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Interaction-induced edge states in HgTe/CdTe quantum wells under a magnetic field
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In this paper, we study doped HgTe/CdTe quantum wells with Hubbard-type interaction under a perpendicular
magnetic field using a lattice Bernevig-Hughes-Zhang (BHZ) model with a bulk inversion asymmetry (BIA)
term. We show that the BIA term is strongly enhanced by interaction around the region when the band inversion
of the topological insulator is destroyed by a magnetic field. The enhanced BIA term creates edge-like electronic
states which can explain the experimentally discovered edge conductance in doped HgTe/CdTe quantum wells
in a similar magnetic field regime.
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I. INTRODUCTION

Two-dimensional (2D) topological insulators have been ex-
tensively studied both theoretically and experimentally since
their discovery [1–9]. The nontrivial topology and the helical
edge states are protected by time reversal symmetry (TRS)
[10]. The detailed behavior of HgTe/CdTe quantum wells
under a perpendicular magnetic field has been studied both
experimentally [7] and theoretically [11–13]. It is believed
that a transition from quantum spin Hall (QSH) state to integer
quantum Hall (IQH) state occurs when the magnetic field is
strong enough. The Landau level fan charts (LLFC) show a
crossing at a critical magnetic field Bc where the band inver-
sion disappears. The helical edge state is destroyed around
the transition regime and (chiral) edge states emerge when
the system transits into the IQH state. When a bulk inversion
asymmetry term is included, the electron and hole bands
hybridize and crossing is avoided. These results have been
confirmed by magnetospectroscopy studies in HgTe/CdTe
quantum wells [14,15].

Edge transport under a perpendicular magnetic field has
been studied by Du’s group in InAs/GaSb quantum wells [16]
in a magnetic field range believed to be below Bc [17]. Shen’s
group measured the local conductance under a perpendicular
magnetic field in doped HgTe/CdTe quantum wells [18] and
found that the edge conductance persists under strong mag-
netic fields up to 9 T, much larger than the expected critical
field Bc but still not strong enough to reach the IQH regime;
the electron/hole filling factor in the experiment is still too
small to fill the zeroth LL. Furthermore, the edge conduc-
tance exists only when it is electron-like gated, indicating the
importance of particle-hole asymmetry. The noninteracting
Bernevig-Hughes-Zhang (BHZ) model is not able to explain
these results and suggests that electron interaction may be
important to understand the HgTe/CdTe system [18].

In this paper we study the interaction effect in doped
HgTe/CdTe quantum wells via a modified lattice BHZ model
that takes into account the bulk inversion asymmetry (BIA)
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term and with Hubbard-type on-site interaction. The BIA
term is found to be small in band structure calculations and
is usually neglected. We find that BIA is enhanced by the
combined effect of interaction and magnetic field in a self-
consistent mean-field theory. The enhanced BIA term gives
rise to edge-like states around the region where the band
inversion is destroyed by a magnetic field and can explain the
experimental results for HgTe/CdTe quantum wells by Shen’s
group [18].

II. MODEL

We consider the BHZ model with BIA asymmetry term
and Hubbard-type on-site interaction on a square lattice with
two orbitals {|Eσ 〉, |Hσ 〉} per site. The BIA term is allowed
because HgTe/CdTe has a zinc-blende structure which breaks
bulk inversion symmetry [6]. We also apply a magnetic field
perpendicular to the lattice plane. The system is described
by the Hamiltonian H = HBHZ + HBIA + Hz + HU , where
HBHZ = T + H0 is the (lattice) BHZ model with

H0 =
∑
i,σ

(εEC†
i,E ,σCi,E ,σ + εHC†

i,H,σCi,H,σ ), (1a)

where ετ is the on-site energy for the τ orbital, C†(C)i,τ,σ

creates/annihilates a τ -orbit (τ = E , H ) electron with spin
σ =↑,↓ on site i, and

T =
∑

〈i, j〉,σ
(tEC†

i,E ,σCj,E ,σ + tHC†
i,H,σCj,H,σ ) (1b)

+
∑
i,σ

tEH [s(iC†
i,E ,σCi+x̂,H,σ − iC†

i,E ,σCi−x̂,H,σ ) (1c)

+(C†
i,E ,σCi+ŷ,H,σ − C†

i,E ,σCi−ŷ,H,σ )] + H.c. (1d)

describes electron hopping between nearest neighbor (NN)
lattice sites 〈i, j〉 where tτ , tEH denote intraorbital and interor-
bital hopping, respectively. s = +(−)1 for σ =↑ (↓). H.c.
denotes the Hermitian conjugate. The BIA term is

HBIA = −�0

∑
i

(C†
i,E ,↑Ci,H,↓ − C†

i,H,↑Ci,E ,↓) + H.c., (1e)
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where �0 ∼ 1.5–2 meV, and

Hz =
∑
i,τ,σ

sgτμBBzC
†
i,τ,σCi,τ,σ (1f)

is the Zeeman energy. μB is the Bohr magneton and gτ is
the g factor for the τ orbit. Bz is the magnetic field strength.
The orbital magnetic field effect is included by Peierls substi-
tution, tτ → tτ exp [i2π ( j − 1)�/�0] with gauge field A =
−Bzyx̂ (Landau gauge). � = Bza2 is the magnetic flux passing
through a lattice cell and �0 = h/e is the magnetic flux
quantum.

The Hubbard interaction term reads,

HU =
∑

i;τ=E ,H

Uτ ni,τ,↑ni,τ,↓ +
∑
i;σ,σ ′

UEH ni,E ,σ ni,H,σ ′ , (2)

where Uτ (τ = E , H ), UEH > 0 describe intra- and interor-
bital repulsive interactions between electrons, respectively,
and ni,τ,σ = C†

i,τ,σCi,τ,σ .
We shall treat the interaction term in a mean-field theory

where

ni,τ,σ ni,τ ′,σ ′

≈ 〈ni,τ,σ 〉ni,τ ′,σ ′ + 〈ni,τ ′,σ ′ 〉ni,τ,σ

− 〈ni,τ,σ 〉〈ni,τ ′,σ ′ 〉
− (〈C†

i,τ,σCi,τ ′,σ ′ 〉C†
i,τ ′,σ ′Ci,τ,σ +〈C†

i,τ ′,σ ′Ci,τ,σ 〉C†
i,τ,σCi,τ ′,σ ′

− 〈C†
i,τ ′,σ ′Ci,τ,σ 〉〈C†

i,τ,σCi,τ ′,σ ′ 〉)δτ̄ ,τ ′δσ,−σ ′ ,

where Ē (H̄ ) = H (E ) and 〈· · · 〉 denotes ground state expec-
tation value. We note that the on-site hybridization term
between the E and H orbitals vanishes because of the opposite
parity of the two orbitals. The mean-field Hamiltonian is
therefore

HMF = HBHZ + HBIA + Hz

+
∑
i,σ,τ

(Uτ 〈ni,τ,−σ 〉 + UEH 〈ni,τ̄ 〉)ni,τ,σ

− UEH (�1C
†
i,E ,↑Ci,H,↓ − �2C

†
i,H,↑Ci,E ,↓ + H.c.),

(3)

where �1(2) = +(−)〈C†
i,H (E ),↓Ci,E (H ),↑〉 couples the spin-up

electron (hole) orbital to the spin-down hole (electron) orbital,
respectively, and ni,τ = ∑

σ ni,τ,σ . We note that our mean-
field theory allows an interaction-modified BIA term �0 →
�̃1(2) = �0 + UEH�1(2) and also the possibility of magnetic
phases with 〈ni,τ,σ 〉 
= 〈ni,τ,−σ 〉. The mean-field parameters
and phase diagram are determined numerically in our study.

We consider the half-filled BHZ model where the chem-
ical potential is in the gap and the system is a topological
insulator. To describe the experimental material [18], we start
with the parameters appropriate for a 7.5 nm HgTe/CdTe
quantum well with εE = C + M − 4(B + D)/a2, εH = C −
M + 4(B − D)/a2, tE = (D + B)/a2, tH = (D − B)/a2, and
tEH = A/2a, where C, M, B, D, A, and g|tau| are the parameters
in BHZ model determined in Ref. [19] (see Appendix A for
details). We note, however, that the band-structure parameters
can be changed quite significantly upon doping, which is
the case of the doped material HgTe/Hg0.3Cd0.7Te (7.0 nm

HgTe/CdTe quantum well) [1,6] where the sign of D/B is
found to be inverted in the doped material, corresponding
to changing the light-electron, heavy-hole bands into heavy-
electron, light-hole bands [6]. We believe that this is also
happening in 7.5 nm material for reasons which will become
clear later. Therefore, we choose the parameters in our tight
binding model to be tE = −0.42 eV, tH = 3.32 eV, tEH =
0.275 eV, εE = 1.67 eV, and εH = −13.27 eV, correspond-
ing to changing D → −D in Ref. [19]. We also set C = 0
in our calculation since it can be absorbed in the chemical
potential. The lattice constant a is chosen to be 1 nm. The
phase diagram and mean-field parameters are studied under
a perpendicular magnetic field Bz with these parameters, for
various values of UH , UE , and UEH . We have performed
the calculation at Bz = 0 and several values of Bz � 3.5 T.
We note that the magnetic unit cell becomes too large for
numerical calculation for Bz < 3.5 T.

III. RESULTS

The mean-field parameters are determined self-
consistently. We first discuss the mean-field phase diagram
in the absence of a magnetic field. We find that the system
is in the normal, nonmagnetic state (〈ni,τ,σ 〉 = 〈ni,τ,−σ 〉) for
small UE , UH , and UEH . For given UEH and UE , the system
transits from paramagnetic phase to ferromagnetic phase and
then to antiferromagnetic phase as UH increases. The phase
diagram can be understood by comparing the model with the
single band Hubbard model, whose mean-field phase diagram
is well studied. We refer the reader to Appendix B for details.

More interestingly, our mean-field theory allows enhance-
ment of BIA terms �0 → �̃1(2) = �0 + UEH�1(2). In the fol-
lowing we shall consider weak interactions where the ground
state is nonmagnetic at Bz = 0. In this limit UE has almost
no effect due to the small occupation number of the E orbital
(see Appendix B). In Fig. 1, we show the calculated values
of �1(2) and the corresponding interaction modified BIA term
�̃1(2) for different interaction strengths UH ,UEH with fixed
UE = 1 eV at Bz = 0. We note that �1 = �2 in this case due
to TRS. We observe that �1(2) exhibits a peak at a critical
value of interaction. The peak is driven by the closing and
reopening of the bulk gap (i.e., destruction of band inversion)
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FIG. 1. (a) Self-consistent mean-field results for �1 = �2 as a
function of UEH for several values of UH at Bz = 0 and UE = 1 eV.
The left axis represents �1(2) whereas the right axis represents the
bulk gap. (b) Interaction modified BIA term �̃1 = �̃2 corresponding
to (a).
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FIG. 2. (a) Lowest LLs as a function of Bz with interaction
parameters UE = 5 eV, UH = 5 eV, UEH = 2.5 eV. The dots and
squares are calculated without and with the BIA term, respectively.
The dashed line indicates the position of the critical field. (b) Corre-
sponding �̃1(2) as a function a Bz.

as a result of change in interaction strengths, suggesting that
�1(2) is enhanced by the resonance between the electron and
hole energy levels. To see this we also show the bulk gap
for UH = 3 eV as a function of UEH in Fig. 1(a). It is clear
that the peak position in �1(2) matches with where the bulk
gap closes. The interaction modified BIA term �̃1 = �̃2 is
plotted in Fig. 1(b). It gets slightly enhanced from �0, with
a maximum enhancement of roughly 30 percent in the band
closing region. The small BIA term does not gap out the edge
but changes the spin orientation of the helical edge states [6].

Next we study the effect of the magnetic field on the BIA
term. We choose the interaction strengths to be UE = 5 eV,
UH = 5 eV, and UEH = 2.5 eV such that the resulting mean-
field band structure at zero magnetic field is almost identical
to the one when all interaction strengths are set to be zero [19].
Using these parameters, we study the interaction effect on the
BIA term under a perpendicular magnetic field.

In Fig. 2(a) we plot the LL without the BIA term (dots) and
with the BIA term (squares). We first consider the LL without
the BIA term. In this case the effective Hamiltonian near the
	 point reduces to two decoupled Dirac Hamiltonians at zero
magnetic field (see Appendix C). In the presence of a mag-
netic field, LLs are formed and the zeroth LL wave function
contains only one orbital component, E (H) orbital for spin
up (down). Due to the band inversion, the zeroth electron-like
LL has lower energy than the zeroth hole-like LL at weak
magnetic field. As the magnetic field increases, the two zeroth
Landau levels (LLs) cross at a critical magnetic field Bc where
the band inversion is destroyed. The system transits from a
QSH state to an IQH state. The critical magnetic field is
found to be around 4.5 T, which is close to the estimation
in Ref. [18]. When the BIA term is included, the crossing
of the two zeroth LLs is avoided because of hybridization
between the two LLs, which is allowed when TRS is broken.
In Fig. 2(b) we show the corresponding �̃1(2) as a function
of magnetic field. We note that �̃1 
= �̃2 in the presence of
the magnetic field, and �̃1(2) shows a peak (dip) at a magnetic
field close to the critical magnetic field Bc, suggesting that
the peak (dip) in �̃1 
= �̃2 is driven by resonance between
electron and hole energy levels as discussed before. This
resonance is absent in trivial band insulators where there is
no band inversion. The peak value of the interaction enhanced
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FIG. 3. (a) Band structure for open boundary in y-direction
without BIA term at UE = 5 eV, UH = 5 eV, UEH = 2.5 eV for dif-
ferent Bz. Columns (1)–(3) are for Bz = 4, 5.5, and 6 T respectively.
(b) Band structure with BIA term, with other parameters the same as
in (a). The inset in (2) is a zoom-in to show the nontopological edge
states.

BIA term �̃1 is about 3.65 times the bare value �0. In
contrast, �̃2 is only slightly enhanced, but this enhancement
is not important because �̃1 is the major term responsible for
the hybridization between the lowest electron and hole Landau
levels.

In the following we study the effect of enhanced �̃1 under
a magnetic field on the edge properties in our model. We
consider a sample with periodic boundary in x direction and
open boundary in y direction and calculate the corresponding
band structure at different magnetic fields Bz = 4, 5.5, 6 T,
both without and with the BIA term. The result of the cal-
culation as a function kx is shown in Fig. 3. We show only
the zeroth electron-like and hole-like LLs in Fig. 3, as they
contribute to transports in the Shen group’s experiment [18].
Without the BIA term [Fig. 3(a)],the edge is gapless when the
magnetic field is smaller than the critical field Bc ∼ 4.5 T. As
the magnetic field increases beyond Bc, the two zeroth LLs
cross and the system has transited from a QSH state to an
IQH state. Edge transport is expected only when the zeroth
LL (either electron-like or hole-like) is fully filled.

When the BIA term is added [Fig. 3(b)], a small gap is
opened on the edge at Bz = 4 T, but edge states with lower
energies than the bulk can still be observed by slight gating.
At Bz = 5.5 T, which is beyond the critical field Bc, we find a
small dip near the edge of the zeroth electron-like LL. These
(nontopological) edge-like states make possible the unusual
edge transports beyond Bc but without IQHE. When the
system is gated, electrons have to fill in theses edge-like states
first before they occupy the bulk LL, making edge conductiv-
ity possible. We note that these edge-like states appear only in
the zeroth electron-like LL but not in the zeroth hole-like LL,
consistent with the experimental result that edge conductivity
is observed with positive gate only. Furthermore, we also find
that the BIA term decreases when the magnetic field further
increases in our calculation. In particular, the nontopological
edge-like states disappear and the band structure goes back to
that of a normal IQH state when the magnetic field is beyond a
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critical value Be (see calculation result at 6 T), confirming that
these edge states are nontopological. We thus predict that the
edge transports observed in Shen’s experiment will disappear
when the magnetic field increases further.

How does a large BIA term create the nontopological edge-
like states? To understand the origin of the nontopological
edge-like states, we study the quantum Hall problem in a
confined system with an effective low energy k · p Hamil-
tonian generated from our mean-field Hamiltonian HMF near
k = 0 with the effect of the edge simulated by a confining,
linear orbital-dependent potential. The finding of this analysis
is summarized in the following. The details of our calculation
are given in Appendix C.

In the absence of the hybridization terms A = 2tEH =
�0 = 0, the quantum Hall problem reduces to four decouples
LLs described by a harmonic oscillator Hamiltonian with
eigenvalues (n + 1

2 )ωτ (τ = E , H ), and the linear potential
contributes a linear k-dependent shift in energy ∼ατ (kxl2

B −
y0) (for kxl2

B � y0) to the states near the edge; n = Landau
level index and lB = √

h̄/(e|Bz|) is the magnetic length. The
linear potential also shifts the wave function guiding center
at the edge by an amount �y = ξ ′

0lB, where ξ ′
0 = 2/π (see

Appendix C). A and �0 introduce hybridization between
the LLs, and the Landau level spacing is enhanced by a

hybridization gap ∼|� + cA|, where c ∼ −
√

2Aξ ′
0

2lB
is nonzero

only at the edge where the wave function guiding center is
shifted by an amount �y when ατ 
= 0 (see Appendix C).
As a result, the hybridization gap is effectively reduced at
the edge. This effect exists only when both A and �0 are
nonzero and competes with the linear k-dependent term which
tends to increase the energy gap between the electron and
hole LLs. When the BIA term is large enough, the later effect
dominates in a narrow region of k near the edge. This leads to
the appearance of nontopological edge states.

It is interesting to note that the size of region Sτ where
these nontopological edges appear in band τ is found to be
proportional to the band mass ∼t−1

τ (see Appendix C). For
D > 0 (B < 0), corresponding to |tE | < |tH |, we find SE >

SH , consistent with our observation that edge-like states exist
only in the electron-like LL [see Fig. 3(b)] and in agreement
with Shen’s experiment. We note that this conclusion will be
inverted if we choose D < 0. This is why we expect that the
sign of D is inverted in HgTe/Hg0.3Cd0.7Te.

IV. CONCLUSION

Summarizing, we study in this paper the interaction effect
in doped HgTe/CdTe quantum wells using a Hubbard-type
model. In the weak interaction regime where the system is not
magnetically ordered at zero magnetic field, we show that the
BIA term is enhanced and exhibits a peak when the system
undergoes a band-closing, reopening transition, driven by
either interaction or magnetic field. The BIA term is allowed
because our system breaks inversion symmetry. The effect is
small in zero magnetic field, but the BIA term is enhanced
dramatically when the band-closing, reopening transition is
driven by a magnetic field, i.e., the QSH to IQH transition.
The large BIA term introduces strong hybridization between
the zeroth spin-up electron-like LL and the zeroth spin-down

hole-like LL and leads to the formation of edge-like states near
the edge which may contribute to edge conductivity in low
carrier density when the magnetic field is not too strong. Our
result explains the “unexpected” particle-hole asymmetric
edge conductivity found in experiment [18] and predicts that
the BIA term will decrease again when the magnetic field
increases further, leading to vanishing of edge conductivity.
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APPENDIX A: TIGHT BINDING PARAMETERS

Here we outline how our tight binding Hamiltonian pa-
rameters are determined from Ref. [19]. Fourier transforming
HBHZ, we obtain

HBHZ =
∑

k


†
k

(
h(k) 0

0 h∗(−k)

)
k,

(A1)
h(k) = εkI2 + dα (k) · σα,

where k = {CE ,k,↑,CH,k,↑,CE ,k,↓,CH,k,↓}T , σα’s are Pauli
matrices,

Cτ,k,σ = 1√
N

∑
i

exp(ik · Ri )Ci,τ,σ , (A2)

where N is the total number of sites, and

εk = C − 2D

a2
[2 − cos(kx ) − cos(ky)],

dα (k) =
[

A

a
sin(kx ),−A

a
sin(ky), M(k)

]
,

M(k) = M − 2B

a2
[2 − cos(kx ) − cos(ky)],

(A3)
D = (tE + tH )/2, B = (tE − tH )/2, A = 2tEH ,

M = εE − εH

2
− 2(tE − tH ),

C = εE + εH

2
− 2(tE + tH ).

Expanding Eq. (A1) around k = 0, we obtained the Hamil-
tonian (1) in Ref. [19]. All the tight binding parameters and
the gτ factors can be identified from Table I of Ref. [19].

APPENDIX B: MEAN-FIELD PHASE DIAGRAM

We discuss the effect of interaction on HgTe/CdTe quan-
tum wells at zero magnetic field in this Appendix. The mean-
field Hamiltonian is

HMF = HBHZ + HBIA + Hz

+
∑
i,σ,τ

(Uτ 〈ni,τ,−σ 〉 + UEH 〈ni,τ̄ 〉)ni,τ,σ

− UEH (�1C
†
i,E ,↑Ci,H,↓ − �2C

†
i,H,↑Ci,E ,↓ + H.c),

(B1)
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FIG. 4. Schematic band structure illustrating the filling of the
E and H bands. The solid/dashed lines denote the parts of bands
which are occupied/empty. (a) The case for small band inversion
corresponding to HgTe/CdTe quantum wells. (b) The situation with
large band inversion.

where �1(2) = (−)〈C†
i,H (E ),↓(↑)Ci,E (H ),↑(↓)〉 and ni,τ =∑

σ ni,τ,σ . We note that �1 = �2 in the absence of a magnetic
field.

To understand the physics behind the mean-field results,
we first consider the case when the hybridization between the
E and H orbitals (tEH and �0) vanishes. In this case, the E
and H orbitals form separate bands which overlap because
of band inversion (see Fig. 4). A small part of the E band is
occupied whereas the H band is almost filled [see Fig. 5(a)].
In this case, the E and H bands are described separately by
single-band Hubbard models which are almost empty/filled.
Mean-field studies for the single-band Hubbard model on a
square lattice were carried out a long time ago [20], and
it was found that the ground state is antiferromagnetic at
and close to half filling and becomes ferromagnetic away
from half filling when the interaction strength U is larger
than a certain critical value. In HgTe/CdTe quantum wells
the E and H bands are nearly empty or fully filled at the
weak interaction limit, suggesting that we should look for
ferromagnetic phases in our mean-field theory. The antifer-
romagnetic phase is expected only if the band inversion is
so large that the two bands are both nearly half filled [the
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FIG. 5. Energy difference (�E ) between different phases as a
function of UH with UE = 0, UEH = 1 eV. The dots are data calcu-
lated self-consistently. (a) Energy difference between paramagnetic
phase and ferromagnetic phase at small UH < 10 eV. There is no
stable antiferromagnetic phase found in this region. (b) Energy
difference between paramagnetic phase and ferromagnetic phase and
energy difference between antiferromagnetic phase and ferromag-
netic phase at large UH > 15 eV. We note that the antiferromagnetic
phase becomes the ground state only at very large UH

FIG. 6. The mean-field phase diagram as a function of UH and
UEH for (a) UE = 0 and (b) UE = 10 eV. Left region: paramagnetic
phase; middle region: ferromagnetic phase; right region: antiferro-
magnetic phase. The color indicates the magnitude of the magnetic
order.

case shown in Fig. 5(b)]. We search for the paramagnetic,
ferromagnetic, and antiferromagnetic phases numerically in
our study starting from the half filled case for the BHZ model
where the chemical potential is in the gap and the system is a
topological insulator. We employ the parameters as discussed
in the main text, where tE = −0.42 eV, tH = 3.32 eV, tEH =
0.275 eV, εE = 1.67 eV, εH = −13.27 eV [19], and �0 =
0.002 eV. The lattice constant a is chosen to be 1 nm.

We first consider the case with only UH 
= 0, which is
similar to the single-band Hubbard model. We note that an
important difference between the single-band Hubbard model
and the BHZ model is that, in our case, the relative position
of the two bands depends on interaction. When UH increases,
the on-site energy of the H orbital is shifted upward while
the E orbital energy remains stationary, leading to increasing
population in the E band. Changing other interactions has
similar effects. Thus we are actually moving along a curve
in the density-interaction phase diagram of an effective one-
band Hubbard model when interaction changes. For small UH ,
only one solution with mH = mE = 0 is found. As interaction
strength increases, two self-consistent solutions appear. The
ground state is the one with lower energy. For illustration,
we shown the energy difference between different phases as
a function of UH with UE = 0, UEH = 1 eV in Fig. 5.

Including UE and UEH has effects similar to UH . UE

increases the energy of the E orbital. However, as discussed
above, when UH is weak the occupation number of the E
orbital is much smaller than H , and the effect of UE is much
smaller compared to UH because of the smallness of nE .
Therefore UE has almost no effect on the phase transition
in the weak UH limit. UEH raises the energies of the two
orbital simultaneously but with different values depending
on the occupation numbers of the two bands. The shift in
the energy of the E (H) orbital is proportional to nH (nE ).
Again, since nH � nE , the energy of the E orbital is shifted
faster than the H orbital, leading to decreasing/increasing
occupation number in the E/H orbital for UEH > 0. The roles
of UE and UEH reverse in the large UH limit when nE becomes
comparable to nH .

The dependence of the paramagnetic-ferromagnetic-
antiferromagnetic phase boundary on the interactions is sum-
marized in the phase diagram in Fig. 6. Comparing the two
phase diagrams for UE = 0 and UE = 10 eV, we see that
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a large UE shifts the paramagnetic-ferromagnetic boundary
only slightly, but it shifts the ferromagnetic-antiferromagnetic
boundary more significantly, in agreement with our analysis.

APPENDIX C: HYBRIDIZATION BETWEEN LANDAU
LEVELS AND EDGE-LIKE STATES

We discuss here how hybridization between electron- and
hole-like Landau levels leads to the emergence of the edge-
like states. We start with considering the quantum Hall prob-
lem using an effective k · p Hamiltonian generated from our
mean-field Hamiltonian HMF near k = 0 with the effect of
the edge simulated by a confining, linear orbital-dependent
potential Vτ (y) (we assume here the edge is along the x
direction). For simplicity we neglect the Zeeman energy term
and assume �̃1 = �̃2 = � in our following calculation. The
effective Hamiltonian is thus [4]

H =
∑

k

̄kHkp(k)k +
∫

d2r Vc(y)̄(r)(r), (C1a)

where (r) = {E ,↑(r), H,↑(r), E ,↓(r), H,↓(r)}T and k
is the Fourier transform of (r); and

Hkp = − σ0τ0Dk2 + σ0τz(M − Bk2a2)

+ σzτxAkx − σ0τyAky + σyτy�, (C1b)

where σi, τi, i = x, y, z are Pauli matrices acting on spin basis
and orbit basis respectively. σ0, τ0 are the corresponding 2 ×
2 identity matrices, k2 = k2

x + k2
y , D = (tE + tH )a2/2, B =

(tE − tH )a2/2, M = εE + 4tE , A = 2tEH a; and

Vτ (y) =

⎧⎪⎨
⎪⎩

−ατ (y + y0), y < −y0,

0, −y0 < y < y0,

ατ (y − y0), y > y0

(C1c)

is a linear confining potential at the edge which vanishes
in the bulk. αE > 0 and αH < 0 for the electron- and hole-
like orbitals, respectively. We consider the Landau gauge
A = −Bzyx̂ such that H is translational invariant along the x
direction and kx is a good quantum number. In this case, we
may replace ky by ky → −ih̄∂y − eBzy, and H becomes

H →

⎛
⎜⎜⎝

KE η f † 0 −�

η f KH � 0
0 � KE −η f

−� 0 −η f † KH

⎞
⎟⎟⎠, (C2)

where f = ξ

2 + ∂ξ , f † = ξ

2 − ∂ξ , ξ = √
2(y − l2

Bkx )/lB, and
η = −√

2A/lB. Kτ = Mτ + ωτ ( f † f + 1
2 ) + Vτ (y), where

ωτ = −2tτ a2/l2
B and Mτ = ετ + 4tτ . Kτ is the usual harmonic

oscillator type Hamiltonian describing electrons/holes
moving in a single orbital and the rest of the terms describe
hybridization between different orbitals.

To show how edge-like states emerge, we assume that A
and � are small compared with Landau level spacings and
treat them as perturbations. First we consider A = 0, � = 0.
In this case the eigenvalues and wave functions at the right
edge (kxl2

B > y0) are given by

ετ
n,σ (kx ) = Mτ + ωτ

(
n + 1

2

) + ατ

(
kxl2

B − y0
)
, (C3)

〈ξ |φn,τ,σ (kx )〉 = exp(ikxx)√
N

exp[−(ξ − ξ ′
n)2/2]√

2nn!
√

π

× Hn(ξ − ξ ′
n)vτ,σ , (C4)

where n’s are Landau level indices, Hn is the Hermitian
polynomial, vE ,↑ = {1, 0, 0, 0}T , vH,↑ = {0, 1, 0, 0}T , vE ,↓ =
{0, 0, 1, 0}T , and vH,↓ = {0, 0, 0, 1}T . N is the number of sites
in the x direction. The first two terms in ετ

n,σ (kx ) describe
the bulk LL energy. The last term, which is linear in kx,
is the result of the linear edge potential. Besides the linear
dispersion, the linear potential also shifts the wave function

guiding center by an amount ξ ′
n = ατ

√
2l3

B
2tτ a2 in Eq. (C4).

To determine the value of ατ , we notice that the linear
potential gives rise to a drift velocity vd,τ = ατ l2

B/h̄ along
the edge. The slope ατ can be determined by comparing
this drift velocity with the drift velocity computed for IQH
states with a sharp edge, where the semi-classical picture
gives vd,τ = 2/π

√
ωτ (n + 1/2)/m∗

τ . m∗
τ ≈ −h̄2/(tτ a2) is the

effective mass of τ orbital near the band edge. Comparing the
two results, we find that ατ ∼ − tτ a2

l3
B

. Substituting into ξ ′
n we

find that the wave function shift depends on the LL index only,
with ξ ′

n = 2
√

2/π
√

n + 1/2.
When A and � are turned on, A couples in the

bulk |φ1,E ,↑(kx )〉 with |φ0,H,↑(kx )〉 and |φ0,E ,↓(kx )〉 with
|φ1,H,↓(kx )〉. What is interesting is that the n = 0 elec-
tron and hole levels |φ0,E ,σ (kx )〉 and |φ0,H,σ (kx )〉 are also
coupled at the edge due to the shift in the guiding cen-
ter of the wave functions. With this in mind we write
down an effective Hamiltonian for the n = 0 LLs. In the
basis {|φ0,E ,↑(kx )〉, |φ0,H,↑(kx )〉, |φ0,E ,↓(kx )〉, |φ0,H,↓(kx )〉}T ,
the effective Hamiltonian becomes

H0 =
(

H0,↑ H�

H†
� H0,↓

)
,

H0,σ =
(

εE
0,σ sηh0

sηh0 εH
0,σ

)
, H� =

(
0 −�

� 0

)
, (C5)

where s = +(−)1 for σ =↑ (↓) and

h0 = 〈φ0,E ,↑(kx )| f †σzτx|φ0,H,↑(kx )〉

= 〈φ0,E ,↑(kx )|ξ − ξ ′
0

2
− ∂ξ−ξ ′

0
+ ξ ′

0/2|φ0,E ,↑(kx )〉
= ξ ′

0/2 (C6)

is the matrix element describing the (same spin) electron-hole
hybridization. σzτx is the operator that flips the orbital index.
h0 vanishes in the bulk and is nonzero only in the edge
due to the shift in the wave function guiding center by the
linear potential, as illustrated above. It is straightforward to
diagonalize H0 to obtain the eigen-energies

εp,±(kx ) = εE
0,↑(kx ) + εH

0,↓(kx )

2
± εp,0(kx ), (C7a)

where

εp,0(kx ) =

√√√√(
εE

0,↑(kx ) − εH
0,↓(kx )

2

)2

+ (� + ηξ ′
0/2)2

(C7b)
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FIG. 7. Schematic band structure to illustrate the emergence of
the edge-like state for the zeroth LL. Without the BIA term, the
zeroth LL has same spin electron-hole hybridization only at the edge
(solid line) arising from A term ∼tEH . When BIA term is turned on, it
opens a hybridization gap (dashed line) at the bulk while the effective
hybridization ∼|� + cA| is weakened at the edge.

and

εm,±(kx ) = εE
0,↓(kx ) + εH

0,↑(kx )

2
± εm,0(kx ), (C7c)

where

εm,0(kx ) =

√√√√(
εE

0,↓(kx ) − εH
0,↑(kx )

2

)2

+ (� − ηξ ′
0/2)2.

(C7d)

The first term under the square root is the unperturbed LL
spacing. The second term, (� ± ηξ ′

0/2)2, is the hybridization
contributed by A and �. The low energy sector is described
by εp,± since η < 0 from our band parameters. We notice that

the hybridization term (� + ηξ ′
0/2) at the edge is smaller than

that of in the bulk (∼�) as long as � > −ηξ ′
0/4. This effect

exists only when both η ∼ A and � are nonzero. This physical
picture is illustrated in Fig. 7.

As a result, it is possible that εp,+(−)(kx ) at the edge
(|kx|l2

B > y0) are smaller than their values in bulk (|kx|l2
B < y0).

Assuming �0 + ηξ ′
0/2 � [εE

0,↑(kx ) − εH
0,↓(kx )]/2, we obtain

εp,+(−)(|kx| < y0) ∼ ωE (H ) ± �2

ωE − ωH

and

εp,+(−)(|kx| > y0) ∼ ωE (H ) + αE (H )
(|kx|l2

B − y0
)

(C8)

± (� + ηξ ′
0/2)2

ωE − ωH + (αE − αH )
(|kx|2l2

B − y0
) . (C9)

We have neglected Mτ since its not important beyond crit-
ical magnetic field Bc defined in main text. It is easy to
see that there exists a finite region y0 < kxl2

B < kcl2
B where

εp,+(−)(|kx|l2
B < y0) > εp,+(−)(|kx|l2

B > y0).
By keeping terms up to first order in kxl2

B − y0, kc is given
by

�τ + ξ ′
0η

4
≈ −2(tH − tE )|tτ |a4

(
kcl2

B − y0
)

ηξ ′
0l5

B

. (C10)

We note that kc depends on the magnitude of hopping tτ .
When |tE | < |tH |, corresponding to D > 0, kE

c > kH
c and the

nontopological edge state is easier to observe in the electron-
like LL, consistent with the experimental result. Therefore, we
chose D > 0 for the calculation in the main text.
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