Ref. [7]. The dephasing time T e

� in bulk is calculated
following Eq. (6) (see Ref. [40]).

We note first that the theoretical spin relaxation times in
bulk CdTe are longer than the relaxation times measured in a
8-nm CdTe QW. In general, in the low-doping regime (large
R), T e

� in a QW is slightly smaller than in bulk, since the
localization of the electron wave function is increased. Also,
the electron exchange energy, 2J, is smaller [see Fig. 7(a)
of Ref. [34]], therefore a shorter spin relaxation time in this
regime is expected for a QW. At high doping concentrations
(short R), a similar analysis leads us to conclude that the
expected relaxation time is also shorter in a QW (J3D and
θ3D are smaller than JQW, θQW, therefore 1/τsa,3D < 1/τsa,QW ).
Thus, we can expect that the spin relaxation time in bulk is
always longer than in a QW.

We also note that, in bulk, the reported experimental values
shown in Fig. 6(a) are very small compared to the ones
predicted by the theory. In particular, for very small doping
concentrations (<1015 cm−3) the estimated spin relaxation
time due the hyperfine interaction is of the order of 10 ns
and the measured one is more than two orders of magnitude
smaller. A similar situation is observed for the maximum
relaxation time, which is the result of a combination of the hy-
perfine interaction and anisotropic exchange interaction: the
theoretical value is of the order of 100 ns and the experimental
reported value is equal to 2 ns. Moreover, the maximum of the
experimental curve occurs at a higher doping concentration
than the calculated one. The presence of compensation sites in
the sample, which reduces the nominal doping concentration
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FIG. 6. Theoretical spin relaxation times (solid lines) as a func-
tion of the doping concentration for (a) CdTe bulk, (b) GaAs bulk,
and (c) ZnSe bulk. The dotted lines represent the spin relaxation
times when a volume of a sphere of radius a∗

B is considered as effec-
tive volume VL in the calculation of T e

� (see Sec. IV). We have also
reported different experimental results concerning spin relaxation
times at low temperature for each material (see Refs. [45–48]).

could be at the origin of this last disagreement. Regarding
the magnitude of the disagreements, they are likely related
to the conditions of the concrete experimental measurements.
Sprinzl et al. [17] obtained the spin relaxation time by
using pump-probe experiments similar to our experiments,
but they used femtosecond pulses tuned to the band gap of
CdTe. Instead, in our experiments, we use picosecond pulses
tuned to the D0X transition. A femtosecond pulse tuned to
the bandgap is able to create a population of delocalized
electrons in the conduction band that can remain even after
recombination of holes with localized electrons and also can
produce a heat-up of localized electrons. In our experiments,
we have performed a resonant excitation of D0X transition to
minimize all these effects, because they introduce additional
spin relaxation mechanisms [19]. Moreover, the concentration
of photoexcited carriers reported in Ref. [17], Nex = 5 ×
1016 cm−3, is comparable to the concentration range of the
studied samples (and even two orders of magnitude larger
than the lower concentration). A significant shortening of the
spin relaxation time is then expected, as it has been observed
in Ref. [6] for high photoexcited carrier concentrations Nex

(close to the nominal concentration n).
Now, let us compare bulk CdTe spin relaxation times with

those theoretically estimated and experimentally observed in
bulk GaAs [Fig. 6(b)] and ZnSe [Fig. 6(c)] materials. As
we have done for bulk CdTe, we have used Eq. (12) to
calculate the spin relaxation time. The parameters involved
in the calculation of T e

� for each material are reported in
Table I. The value for the spin-orbit constant of ZnSe has been

calculated using γc = 1.62 eV · Å
3

[36] and Eq. (13).
We see in Fig. 6(b) that the maximum values for the spin

relaxation time predicted for bulk GaAs are longer than those
predicted for bulk CdTe, and appear at lower doping concen-
trations. This is explained as follows. First, at low doping
concentrations (large R), the exchange energy is smaller in
CdTe than in GaAs [see Fig. 7(b) of Ref. [34]], therefore
τsn, which is directly proportional to J, is smaller in CdTe.
Second, for high doping concentrations (short R) [see Fig. 7(a)
of Ref. [34]], J and θ are greater for CdTe than for GaAs (due
to the greater value of the spin-orbit constant and smaller Bohr
radius in CdTe), therefore τsa, which is inversely proportional
to them, is smaller. The metal-insulator transition appears for
GaAs at a lower doping concentration than for CdTe, since the
Bohr radius in CdTe is smaller than in GaAs.

The experimental results for GaAs are slightly shorter than
those predicted by the theory but the agreement is rather good.
Mostly these have been obtained by Hanle depolarization
of photoluminescence, resonant pump-probe experiments at
the D0X transition with picosecond pulses or time resolved
polarization spectroscopy. In bulk materials, a circularly
polarized excitation creates heavy and light excitons, and
then additional spin relaxation mechanisms can appear during
the exciton lifetime, affecting also the spin relaxation of the
localized electrons. In Fig. 6, the dotted lines represent the
theoretical predictions obtained by imposing the volume of a
sphere of radius equal to the effective bulk Bohr radius, VL =
4πa∗3

B /3, for the calculation of T e
�, as is done in Refs. [23,16].

235301-7



G. GARCIA-ARELLANO et al. PHYSICAL REVIEW B 99, 235301 (2019)

TABLE I. Parameters required for the calculation of the spin dephasing time T e
� due to the hyperfine interaction in GaAs, CdTe, and ZnSe.

Effective Dielectric Isotopes with a nonzero Nuclear Hyperfine Spin-orbit
mass constant nuclear spin spin Abundance constants constant T e

� [29] (ns)

Ga69

GaAs 0.067a 12.35b Ga71 IGa = 3/2 PGa = 100%
∑

I (Ai )2
0.067d 8.6As75 IAs = 3/2 PAs = 100% = 1.2 10−3 meV2c

CdTe 0.11e 10.2f Cd111

Cd113 ICd = 1/2 PCd = 25% ATe = 45 μeV 0.079 9.7
Te123 ITe = 1/2 PTe = 8% Acd = 31 μeV
Te125

Zn67 IZn = 5/2 PZn = 4.11% AZn = 3.7 μeVZnSe 0.145g 8.8b 0.021 13.1Se77 ISe = 1/2 PSe = 7.58% ASe = 33.6 μeV

aRef. [41]; bRef. [42]; cRef. [29]; dRef. [43]; eRef. [31]; fRef. [32]; gRef. [44].

Figure 6(c) shows that the predicted maximum spin relax-
ation time for ZnSe is of the order of 1 μs. Recent studies
have shown spin relaxation times around 30 ns at low doping
concentrations [16], but there are no other studies in the insu-
lating regime. Considering the same theoretical model for the
spin relaxation time in CdTe and GaAs, ZnSe appears as one
possible candidate for obtaining long spin relaxation times.

V. CONCLUSION

The insertion of a neutral iodine donor in a QW leads to
a system that increases the localization of the electron wave
function with respect to the 3D material. It allows also a
higher efficiency of the orientation of the electronic spin by
using optical excitations. By using picosecond pulses in PFR
experiments and a resonant excitation, we find that the spin
relaxation time dependence on the doping concentration at
low temperature follows a nonmonotonous behavior in the
insulator regime, similar to the one observed in the most
studied semiconductor material, GaAs. This behavior has
been successfully explained by an interplay of two main spin
relaxation mechanisms: hyperfine interaction and anisotropic
exchange interaction. By adapting existing 3D models to
a QW, we have obtained the value of the CdTe spin-orbit
constant: αso = 0.079. Using this value, we estimated the spin
relaxation time for bulk CdTe and compared it with GaAs, and
with ZnSe, a promising II-VI material, which appears as one
possible candidate for obtaining long spin relaxation times,
according to the spin relaxation mechanisms considered here.

APPENDIX: DETERMINATION OF THE BINDING
ENERGY, BOHR RADIUS, AND 〈k2

z 〉 TERM FOR A DONOR
BOUND ELECTRON INSIDE OF A FINITE QUANTUM

WELL

The Hamiltonian describing an electron bound to a donor
inside of a finite QW of thickness L in dimensional units is
written as

H (z) = − h̄2

2m∗
e

� − e2

4πε0εr

1

r
+ V (z), (A1)

where m∗
e is the electron effective mass, V (z) is the QW

confinement potential defined by V (z) = 0 for |z| � L
2 and

V (z) = V0 for |z| > L
2 , � is the Laplacian operator, and r is the

distance of the electron to the origin of the coordinate system.

FIG. 7. (a) Bohr radius aB (left axis) and variational parameter α

(right axis) of an electron bound to a donor in the middle of a finite
QW of thickness L. (b) Binding energy EB (left axis) and 〈k2

z 〉 (right
axis) for different thicknesses L of a finite QW with a barrier height
of V0 = 125 meV.
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The electron binding energy EB(L) and the Bohr ra-
dius aB(L) are determined by means of the variational
method. The trial wave function is taken in the following
form:

�(�r) = Bχ (z)e−
√

ρ2+α2z2

aB , (A2)

where χ (z) is the QW envelope wave function, B is the
normalization coefficient, and aB and α are the variational
parameters.

First, we have solved the equation associated with the
envelope wave function in the QW:

Hzχ (z) = E0χ (z), (A3)

with Hz = − h̄2

2m
d2

dz2 + V (z) and E0 being the QW lowest en-
ergy confinement. We have then minimized the mean energy
〈�|H |�〉 to obtain the binding energy defined by EB = E0 −
〈�|H |�〉 and the effective Bohr radius aB, for a given QW
thickness L. Figure 7(a) shows the L dependence of the
variational parameters, α and aB, for a barrier height V0 =

125 meV (corresponding to a conduction band offset of 70%
and a barrier Mg concentration of 11%). At large QW width,
one tends to the 3D limit, with α = 1 and aB = a3D

B . When
L decreases, one has a commonly observed behavior: both
parameters decrease, then increase when L crosses a value
close to the Bohr radius. It is well known that for a finite
barrier, when the QW width decreases, the wave function
starts to get more confined, before spreading in the barrier for
L smaller than the Bohr radius. The α and aB behaviors are
the signature of this effect, as can be seen for L < 5 nm in
Fig. 7(a).

Using the expression (A2) for the wave function, the co-
efficient 〈k2

z 〉 = 〈�|(−i d
dz )2|�〉 is also calculated. Figure 7(b)

shows this coefficient 〈k2
z 〉 and the binding energy EB versus

the QW width L. Starting from the bulk binding energy, for
large L values, one observes a maximum binding energy EB =
2E3D

B for L ≈ aB. A similar behavior is shown for 〈k2
z 〉. For

a thickness L = 8 nm, one has EB = 24.75 meV and 〈k2
z 〉 =

6.1 × 10−2 nm−2. One can estimate VL = 1.0 × 103 nm3 [29],
leading to T� = 5.6 ns.
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