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First-principles many-body models for electron transport through molecular nanomagnets
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Impressive advances in the field of molecular spintronics allow one to study electron transport through
individual magnetic molecules embedded between metallic leads in the purely quantum regime of single electron
tunneling. Besides fundamental interest, this experimental setup, in which a single molecule is manipulated by
electronic means, provides the elementary units of possible forthcoming technological applications, ranging
from spin valves to transistors and qubits for quantum information processing. Theoretically, while for weakly
correlated molecular junctions established first-principles techniques do enable the system-specific description of
transport phenomena, methods of similar power and flexibility are still lacking for junctions involving strongly
correlated molecular nanomagnets. Here we propose an efficient scheme based on the ab initio construction
of material-specific Hubbard models and on the master-equation formalism. We apply this approach to a
representative case, the {Ni2} molecular spin dimer, in the regime of weak molecule-electrode coupling, the one
relevant for quantum-information applications. Our approach allows us to study in a realistic setting many-body
effects such as current suppression and negative differential conductance. We think that this method has the
potential for becoming a very useful tool for describing transport phenomena in strongly correlated molecules.
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I. INTRODUCTION

The emerging field of molecular spintronics has paved the
way to the manipulation and read-out of individual spins by
electronic means, with an unprecedented degree of control [1].
The contemporary exploitation of electronic and spin degrees
of freedom at the single-molecule level can give rise to a
hybrid architecture, which combines the best characteristics
of the two worlds: the fast, local electric control [2,3] and
the protection from the detrimental effect of decoherence,
ensured by the spins [4,5]. A possible application of this
setup is provided by quantum information processing (QIP)
[6]. Indeed, bottom-up nanofabrication techniques can be
exploited to realize quantum computing architectures starting
from their individual components, namely from a set of in-
teracting qubits. Potential building blocks for designing such
devices are molecular nanomagnets (MNMs), which can be
used to encode qubits in QIP architectures [7–17], potentially
competitive with current leading technologies [18]. MNMs
are clusters containing transition metal or rare-earth ions em-
bedded in an organic sheath that can be tailored to bind them
onto surfaces. The ability to control intra- and intermolecular
magnetic interactions almost at will by coordination chem-
istry, thus realizing complex structures such as even- and odd-
membered rings [19–23], and the remarkably long coherence
times reported for some of them [4,24–28], makes these
systems particularly attractive for technological applications.

*stefano.carretta@unipr.it
†e.pavarini@fz-juelich.de

Electric read-out of the magnetization and even of the nu-
clear spin state of single-molecule magnets has already been
demonstrated using a three-terminal geometry which acts as a
single-electron transistor [1,29]. In this apparatus, the MNM
bridges the gap between the two conducting nanoleads and is
also connected to a gate voltage, which is used (in the regime
of weak coupling to the leads) to control the quantized charge
on the MNM. As soon as bias or gate voltages lift Coulomb
blockade, transport occurs via tunneling of single electrons
in and out of the molecule. Hence, information about the
magnetic properties of the MNM can be obtained by transport
measurements [30,31].

In view of designing new platforms for QIP, first-principles
methods are essential tools to characterize the behavior of
MNMs embedded in a molecular spintronics architecture
[32]. Indeed, only these approaches can provide the detailed
understanding of the mechanisms underlying inter- and in-
tramolecular interactions, which is key to realize an efficient
QIP scheme. Unfortunately, typically MNMs are also strongly
correlated molecules, and for strongly correlated molecules
the ab initio description of transport experiments remains to
date a challenge.

The most commonly adopted theoretical approaches to
describe transport in molecular devices fall in two cate-
gories. The first category is the one of ab initio methods
based on density-functional theory (DFT), typically combined
with either the Landauer-Büttiker method or nonequilibrium
Green’s functions. In studies based on these approaches, the
material aspects are successfully taken into account (see,
e.g., Refs. [33–36]), but correlation effects are treated at
a mean-field-like level, via simple approximations to the
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exact DFT exchange-correlation functional. However, nei-
ther LDA/GGA, LDA/GGA+U nor hybrid functionals cor-
rectly describe the excited spectrum of a strongly correlated
molecule. This class of approaches is thus bound to fail in
properly capturing phenomena escaping the static mean-field
description. Examples are the complete current suppression
or the negative differential conductance [37,38]. Alternative
first-principles schemes are, e.g., based on time-dependent
DFT; the latter, however, treats transport as a time-dependent
phenomenon instead of focusing on steady-state properties.
For steady-state properties, particularly promising appears the
recently proposed i-DFT scheme, in which the exchange-
correlation potential depends not only on the density but
also on the steady current. Unfortunately, however, the i-DFT
exchange-correlation potential is so far only known for simple
exactly solvable many-body models [39].

The second category of approaches is based on effective
models (see, e.g., Refs. [40–42]). Here, nontrivial many-
body effects beyond static mean field are correctly described.
The models are, however, typically empirical, often based
on low-energy spin-only Hamiltonians, and their parameters
are usually obtained by fitting experiments. This limits their
actual predictive power and makes it difficult to account for
nontrivial material aspects. So far, very few attempts to go
beyond this, building many-body Hamiltonians ab initio, were
reported. Among these, Ref. [43] for a junction involving the
molecule S-C6H4-S and Ref. [44] for dicyanovinyl-substituted
quinquethiophene, focusing on LUMO and LUMO + 1 states.
For complex molecular systems with one or more ions with d
and/or f open shells to be included in the model, this remains
a great challenge.

In this paper, we propose an alternative practical scheme,
applicable in principle to strongly correlated molecules of any
complexity, and which allows us to treat both many-body
and material aspects on the same footing. The scheme is
designed for the weak molecule-electrode coupling regime, in
which the potential qubits keep the properties of the isolated
molecules and hence are promising for QIP applications.
We show the power of the method for a prototypical case,
the {Ni2} molecule [45,46]. Transition metal dimers of this
form have already been studied as test beds for transport
phenomena, such as Kondo effect or singlet-triplet switching
by a bias voltage [47]. For {Ni2}-based junctions (see Fig. 1),
we predict clear signatures of strong correlation effects, and
in particular the onset of spin blockade and negative differ-
ential conductance. Based on our system-specific model, we
can relate these phenomena to the intrinsic properties of the
system studied and determine the optimal experimental setup
for which they can be observed.

The proposed approach is an extension to transport through
molecular junctions of the method we recently introduced in
Ref. [48] for describing the magnetic properties of correlated
nanomagnets. It combines DFT and many-body (MB) meth-
ods, and thus we refer to it in short as DFT + MB approach.
We have already proved that this technique is very successful
for the description of the magnetic properties of MNMs at
equilibrium [11,48–50]. Our approach has no free parameters
and does not rely on a phenomenological description of the
molecule via a spin Hamiltonian, which only holds when
charge fluctuations are negligible. For describing transport

FIG. 1. Structure of the molecular junction in two configurations:
serial (a) and parallel (b). The {Ni2} molecule is placed at a ∼6 −
10 Å distance from the Au clusters.

experiments, we proceed as follows. First we build system-
specific Hubbard models for the molecule + leads system.
In this initial step, we use the model-building part of the
DFT + MB approach as introduced in Ref. [48]. Next we
use the Hubbard Hamiltonians obtained in this way to set up
system-specific master equations. The solution of the latter
allows us to calculate the stability diagrams typically mea-
sured in transport experiments. In this second step, it would
be in principle necessary to diagonalize the full Hubbard
model in Fock space. For the {Ni2} molecule, this can be
done exactly without exploiting symmetries. In general, for
large molecules, the size of the Fock space becomes quickly
prohibitively large, however. This is the bottleneck of the
approach. Nevertheless, here we show that one can use the
irreducible tensors technique, extended to fermionic operators
[51–53], to strongly decrease both memory needs and compu-
tational time. This irreducible-tensors-based approach extends
the perspective application of our scheme to significantly
larger molecules.

The paper is organized as follows. In Sec. II, we intro-
duce the ab initio DFT + MB approach to electron trans-
port through correlated molecular junctions. Here we also
explain how we set up and solve the master equations and
the fermionic irreducible tensor technique. In Sec. III, we
present the results for the prototypical spin dimer Ni2, with
focus on the peculiar many-body signatures emerging from
our description. We finally draw the conclusions in Sec. IV.

II. METHODS

In this paper, we focus on the weak molecule-electrode
coupling regime, where the molecular properties remain al-
most unaltered by the contact with the electrodes. In this
regime, the molecule is sufficiently far from the metallic leads,
the hybridization is weak, and the specifics of the electrodes
are not so important. This allows us to concentrate on molecu-
lar properties (rather than on the molecule-electrode coupling,
which is specific to any experimental implementation) and
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hence to use the leads only as a manipulation tool of the
molecular state. This is also the most interesting regime for
QIP applications [6], reducing decoherence originating from
the coupling to the metallic electrodes. Our procedure can be
then summarized in these three steps:

(1) We first perform DFT + MB calculations [11,48–50]
for the system consisting of the target molecule embedded
between two gold clusters (see Fig. 1). Using this approach,
we extract the parameters of the generalized Hubbard model
for the molecule and the associated molecule-lead tunneling
rates.

(2) Next we diagonalize the Hubbard model (in the zero
molecule-lead tunneling limit) and obtain the molecular
many-body states for each charge sector, with fixed number
of electrons N . This is done by exploiting molecular point-
group symmetries and rotational invariance (in the limit of
weak spin-orbit coupling) and with the help of the fermionic
irreducible tensor operators method.

(3) We then write the master equation for the population
of the molecular Fock states and look for the steady-state
solution. We finally compute observables—here the current
and differential conductance—as a function of bias and gate
voltage.

In the next subsections, we give additional details on each
of the three steps.

A. DFT + MB approach

We construct system-specific generalized Hubbard models
along the lines of Refs. [48,49]. With respect to our previous
works, the main difference in this step is that the system
under investigation (Fig. 1) consists of a correlated-electron
molecule embedded between two metallic electrodes contain-
ing uncorrelated electrons. First, we perform DFT calcula-
tions in the local density approximation (LDA) for the whole
system. The electrodes are described by chemically stable
finite Au clusters (see below), which can be treated as weakly
correlated [54]. Calculations are based on the NWChem code,
[55] and we employ a triple-zeta valence basis set to describe
the molecule. The core Au orbitals are included into the
effective (pseudo) potential LANL2DZ [56].

In the second step, we identify the transition metal d-
like states around the Fermi level and apply the Foster-Boys
localization procedure [57]. The d-like Foster-Boys orbitals
obtained in this way span the states close to the Fermi level;
the coupling to the ligands via hybridization is accounted for
by construction, as can be seen from the tails of the orbitals
on the ligands. This Foster-Boys basis is then used to build a
generalized Hubbard model, consisting of three terms:

H = Hmol + Hel + HT . (1)

The first term is the correlated molecular Hamiltonian, and
has the form

Hmol = −VGN −
∑
ii′σ

∑
mm′

t i,i′
m,m′c

†
imσ ci′m′σ

+ 1

2

∑
ii′σσ ′

∑
mm′

∑
pp′

U i,i′
mpm′ p′c

†
imσ c†

i′ pσ ′cip′σ ′ci′m′σ

+
∑

i

λi

∑
mm′σσ ′

ξ i
mσ,m′σ ′c†

imσ cim′σ ′ − HDC. (2)

Here c†
imσ (cimσ ) creates (annihilates) a 3d electron on the

molecule with spin σ in the Boys orbital m at site i.
N = ∑

imσ c†
imσ cimσ is the total number operator and VG in-

dicates the gate potential energy, acting as a chemical potential
on each molecular orbital.

The parameters −t i,i′
m,m′ are the hopping (i �= i′) or the

crystal-field (i = i′) integrals. In the following, we indicate the
energy of the crystal-field orbitals (obtained by diagonalizing
the the on-site matrix t i,i

m,m′ ) with εm and order them such
that εm � εm+1. Since the Ni2+ ions are in an octahedral-like
environment, the levels are approximatively split into lower
energy t2g-like states and higher energy eg-like states, so the
ionic ground configuration can be described as t6

2ge2
g, with total

spin si = 1.
The terms U i,i′

mpm′ p′ are the screened Coulomb integrals. For
simplicity, here we use the rotationally invariant Kanamori
form of the Coulomb vertex. In this approximation, all
on-site Coulomb parameters can be expressed as a func-
tion of the averaged screened Coulomb couplings U i,i =
U and Ji,i = J , which, in turn, depend only on the Slater
integrals F0, F2 and F4 [58]. The essential Coulomb inte-
grals are the direct [U i,i

mm′mm′ = Um,m′ = U − 2J (1 − δm,m′ )]
and the exchange (U i,i

mm′m′m = J) interaction, the pair-hopping
(U i,i

mmm′m′ = J), and the spin-flip term (U i,i
mm′m′m = J). We cal-

culate U and J via the constrained LDA (cLDA) [59] ap-
proach in the Foster-Boys basis, keeping the basis frozen
in the self-consistency loop. We find U = 6.3 eV and J =
0.26 eV for the Ni2 junction shown in Fig. 1. In addition,
nearest-neighbors Coulomb exchange integrals are evaluated
by cLDA (see below). HDC is the double-counting correction,
which removes the mean-field part of the local Coulomb
interaction, already included in the LDA. Here we adopt the
fully localized limit [58]. Finally, λi is the strength of the
spin-orbit interaction, here the same for all the 3d electrons
within the same ion. The terms ξ i

mσ,m′σ ′ = 〈mσ |si · �i|m′σ ′〉
are matrix elements of the spin-orbit matrix in the Forster-
Boys basis. In our approach, λi can be extracted by comparing
the single-electron crystal-field splittings with and without
spin-orbit interaction. We have already shown [48] that for
Ni2+ in an octahedral environment (as in the system studied
in the present paper), a very good approximation of λi can be
obtained by using tabulated single-ion values [60]. We thus
here adopt this strategy to avoid time-consuming relativistic
self-consistent calculations.

The second term in Eq. (1) is

Hel =
∑

l=L,R

∑
k,σ

εlkσ a†
lkσ

alkσ ,

and models the uncorrelated left (L) and right (R) electrodes.
Here a†

lkσ
(alkσ ) creates (destroys) an electron with energy εlkσ

on orbital k of the electrode l . The energies εlkσ are obtained
by diagonalizing the part of the one-electron Hamiltonian on
each of the two clusters representing the electrodes.

Finally, the tunneling Hamiltonian,

HT =
∑
im

∑
lkσ

τ li
kma†

lkσ
cimσ + H.c.,

describes the tunneling processes between the two electrodes
and each d-like molecular orbital.
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For the {Ni2} junction, one might wonder if, in addition
to Ni-centered d-like Foster-Boys orbitals, the p orbitals of
the pyridine in between the two Ni centers play a role and
should be explicitly accounted for. We find that indeed one
of these orbitals is close to the Fermi level and is coupled to
both Ni ions. The associated hopping integrals are, however,
significantly smaller than the energy gap (the ratio is ∼1/4).
We have checked by including this p orbital in the generalized
Hubbard Hamiltonian Eq. (2) and performing full diagonal-
ization that many-body states are only slightly modified, with
a negligible occupation of the p orbital in the anion. Hence,
for simplicity, we neglect this orbital in the discussion that
follows.

B. Master equation description of transport

In the weak-coupling limit between the electrodes and
the molecule [40,43], HT acts as a small perturbation of
the noninteracting Hamiltonian Hel + Hmol. In the absence of
molecule-lead coupling (HT = 0), we can build the many-
body states of the whole system as a tensor product of the
separate eigenstates of Hel and Hmol. In the following, we
label as |λN 〉 the eigenstates of Hmol with energy Eλ and N
electrons. As we will discuss later in more detail, the spec-
trum of the isolated {Ni2} molecule consists of a sequence
of total spin multiplets, split by the spin-orbit interaction.
These spin-orbit-induced splittings (δE ) are larger than the
molecule-lead tunneling rates (we find δE ∼ 3 − 6 K) and the
leads are nonmagnetic. Therefore, interference effects, which
have been shown to be very important in the presence of
degenerate or almost degenerate states [61–66], are strongly
suppressed. Thus we can separate the dynamics of diagonal
and off-diagonal elements of the system density matrix. In
the case of the {Ni2} junction considered here, current and
conductance are therefore already accurately described from
the stationary solution of the Pauli master equation [67],

dPλN+1

dt
=

∑
λ′

(
Rλλ′

Pλ′
N

− Rλ′λPλN+1

)
, (3)

where Pλ′
N

is the occupation probability of state |λ′
N 〉 and Rλλ′

is the rate matrix, representing the tunneling probability from
the initial state |λ′

N 〉 to the final state |λN+1〉. To second order
in HT , this is given by

Rλλ′ =
∑

l

{
γ l

λλ′ f
(

l

λ,λ′
) + γ l

λ′λ
[
1 − f

(

l

λ′,λ
)]}

. (4)

Here f (E ) is the Fermi-Dirac distribution function, 
l
λ,λ′ =

Eλ − Eλ′ − μl , and μl is the chemical potential of electrode l .
Furthermore,

γ l
λλ′ = 2π

h̄

∑
ii′

mm′

∑
kσ

τ li∗
km τ li′

km′ 〈λ′
N |cimσ |λN+1〉

〈λN+1|c†
i′m′σ |λ′

N 〉δ(Eλ − Eλ′ − εlkσ ). (5)

For Au electrodes, the density of states ρ(ε) and the
imaginary part of the hybridization function 
l

imi′m′ (ε) =
2π

∑
kσ τ li∗

km τ li′
km′δ(ε − εlkσ ) can be considered approxima-

tively flat close to the Fermi level (wide-band limit) [43,56].

The specific value of ρ(0) then merely yields a rescaling of the
current and is thus irrelevant to describe specific molecular
transport features. Here we model the electrodes (which are
used to compute the coefficients γ l

λλ′) by means of tetrahedral
Au20 clusters, which are chemically stable and have a large
HOMO-LUMO gap of ∼2 eV; it has already been established
in the past that such clusters provide a good approximation of
the metallic junction, [35,68] and already show all essential
characteristics of the bulk band of gold [69].

To find the steady-state solution to Eq. (3), we solve
dPλ/dt = 0 via the biconjugate gradient stabilizer algorithm
with zero-bias Boltzmann distribution as initial occupation
probabilities [40]. Then, the current from electrode l to the
molecule is obtained as Il = I i

l + Io
l , where the two contribu-

tions account for electron hopping into (I i
l ) and out (Io

l ) of the
molecule, and

I i
l = +e

∑
λλ′

γ l
λλ′ f

(

l

λ,λ′
)
Pλ′ ,

Io
l = −e

∑
λλ′

γ l
λλ′

[
1 − f

(

l

λ,λ′
)]

Pλ. (6)

In the stationary limit [37], IR = −IL and the total current is
simply I = (IR − IL )/2 = IR. In the following, we compute
current I and the differential conductance dI/dV as a function
of bias and gate voltage, assuming that the bias voltage is
symmetric (μL,R = ±V ).

As previously discussed, Eqs. (4) and (5) are the re-
sults of a perturbative expansion to the lowest order in
HT (weak-coupling limit), in which the small parameter is

/kBT (
 = max 
imi′m′). Within this description, only single-
electron tunneling processes are relevant. As a rule of thumb,
the single-electron tunneling condition is fulfilled if the typ-
ical time between two tunneling events is much larger than
the time required to thermalize the excitations created in the
metallic reservoirs [37]. If the tunneling rate 
 becomes larger
than kBT , cotunneling events will in general take place. These
can be accounted for by going to higher orders in the perturba-
tive expansion [38]. Still, the most important nonequilibrium
effects are already captured correctly at the second order,
which is often sufficient [31] to describe well experimental
results even for 
 ∼ kBT . For our specific case, assuming
typical values of ρ(0), one can estimate 
 � 1 K. Most of
the transport spectra that will be discussed in the next sections
of the paper are computed at T = 2 K, a typical temperature
of many experimental settings, see, e.g., Ref. [31]. In this
regime, only the ground state of {Ni2} is populated and the
ratio 
/kBT remains sufficiently small to make cotunneling
events negligible. In these conditions, the essential features of
the transport dynamics are indeed already well captured by
lowest-order processes in 
 [31]. In Sec. III, we show that
in the single-electron tunneling limit (where cotunneling is
neglected) the effect of a finite temperature T is merely to
smooth out current features in the stability diagram.

C. Fermionic irreducible tensor operators

For molecules containing several transition metal ions,
the exact diagonalization of the generalized Hubbard model
Hmol is a particularly hard task. Indeed, the Fock space of
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Hamiltonian Eq. (2) grows very quickly with the number
of orbitals and sites, thus making it impossible even to find
the lowest eigenvalues and eigenvectors with the Lanczos
method. To minimize the size of the Hamiltonian blocks to
diagonalize, we use symmetries. First, we exploit the conser-
vation of the number of electrons N , [Hmol, N] = 0, and, in
the absence of spin-orbit interaction, the conservation of the
total spin S, [Hmol, S] = 0. We then rearrange the Hamiltonian
in (N, S) blocks, decoupled from each other for λi = 0. Point
symmetries can also be used at this stage, if present. The core
problem is the calculation of the many matrix elements due
to the intersite hopping term of the Hamiltonian. To minimize
the numerical effort, it is key to identify which Hamiltonian
blocks are essential to calculate. We do this by recasting the
latter in the form of compound irreducible tensor operators T k

q
of rank k = 0, obtained as the product of two rank ki = 1/2
tensor operators corresponding to the fermionic creator and
annihilator [51]. More specifically, in the case studied here
we have

√
2T 0

0 (im, i′m′) = V 1/2
1/2 (im)U 1/2

−1/2(i′m′)

−V 1/2
−1/2(im)U 1/2

1/2 (i′m′),

where the fermionic operators are V 1/2
σ (im) = c†

imσ and
U 1/2

σ (im) = (−1)1/2−σ cim−σ . Thus the hopping term of
Hamiltonian Eq. (2) takes the form

∑
i �=i′

∑
σmm′

t i,i′
m,m′c

†
imσ ci′m′σ = −

√
2

∑
i �=i′mm′

t i,i′
m,m′T 0

0 (im, i′m′).

The matrix elements of the scalar operator T 0
0 in the total spin

basis do not depend on the value of Sz. This greatly reduces
the number of matrix elements that need to be computed. For
a dimer, we have

〈α1s1α2s2S|T 0
0 |α′

1s′
1α

′
2s′

2S′〉

= −δSS′
√

2(2S + 1)

⎧⎨
⎩

0 S S
1/2 s1 s′

1
1/2 s2 s′

2

⎫⎬
⎭

〈α1s1||V 1/2(1m)||α′
1s′

1〉〈α2s2||U 1/2(2m′)||α′
2s′

2〉.

Here all relevant ionic spin multiplets si are included for each
ion i = 1, 2, and they are labeled by the additional quantum
number αi. To derive the formula above, we used the Wigner-
Eckart theorem in conjunction with the recoupling technique,
which allows us to write the matrix element above as the
product of a 9 j symbol and two reduced single-site matrix
elements, 〈αisi||V 1/2(im)||α′

is
′
i〉; the latter are by construction

independent from the third component of si. The procedure
can be generalized to a system consisting of several ions,
taking care of the order of anticommuting fermionic operators
acting on different sites in the recoupling scheme. Finally,
the computed Hamiltonian matrix, now including intersite
hopping terms and on-site energies, is diagonalized in the
separate (N, S) sectors. Since the spin-orbit interaction is
small in 3d systems [48,49,60], we treat it afterwards in
second-order perturbation theory in the (N, S) basis described
above.

III. RESULTS FOR THE {Ni2} MOLECULAR
NANOMAGNET

A. Model and low-energy many-body states

We model the molecular junction as shown in Fig. 1. We
consider two different coupling geometries: a serial configu-
ration [Fig. l1(a)], in which each Ni ion is coupled to a single
lead, and a parallel one [Fig. 1(b)], in which both Ni ions are
coupled to both electrodes.

We first describe the molecular many-body states obtained
by diagonalizing Hmol. The lowest eigenvectors belonging
to the two charge sectors with N and N + 1 electrons are
schematically depicted in Fig. 2. They are separated by a
charge transfer energy of 1.16 eV. States with N − 1 electrons
are much higher in energy (∼3 eV) and are not shown. Let
us start considering the neutral molecule (N = 16 electrons).
The lowest states for N = 16 electrons arise from the ionic
t6
2ge2

g configurations with si = 1 and are, respectively, a sin-
glet, a triplet, and a quintet. The effective spin-Hamiltonian
describing this low-energy subspace is

Heff = J s1 · s2 +
∑

i

si · Di · si. (7)

FIG. 2. Schematic level-diagram of Ni2 showing the lower en-
ergy molecular multiplets, for N = 8 + 8 and N + 1 electrons, split
by spin-orbit interaction. Neutral molecule (N electrons, left): The
lower-energy multiplets arise from si = 1 ionic configurations. States
from si �= 1 configurations are ∼0.5 eV higher and can be neglected.
Anion (N + 1 electrons on the molecule, right): The ground quartet
(Nagaoka state) and the first excited doublet are shown; the next
excited states are two doublets and a quartet and have energies
135 meV or higher above the ground state. Cation states (N − 1
electrons on the molecule) are all very high in energy (∼3 eV)
and are not shown. For each case, examples of the relevant ground
ionic configurations are shown in the insets; virtual (N) and real
(N + 1) hopping processes are depicted with vectors. The minimal
charge transfer energy is E (N + 1, 3/2) − E (N, 0) ∼ 1.16 eV. In the
absence of spin-orbit interaction, the transition between the ground
states in the sector with N and N + 1 electrons is forbidden, since

S > 1/2 (spin blockade). The transition probability is finite but
small when the spin-orbit interaction is included; this is shown in
the figure via a thin arrow.
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The isotropic coupling J is the sum of the ferromagnetic
Coulomb term (determined by cLDA) and the (here antifer-
romagnetic) superexchange coupling. Using the approach of
Ref. [48], we find J = 3.3 meV, antiferromagnetic, and in
good agreement with results from a recent inelastic neutron
scattering study [46]. The zero-field splitting tensor Di is a
full 3 × 3 matrix. By diagonalizing it, we can determine the
principal anisotropy axes and the values of the axial di and
rhombic ei zero-field splitting parameters. We find that both
ions display easy-plane anisotropy, with the z axis perpendicu-
lar to the plane of Fig. 1. We find d1 = 90 μeV, d2 = 34 μeV,
ei ≈ 0.12 di. We also checked that anisotropic, as well as
antisymmetric contributions to the exchange interaction are
negligible (�J /100) in the present case. The three lowest
total-spin multiplets (shown in the left part of Fig. 2) are
separated by energies J and 2J and are further slightly
split by anisotropy. Excited molecular states originating from
single-ion configurations with si �= 1 are at least 500 meV
above and are thus not shown in the schematic diagram of
Fig. 2.

Let us now consider the case of the molecule with N + 1
electrons, i.e., the anion. Remarkably, in this case the ground
multiplet is a ferromagnetic Nagaoka [70] state with max-
imum spin S = 3/2. The reason is the following. In the
neutral molecule case, each ion is in the t6

2ge2
g configuration,

and magnetism is controlled by superexchange, which for
{Ni2}, as discussed above, is antiferromagnetic. If we add an
extra electron to the molecule, however, superexchange is not
the only possible origin of magnetic ordering. As a matter
of fact, if the two ions are arranged ferromagnetically, the
extra electron can gain kinetic energy jumping between the
two sites, without any Coulomb energy cost. This yields a
first-order energy gain in the associated hopping integral t ,
which dominates over superexchange when the ratio t/U is
small, as in the cases considered here. Nagaoka states were
found to play an important role in the transport properties of
other d molecular complexes [37,71,72]. Remarkably, this has
important consequences for transport. Indeed, switching from
a total spin S = 0 in the neutral molecule to the maximum
spin S in the charged (anion) molecule gives rise to peculiar
behaviors. In particular, transitions between the two lowest
energy multiplets of adjacent charge sectors with a difference
in total spins 
S > 1/2 are forbidden in the absence of spin-
obit coupling, leading to negative differential conductance and
spin blockade [38] in some regions of the (V,VG) parameter
space. We will discuss this for {Ni2} in the next subsections.

B. Transport spectroscopy

We first consider the molecular junction in Fig. 1(a). In this
configuration, each Ni ion is connected only to one electrode
(serial configuration). Figure 3 shows the calculated current
and differential conductance as a function of applied bias and
gate voltages at T = 2 K. In the upper panel of the figure, the
current map I (V,VG) is shown. Here the two areas labeled by
N and N + 1 correspond to regions where transport is blocked
(Coulomb-blockade diamonds) and the number of electrons
on the molecule is thus either N (left side) or N + 1 (right
side) [73]. By changing the bias or gate voltage, the blockade
is lifted. Single-electron tunneling occurs when the chemical

FIG. 3. Calculated current I (a) and differential conductance
dI/dV (b) as a function of bias (V ) and gate (VG) voltage at
T = 2 K.

potential of the molecule equals the Fermi energy of one of the
electrodes; this is what happens in the lighter and darker areas
of Fig. 3(a). The lower panel of Fig. 3, panel (b), shows the
differential conductance map. Here the edges of the diamond
of the upper panel become bright lines, corresponding to
resonances.

In Fig. 3(b), there are additional resonance lines, parallel
to those corresponding to the diamond edges. These are
electronic excitations. In particular, the dark line indicates a
narrow region of negative differential conductance. A deeper
insight into this peculiar feature can be gained by analyzing
the conductance as a function of V but with fixed VG, and
comparing it with the level diagrams of the two examined
charge sectors. This is done in Fig. 4. Figure 4(a) shows
I (V,VG) for VG = 1 eV. Here we explicitly indicate with Vi

(i = 1, . . . , 4) the four values of V which yield a sharp peak in
the differential conductance. Figure 4(b) shows the stationary
population of the corresponding key many-body multiplets
with N and N + 1 electrons. Figures 4(c)–4(f) show instead,
for each Vi, the energy levels of the neutral (black lines, left)
and of the charged molecule (light lines, right), and the associ-
ated multiplets |S〉. Spin-orbit effects, among which the zero-
field splitting, are included in the actual calculation, but for
simplicity we neglect them in the schematic level diagram of

235145-6



FIRST-PRINCIPLES MANY-BODY MODELS FOR … PHYSICAL REVIEW B 99, 235145 (2019)

FIG. 4. (a) Calculated I (V,VG) as a function of V for fixed
VG = 1 eV. The labels Vi (i = 1, . . . , 4), with Vi+1 > Vi, indicate the
positions of peaks in the current derivative dI/dV . (b) Corresponding
populations PS of the relevant multiplets, labeled by their total spin
S; the latter is integer for N electrons and half-integer for N + 1
electrons. (c)–(f) Level diagram of the spin multiplets |S〉 relevant at
V = Vi. Left: N-electron states. Right: N + 1-electron states. Arrows
indicate the associated transitions; the thickness is approximatively
proportional to the actual transition probability. Very thin arrows
indicate transitions which are forbidden in the absence of spin-orbit
interaction. Double arrows mean that the transitions are possible in
both directions.

Fig. 4. In each panel, we indicate the allowed transitions with
arrows. Bilateral arrows indicate that the transition is allowed
in both directions. The thickness of the arrows is roughly
proportional to the transition probability. Let us now explain
the figure more in detail. For V ≡ V1 = 156 meV, the potential
equals the energy difference E (N + 1, 3/2) − E (N, 0) − VG.
As can be seen in Fig. 4(c), the probability of this transition
is very small (the arrow is very thin). It is actually totally
forbidden in the absence of spin-orbit coupling, since the
spin difference between the two states is 
S = 3/2, i.e., it
is larger than 1/2. In the presence of spin-orbit coupling,
the small transition probability suffices to transfer population
from the ground singlet, the only populated state for V < V1,
to the excited quartet |3/2〉. This yields a sudden change in
the corresponding populations, visible in Fig. 4(b) at V = V1.
In this new configuration, both transitions from |3/2〉 to |1〉
and |2〉 and back are possible, and their probability is very
high, as shown in Fig. 4(c). This leads to a large sudden
increase in the current, which can be seen in Fig. 4(a). Further
increasing the bias potential, one reaches the value V = V2 =
E (N + 1, 1/2) − E (N, 2) − VG. As shown in Fig. 4(d), the
(now, in principle, possible) transition |2〉 ↔ |1/2〉 has very
small probability, since it would be forbidden in the absence

FIG. 5. Population of the N vs N + 1 states (top) and current
(bottom) as a function of VG, for two values of V [panels (a)
and (b)].

of spin-orbit interaction. On the other hand, as soon as the
|1/2〉 state is populated, the high-probability but unilateral
transitions |1/2〉 → |1〉 and |1/2〉 → |0〉 are possible. This
leads in particular to a small jump in the population P1, visible
in Fig. 4(b). As a consequence, the current slightly decreases,
since some transport channels are blocked. This yields a neg-
ative conductance. A similar phenomenon, with, however, a
much stronger decrease in the current, occurs at V = V3. Here
the |1〉 → |1/2〉 transition becomes accessible [see Fig. 4(e)],
leading, via the unidirectional transition |1/2〉 → |0〉, to a
large population transfer to the ground state of the neutral
molecule, |0〉. In this situation, the conductivity decreases to
almost zero, as can be seen in Fig. 4(a). Due to the very
small |0〉 → |3/2〉 transition probability, the system remains
almost locked in the |0〉 state till V = V4. Only when finally
the high-probability |0〉 → |1/2〉 transition is accessible, as
shown in Fig. 4(f), the current flows again. This is shown in
Fig. 4(a).

For completeness, in Fig. 5, we show similar results for
fixed V and as a function of VG. The left panel of the figure
displays a weak bias case (V = 10 meV). The current sets
on as far as the system remains within the bias window,
i.e., for μR � E (N + 1, 3/2) − E (N, 0) − VG � μL. The fig-
ure shows that the population PN+1 of the charged states
increases monotonically with VG. The first step in current
and population appears for VG = E (N + 1, 3/2) − E (N, 0) −
V ; the current is then suppressed for VG > E (N + 1, 3/2) −
E (N, 0) + V . Instead, the right panel of Fig. 5 shows a
case of larger bias (V = 100 meV). Here the monotonic
increase of PN+1 is reversed for E (N + 1, 1/2) − E (N, 2) −
V � VG � E (N + 1, 1/2) − E (N, 0) − V . This is exactly the
same mechanism leading to negative differential conductance
by varying V at fixed VG, illustrated earlier in the paper. The
narrow region of negative differential conductance has a width
corresponding to the splitting of the neutral molecular states,
E (N, 2) − E (N, 0) ≈ 10 meV.

Going back to the case of fixed gate voltage and variable
bias V , Fig. 6 shows similar effects to Fig. 4, this time,
however, for VG = E (N + 1, 3/2) − E (N, 0). In this case, the
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FIG. 6. (a) Calculated I (V,VG) at T = 0 for VG = 1.16 eV, cor-
responding to the energy difference E (N + 1, 3/2) − E (N, 0). The
current is almost completely suppressed up to V = V5, since the
transition |3/2〉 → |0〉 is forbidden in absence of spin-orbit coupling,
and has very low probability otherwise. Here V5 = E (N + 1, 3/2) −
E (N, 1) − VG ∼ 3.3 meV. A jump in conductivity is seen at V =
V6 = E (N + 1, 3/2) − E (N, 2) − VG. At this voltage the transition
|3/2〉 → |2〉 is allowed (panel b).

current is suppressed for V < V5, i.e., until the transition
|3/2〉 → |1〉 is accessible, since the |3/2〉 → |0〉 transition is
forbidden in the absence of spin-orbit coupling, and has very
weak probability otherwise. This spin-blockade effect is a
direct consequence of strong correlations which are explicitly
included in our model. A further increase in the current occurs
at V = V6, when the high-probability transition |3/2〉 → |2〉 is
accessible.

Hence, we find for {Ni2} spin-blockade effects and con-
trollable regions of complete current suppression (on/off)
in the stability diagram. This makes the system particularly
interesting, since these phenomena enable one to electrically
control the spin properties of the molecule, paving the way
to potential spintronic and QIP applications [15]. We stress
that these features emerge as a consequence of intramolecular
strong correlations, which we have explicitly included in the
Hamiltonian Eq. (2). In particular, the Nagaoka mechanism
discussed in the previous section plays a key role. While in
bulk magnetic materials such a mechanism is of limited inter-
est, the high degree of chemical control on the topology and
strength of the exchange interactions makes single-molecule
devices the ideal test bed for Nagaoka-driven phenomena.
Similar behaviors were evidenced with model-based effective

FIG. 7. Effect of temperature on transport spectroscopy. The
I (V,VG) curve is calculated for VG = 1 eV and as a function of the
bias voltage V . By increasing the temperature, steps in the current are
smoothed out, but the negative differential conductance region even
for T ∼ 10 K.

models in other magnetic molecules, such as Mn12 [74] and
Co/Fe 2x2 grids [72], where the addition/removal of a single
electron to the neutral (half-filled) molecule changes the total
spin from zero to its maximum allowed value. Also in these
cases, this leads, in turn, to negative differential conductance
and complete current suppression at finite bias voltages [72].

We would like to point out that, for the junction discussed
here, the step structure of I (V ) is mostly determined by the
specific form of the molecular many-body states and their
energies, rather than by the relative strength of the tunneling
couplings in the Hamiltonian HT ; the latter, however, does
modify the relative height of the steps. This can be shown by
comparing our results with an idealized calculation in which
the molecule-lead couplings are assumed to be the same for
all states.

We now discuss the temperature dependence of the trans-
port features discussed above. Figure 7 shows the I (V,VG)
for VG = 1 eV (the same value used in Fig. 4), this time
calculated at different temperatures. The figure shows that,
in the single-electron tunneling regime and for kBT 
 J ,
the equilibrium population of the molecular excited states is
negligible and the only effect of temperature is to smoothen
out the steps in the curve. It is worth noting that the negative
differential conductance region is still present at T = 10 K.

Finally, in Fig. 8 we compare the transport properties of
the serial configuration of the device, Fig. 1(a), with those ob-
tained for the parallel set up, Fig. 1(b). In the latter, each metal
ion is connected to both electrodes. By assuming equal tun-
neling rates for each conducting channel, switching from the
serial to the parallel setup increases the number of conducting
channels from one to four; this leads to an enhancement of
a factor of 4 in the current. The figure shows that, however,
taking into account the actual changes in tunneling rates, the
current only doubles for V = V1, and it becomes three times
as large for V = V4. This can be understood by analyzing the
molecule-lead couplings γ l

λλ′ in the two configurations. These
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FIG. 8. Serial versus parallel current for VG = 1 eV. This is the
same value of the gate voltage used in Fig. 4. The current is normal-
ized to its maximum value in the serial geometry. V = V1: the current
doubles by doubling the number of conducting channels. V = V4: the
current becomes three time as large, a quantum many-body effect
related to the form of the molecular eigenstates and their specific
coupling to the leads. Here the potentials V1 and V4 are defined as in
Fig. 4.

involve a sum over orbitals and sites [see Eq. (5)] which can
give rise to partial sums or cancellations, depending on the
specific structure of the molecule-lead hybridization for each
pair of many-body states, |λ〉, |λ′〉. In the serial case, ion 1 is
only connected to the left lead, while ion 2 only to the right
lead. Therefore, the only relevant γ l

λλ′ are

γ R
λλ′ ∝

∑

mm′
kσ

τR1∗
km τR1

km′ 〈λ′
N |c1mσ |λN+1〉〈λN+1|c†

1m′σ |λ′
N 〉,

γ L
λλ′ ∝

∑

mm′
kσ

τ L2∗
km τ L2

km′ 〈λ′
N |c2mσ |λN+1〉〈λN+1|c†

2m′σ |λ′
N 〉,

which are found to be always positive. Conversely, in the
parallel case, both ions are linked to both electrodes. Thus,
there are contributions of the form

γ l
λλ′ ∝

∑

mm′
kσ

τ l1∗
km τ l2

km′ 〈λ′
N |c1mσ |λN+1〉〈λN+1|c†

2m′σ |λ′
N 〉,

some of which turn out to be negative. This yields a partial
cancellation in the observed conductance and explains why
it is reduced if compared to the naive picture in which
the current merely increases linearly with the number of
conducting channels. Remarkably, we find that the actual

enhancement can be tuned via changing the exact geometry of
the device, a property that could be used as a tool to optimize
its performance.

IV. CONCLUSIONS

In conclusion, we have introduced an efficient scheme to
describe ab initio quantum transport through MNMs in the
weak coupling regime. This is an interesting regime for the
electric control of molecular spin states, which can be used
as a manipulation tool for spintronics or quantum information
applications.

The approach is based on the DFT + MB method [48] and
treats both correlation effects and material aspects on the same
footing. We have applied this approach to a representative
system, the {Ni2} spin dimer. For this system, we predict
signatures of strong correlation effects such as spin-blockade,
current suppression, and negative differential conductance.
We stress that such phenomena cannot be properly described
within a mean-field description of correlation effects, as
adopted in methods based on simple approximations of the
DFT exchange-correlation functional. While the latter suc-
cessfully describe the transport properties of weakly corre-
lated systems, our method is suited for strongly correlated
molecules.

These results show the possibility of electronic control of
the spin properties, making compounds like Ni2 potentially
very interesting for quantum information applications. For
instance, one could exploit them as a switch of the interaction
between a pair of molecular qubits [15,75]. By keeping the
switch in the diamagnetic neutral state the effective qubit-
qubit coupling is off, thus enabling the implementation of
single-qubit rotations. Conversely, transition to the paramag-
netic state of the anion can be exploited to activate an effective
entangling evolution (e.g., XY or Heisenberg [15,75]) within
the two-qubits computational subspace. To assess the actual
feasibility of the proposed quantum computational schemes,
our calculation could be extended to include a pair of qubits
linked through the {Ni2} switch.
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