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Symmetry-enforced Dirac points in antiferromagnetic semiconductors
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It is shown that the symmetry-enforced Dirac points exist at some time-reversal symmetric momenta in the
antiferromagnetic compound GdB4. These Dirac points may be controlled by the external magnetic field or by
the deformation of the crystal. Application of the external magnetic field leads to splitting of these points into
Weyl points or to opening of a gap depending on the field direction. The application of the symmetry-breaking
deformation also opens a gap in the spectrum. Suppression of the antiferromagnetic order leads to the formation
of the nodal line instead of the Dirac points. This indicates that the symmetry-enforced Dirac semimetals may
be effectively used in different spintronic devices.
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I. INTRODUCTION

Recent developments in the field of antiferromagnetic
spintronics [1–3] have stimulated the search for materials
susceptible to the antiferromagnetic (AFM) order parameter.
There are few reports where the AFM order was controlled by
an electric current in CuMnAs [4,5] and in Mn2A [6]. Among
the materials which are very susceptible to the AFM order are
Dirac semimetals. It was argued that the room-temperature
AFM metal MnPd2 allows the electric control of the Dirac
nodal line [7]. Dirac fermions were predicted in the AFM
semimetals CuMnAs and CuMnP [8]. In these materials, it
was suggested that the Dirac fermions may be electrically
controlled by the spin-orbit torque [5].

It is known that there are two types of Dirac semimetals
[9]. The first type occurs due to band inversion. In that case,
the Dirac node can occur when two inverted bands undergo
an accidental band crossing. This crossing is unstable at any
general point of the Brillouin zone (BZ). For a general point
of the BZ, the small group is trivial and these two bands will
be hybridized, producing a band gap [9]. The situation may be
different when the crossing occurs along some high-symmetry
line in the BZ. In that case, the two crossing bands may belong
to two different irreducible representations of the small group
and this prevents the hybridization [9]. This type of Dirac
points is very sensitive to parameters of the Hamiltonian. It
means that by continuous tuning of the parameters of the
Hamiltonian, we may uninvert the bands and two symmetric
Dirac points annihilate [9]. Note that all proposed Dirac points
in AFM metals [5,7,8] belong to this type. It is clear from
the Hamiltonian introduced in Eq. (1) of Ref. [5] that if
we continuously change the exchange interaction and make
it larger than the spin-orbit coupling, the two Dirac points
disappear without any change of the symmetry.

The second type of Dirac semimetals is the symmetry-
enforced Dirac semimetal [9,10]. This type of a Dirac point
does not depend on the parameters of the Hamiltonian and is
determined only by the symmetry properties of the system.
The symmetry criterion for the existence of the symmetry-
enforced Dirac semimetal was formulated by Young et al.

[10]. The group should allow four-dimensional spinor rep-
resentations of the small group at some point k of the BZ.
The band velocities must be nonzero at this point k. It means
that the square of the four-dimensional spinor representation
of the small group must contain the vector representation [11].
And, finally, branches of the valence and the conduction bands
should not be degenerate away from k. There is a substantial
amount of the space groups that satisfies these criteria [9].
Note that the only way to destroy the symmetry-enforced
Dirac point is to reduce the symmetry. Any continuous change
of the parameters of the Hamiltonian will not affect this Dirac
point.

The situation in AFM semimetals is different because the
symmetry of an antiferromagnet is substantially different from
the symmetry of a paramagnetic semimetal. In AFM semimet-
als, the time-reversal symmetry is broken. It means that in
general, the Kramers degeneracy is broken. Nevertheless,
in AFM materials, the time-reversal operation θ very often
comes together with some spatial operation and this leads
to the restoration of the Kramers degeneracy. This situation
occurs in CuMnAs [5,8], where the product of the time-
reversal operation θ with the inversion symmetry I is the true
symmetry operation of the AFM crystal.

In order to describe the symmetry-enforced Dirac points
in AFM materials, we have to know irreducible corepresen-
tations of the nonunitary group [12,13]. The criterion for the
symmetry-enforced Dirac point is almost the same as in the
paramagnetic semimetal. The nonunitary group should allow
four-dimensional spinor corepresentations of the small group
at some point k of the BZ, the band velocities must be nonzero
at this point, and this degeneracy should be lifted away from
the k point.

In addition, there is one very interesting and very spe-
cific property of AFM conductors. Usually application of
the magnetic field in ordinary metals and semiconductors
lifts the Kramers degeneracy. In AFM conductors, there are
special points in the BZ where the Kramers degeneracy is
preserved when the magnetic field is perpendicular to the
sublattice magnetization of the AFM conductor [14,15]. This
is usually observed experimentally as the absence of g factors
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FIG. 1. (a) The magnetic structure of the AFM state of the tetragonal GdB4. Arrows indicate the direction of the magnetic moments of Gd
ions. (b) High-symmetry TRIM in the BZ of GdB4. R and X points have the two-arm costar, while �, Z , M, and A points have the one-arm
costar.

in quantum oscillation measurements [16]. This is, again,
related to the fact that the spin rotation together with the
time-reversal operation and the AFM translation is the true
symmetry operation in the AFM crystal [14,15].

In this paper, using AFM crystal GdB4 as an example, I
show that the symmetry-enforced Dirac points exist at some
high-symmetry points of the BZ. These Dirac points are
very sensitive to the symmetry and they disappear in the
paramagnetic phase forming the Dirac nodal line. Application
of the external magnetic field splits a Dirac point into two
Weil points with opposite Chern numbers when the field is
perpendicular to magnetization in all sublattices. At certain
directions of the external magnetic field, the Kramers de-
generacy is preserved at some high-symmetry points of the
BZ, even in the case of strong spin-orbit interaction and in
the case of noncollinear AFM order. Here I assume that the
spin-orbit interaction is strong and spins are transformed by
lattice rotations, i.e., the rotational symmetry in the spin space
is broken.

II. THEORY OF A SYMMETRY-ENFORCED DIRAC POINT
IN ANTIFERROMAGNETS

Figure 1(a) shows the crystal structure of tetragonal GdB4

in the metallic [17] AFM state. The Gd atoms are arranged
in a four-sublattice AFM structure with magnetic moments
M = (±M,±M, 0), with M = 5.05μB, and μB is the Bohr
magneton. Above the Neel temperature Tn = 42 K, in the
paramagnetic phase, it has a nonsymmorphic space group
P4/mbm (No. 127). Below the Neel temperature TN , it has
magnetic space group P4/m′b′m′ (No. 127.395) in Belov-
Neronova-Smirnova settings [13]. The nonunitary group for
this material may be written as

G = D2
4 + θ ID2

4, (1)

where θ is the time-reversal antiunitary operation, I is the
space inversion, and D2

4 (No. 90) is the unitary subgroup of
the magnetic space group. It is important to underline that
for GdB4, neither the inversion I nor the time inversion θ

are the symmetry operation, but the product θ I is the true

symmetry operation of the AFM crystal. It means that the
Kramers degeneracy is preserved.

The standard way of construction of corepresentations is
as follows. First the time-reversal invariant momenta (TRIM)
of the BZ should be identified. For this magnetic group,
there is the following TRIM: �(0, 0, 0), X (0, π/τ, 0),
R(0, π/τ, π/τz ), M(π/τ, π/τ, 0), Z (0, 0, π/τz ), and
A(π/τ, π/τ, π/τz ) [Fig. 1(b)], where τ is the translation
in the x and y directions and τz is the translation along the z
axis. The X and R points have the two-arm costar; all other
momenta of TRIM have the single-arm costar. The � point
is not relevant because it does not have four-dimensional
corepresentations. For all other points, it is necessary to
conduct further analysis. The next step is to identify the
small group and the unitary subgroup for every TRIM.
After the small group and unitary subgroup are identified,
the irreducible representations of the unitary subgroup
should be constructed [12]. In order to construct irreducible
corepresentations of the small group from irreducible
representations of the unitary subgroup, the type of the
corepresentation should be identified. For that purpose, the
sum of characters of squares of the antiunitary elements
should be calculated,

σ = 1

N

∑
a

χ (a2), (2)

where N is the order of the unitary subgroup [13]. If σ = 1,
the corepresentation belongs to type “a” and the irreducible
representation of the unitary subgroup generates one irre-
ducible corepresentation of the small group of the same di-
mensionality. There is no additional degeneracy in that case. If
σ = −1, the corepresentation belongs to the type “b” and the
irreducible representation of the unitary subgroup generates
one irreducible corepresentation of doubled dimensionality.
Therefore, there is additional degeneracy in that case. And,
finally, if σ = 0, the corepresentation belongs to type “c.” In
that case, the two irreducible representations of the unitary
subgroup with σ = 0 are merged to form one corepresentation
with doubled dimensionality. This also leads to additional
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degeneracy. The matrices of irreducible corepresentations
may be easily constructed using the formulas from [12,13].

At this point, it is easy to see that the Kramers degeneracy
is preserved in GdB4. In a general point of the BZ, the small
group contains only two elements: e and θ I . There is only
the trivial representation of the unitary subgroup of the small
group. The square of the antiunitary element (θ I )2 = −e.
Here, the relation θ2 = −e for spinor representations was used
[13]. Therefore, σ = −1 and the one-dimensional representa-
tion of the unitary subgroup generates the two-dimensional
corepresentation of the small group. Therefore, the Kramers
degeneracy is preserved.

The small groups for X and R points coincide and consist
of e, c2x|α), c2y|α), c2z, θ I, θσx|α), θσy|α), θσz, where α =
(τ/2, τ/2, 0) is the nontrivial translation, and N = 4. There
are four one-dimensional irreducible representations of the
unitary subgroup of the small group [12]. The sum of char-
acters of squares of the antiunitary elements [Eq. (2)] σ = 0
for both X and R momenta. Therefore, these corepresentations
belong to type “c” [12,13]. As a result, two two-dimensional
corepresentations of the small group are formed. Therefore,
we conclude that the X and R points cannot host the Dirac
point.

The small group for TRIM Z , M, and A coincides with the
symmetry group of the AFM state [Eq. (1)] with N = 8. The
main difference between the Z point and M and A points is that
the phase factors due to nontrivial translations are different.
In all cases, the unitary subgroup of the small group has
two two-dimensional irreducible representations [12]. Since
for the momentum Z (0, 0, π/τz ) the exponent exp (−2ikα) =
1, the nontrivial translations do not have any effect on the
criterion given by Eq. (2). The situation is exactly the same
as for the � point. Therefore, σ = 1, and all irreducible
corepresentations belong to type “a” [12,13]. Therefore, each
irreducible representation of the unitary subgroup generates
one irreducible corepresentation of the same dimensionality.
Therefore, in the Z point of the BZ, there are two two-
dimensional corepresentations. This point cannot host a Dirac
point as well.

The situation is very different at TRIM M and A. The
unitary subgroup of the small group has two two-dimensional
representations, which formally are equal for both TRIM [12].
But because exp (−2ikα) = −1 for both TRIM, the sum of
squares of the antiunitary elements σ = 0. Therefore, these
two representations belong to type “c” [12,13] and form the
four-dimensional corepresentation. Therefore, TRIM M and
A can host a Dirac point. Indeed, the square of the corepresen-
tation at the M and A points contains the vector representation
and the fourfold degeneracy is lifted when k moves away from
the M and A points of the BZ.

Note that the situation is different in the paramagnetic
phase of GdB4. Again, the corepresentations in the points
M and A are four dimensional. Therefore, these points can
host a Dirac point. Nevertheless, this degeneracy is not lifted
along the M − A [Fig. 1(b)] line of the BZ. Therefore, these
points do not host the true Dirac points. This fact demonstrates
that the details of the spectrum may be controlled by the
destruction of the AFM order.

In order to construct the Hamiltonian describing the spec-
trum near the M and A points, it is necessary to construct the

matrices of irreducible spinor corepresentations for the group
generators. Since all irreducible corepresentations belong to
type “c,” this construction is reduced to the merging of two
two-dimensional representations of the unitary subgroup in
one four-dimensional corepresentation [12,13]. Using data
from Ref. [12], one can construct irreducible corepresenta-
tions for group generators D(c2x|α) = −τ0 ⊗ σz, D(c4z ) =
−τz ⊗ (iσ0 + σy)/

√
2, and D(θ I ) = −τy ⊗ iσ0, where τi and

σ j are two sets of Pauli matrices. The irreducible corepresen-
tations for other elements of the group may be obtained from
the products of these generators.

Consider the Hamiltonian matrix constructed in the same
basis as irreducible corepresentation. This Hamiltonian trans-
forms under group elements g as

D−1(g)H (k, H)D(g) = H (g−1k, g−1H). (3)

Here, k is the deviation of momentum from the M or A point,
and H is the external magnetic field. This relation expresses
the invariance of the Hamiltonian towards the transformation
g [11] (see, also, Ref. [18]). This equation may be used to
construct the Hamiltonian matrix. In practice, it is useful
to consider 16 basis 4 × 4 matrices τi ⊗ σ j and construct
invariant forms using this set of matrices.

Using matrices of corepresentations for the group gener-
ators, it is easy to show that the following expressions are
invariant under the group transformation τ0 ⊗ (kxσz + kyσx )
and kzτz ⊗ σy. Therefore, the Hamiltonian has the following
form:

Hk = v1τ0 ⊗ (kxσz + kyσx ) + v2kzτz ⊗ σy. (4)

This Hamiltonian has two independent velocities v1 and v2

and has the standard Dirac spectrum,

ε(k) = ±
√

v2
1

(
k2

x + k2
y

) + v2
z k2

z .

Each branch of this spectrum is twofold Kramers degenerate.
In a similar way, it is possible to include the magnetic

field in this Hamiltonian. The field-dependent part of the
Hamiltonian has two independent real constants g1 and g2 as
well as one complex constant g3, which play the role of the
k-independent g factors. Therefore, the total Hamiltonian has
the form

H = Hk + g1τz ⊗ (Hyσz + Hxσx )

+ g2Hzτ0 ⊗ σy + g3τ+ ⊗ (Hxσz + Hyσx )

+ g∗
3τ− ⊗ (Hxσz + Hyσx ), (5)

where τ± = (τx ± iτy)/2. This Hamiltonian describes the
electronic spectrum of GdB4 near the M and A points of the
BZ in the lowest linear order in ki and Hi. The spectrum may
be calculated analytically and is represented by the expression

ε(k, H) = ±[Ak,H ± √
Bk,H + Ck,H + Dk,H + Ek,H]1/2,

(6)

where

Ak,H = v2
1

(
k2

x + k2
y

) + v2
2k2

z + (
g2

1 + |g3|2
)

× (
H2

x + H2
y

) + g2
2H2

z ,

Bk,H = 4[v1g1(kxHx + kyHy) + v2g2kzHz]
2

Ck,H = 4|g3|2H2
x

(
g2

1H2
x + v2

1k2
y + v2

2k2
z

)
,
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FIG. 2. (a) The splittings of the Dirac point into two Weyl
points in the external magnetic field H = (0, 0, 0.2) for v1 = v2 = 1
and g1 = g2 = 1 and g3 = 1/

√
2. All coefficients for higher-order

invariants are equal to 1. The Kramers degeneracy is preserved at
kx = ky = kz = 0. (b) Opening of the gap in the spectrum in the
external magnetic field H = (0.2, 0, 0). All parameters are the same
as in (a). The gap is quadratic in field. The Kramers degeneracy is
lifted.

Dk,H = 4|g3|2H2
y

(
g2

1H2
y + v2

1k2
x + v2

2k2
z

)
,

Ek,H = 8|g3|2HxHy
(
v2

1kxky − g2
1HxHy

)
.

This spectrum is derived in the lowest order in ki and Hi.
Note that there are few invariants which are proportional to
the products kik j and kiHj . These invariants are irrelevant in
the vicinity of the k = 0 point, but may have an effect at finite
k. Therefore, for the discussion of the splitting of a Dirac point
in the finite magnetic field, these invariants should be included
in the Hamiltonian.

In the case when the field is directed along the z axis, i.e.,
perpendicular to all magnetization vectors, the Dirac point is
unstable [Fig. (2a)]. As in the case of nonmagnetic materials
[10], two Weyl points with opposite Chern numbers appear at
the points (0, 0,±g2Hz/v2). The only second-order invariant
which influences the details of the spectrum is kzHzτz ⊗ σ0.
It is clear that this term in the Hamiltonian slightly shifts the
Weyl points in energy but does not affect the position of the
Weyl points. The Kramers degeneracy is lifted everywhere
except the plane kz = 0 in the linear approximation [Eq. (6)].
The second-order invariants lift the degeneracy everywhere,
except exactly the M and A points of the BZ [Fig. (2a)], in
agreement with Refs. [14,15]. In these points, the Kramers
degeneracy is preserved, i.e., the energy of the spin-up and
spin-down electrons is the same.

When the field is parallel to the magnetization in two
sublattices and perpendicular to the magnetization in two
other sublattices, H = (H,±H, 0), in linear approximation
[Eq. (6)], a Dirac point splits into two Weyl points with oppo-
site Chern numbers at the points

√
g2

1 + |g3|2H/v1(1,±1, 0).
In that case, the important invariant of the second order is
(kxky)(βτ+ ⊗ σy + H.c.), and β is a complex constant. Due

to this invariant, as in the case of nonmagnetic materials [10],
a small gap proportional to H2 opens in the spectrum. The
system becomes insulating. The Kramers degeneracy in linear
approximation [Eq. (6)] is preserved on the line determined
by the conditions kz = 0 and kx ± ky = 0. Second-order in-
variants lift this degeneracy everywhere except the M and A
points of the BZ [14,15].

The situation is different when the field is directed along
the x or y axis. The field is not orthogonal to any sublat-
tice magnetization. A Dirac point is also unstable. In linear
approximation [Eq. (6)], it splits into two Weyl points at
the points (±

√
g2

1 − |g3|2Hx/v1, 0, 0) if g1 > |g3| and to the
nodal circle which is determined by the equation v2

1k2
y +

v2
2k2

z = (|g3|2 − g2
1)H2

x if g1 < |g3|. But the higher-order in-
variant (kxHx − kyHy)(γ τ+ ⊗ σ0 + H.c.) (γ is a complex con-
stant) is not zero at kx = 0 or ky = 0 and leads to the opening
of a small gap in the spectrum [Fig. (2b)]. This gap is
quadratic in the field (∝H2

x ). Therefore, for this direction of
the field, the system is insulating. For that case, the Kramers
degeneracy is lifted everywhere [Fig. (2b)], i.e., at every point
of the BZ, the spectrum shows the Zeeman splitting.

III. DISCUSSION

Figure 2 demonstrates how a Dirac spectrum may be
controlled by the external magnetic field. Note that the ex-
ternal magnetic field in arbitrary direction eliminates a nodal
spectrum, leading to the small quadratic in the field gap. The
gapless spectrum exists only if the external field is orthogo-
nal to the sublattice magnetization. There is another way to
induce the true metal-insulating transition in an AFM Dirac
semimetal. Since the Dirac point is enforced by the symmetry,
the reduction of the fourfold rotation symmetry of the Hamil-
tonian by any perturbation will lead to the true dielectrization
of the spectrum. This reduction of the symmetry may be
achieved either by rotation of sublattice magnetization or by
applying the symmetry-breaking deformation. Indeed, let us
consider the deformation of the crystal which is characterized
by the strain tensor εxy and which breaks the fourfold rotation
axis. The invariant Hamiltonian in that case can be written in
the form

H = Hk + Aτ+σyεxy + A∗τ−σyεxy,

where A is the complex constant. This leads to the gapped
spectrum

ε(k) = ±
√

v2
1

(
k2

x + k2
y

) + v2
z k2

z + |A|2ε2
xy.

This expression describes two branches of the spectra.
Each branch is twofold Kramers degenerate. This expression
demonstrates that the spectrum of the symmetry-enforced
Dirac point in the AFM state may be controlled by the
perturbation which breaks the fourfold rotation axis.

The main question is whether a Dirac point in the M and
A high-symmetry points of the BZ is in the vicinity of the
Fermi energy. There is only one paper with band structure
calculations in the paramagnetic phase of GdB4 [19]. From
these calculations, it is clear that there are branches of the
spectrum at the M point of the BZ which are very close to the
Fermi energy. On the other hand, the spectrum in the A point
is gapped. Therefore, if the formation of the AFM state will
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not renormalize the spectrum near the M point, we can expect
that the Dirac point will be in close vicinity to the Fermi level.

In conclusion, using the symmetry arguments, I have
shown that the symmetry-enforced Dirac points exist in some
TRIM of the BZ in GdB4. These Dirac points are very sensi-
tive to external perturbations. The application of the magnetic
field leads to the disappearance of a Dirac point and the
appearance of two Weyl points in the spectrum when the field
is parallel to the z axis and perpendicular to the magnetization
in all sublattices. For other directions of the magnetic field,
the spectrum is gapped. Dirac points also disappear when the
AFM order is destroyed. And, finally, the application of the
perturbation which breaks the fourfold axis in the AFM state
leads to the gapped spectrum.

Note added in proofs. Recently, I became aware about two
publications, which are directly related to the studied subject
[20,21]. In the first paper [20] the authors were able to find
similar Dirac points in 2D antiferromagnetic phase of FeSe.
In the second publication [21] a topological classification of
the space group symmetry protected phases is presented.
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