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We review the parity anomaly of the massless Dirac fermion in 2 + 1 dimensions from the Hamiltonian, as
opposed to the path integral, point of view. We have two main goals for this paper. First, we hope to make
the parity anomaly more accessible to condensed matter physicists, who generally prefer to work within the
Hamiltonian formalism. The parity anomaly plays an important role in modern condensed matter physics, as the
massless Dirac fermion is the surface theory of the time-reversal invariant topological insulator (TI) in 3 4 1
dimensions. Our second goal is to clarify the relation between the time-reversal symmetry of the massless Dirac
fermion and the fractional charge of j:% (in units of e) that appears on the surface of the TI when a magnetic
monopole is present in the bulk. To accomplish these goals we study the Dirac fermion in the Hamiltonian
formalism using two different regularization schemes. One scheme is consistent with the time-reversal symmetry
of the massless Dirac fermion, but leads to the aforementioned fractional charge. The second scheme does
not lead to any fractionalization, but it does break time-reversal symmetry. For both regularization schemes
we also compute the effective action Sg[A] that encodes the response of the Dirac fermion to a background
electromagnetic field A. We find that the two effective actions differ by a Chern-Simons counterterm with
fractional level equal to %, as is expected from path-integral treatments of the parity anomaly. Finally, we propose

the study of a bosonic analog of the parity anomaly as a topic for future work.
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I. INTRODUCTION

The purpose of this paper is to review the parity anomaly
of the massless Dirac fermion in 2 + 1 dimensions [1-4],
but from the Hamiltonian or Hilbert-space point of view.
Recall that the parity anomaly is a conflict between the
time-reversal'! symmetry and large U(1) gauge invariance
of the massless Dirac fermion. More precisely, the parity
anomaly is equivalent to the statement that it is impossible
to regularize the massless Dirac fermion theory, coupled to
a background U (1) gauge field, in a way that preserves both
time-reversal symmetry and large U (1) gauge invariance. To
clarify the meaning of large U (1) gauge invariance here, note
that unbroken large U (1) gauge invariance would require all
physical states of the theory to have integer charge, and so any
regularization that leads to states with fractional charge must
violate large U (1) gauge invariance.

There are two main reasons why we feel that a review
of the parity anomaly from the Hamiltonian perspective is
warranted. First, the parity anomaly has been discussed ex-
tensively in recent years in the context of the time-reversal
invariant topological insulator (TT) [6,7], which hosts a single
massless Dirac fermion on its surface. In this context the
parity anomaly provides one of the classic examples of a
theory with a ’t Hooft anomaly [8] appearing at the boundary
of a symmetry-protected topological phase [9-12]. However,
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'As emphasized by Witten [5], the word “parity” in “parity
anomaly” is a misnomer, and this anomaly is actually an anomaly
in time-reversal or reflection symmetry.
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the discussion in the recent literature on this topic is almost>
always from the path-integral point of view [5,14—18]. On the
other hand, in condensed matter physics it is more common to
look at problems from a Hamiltonian point of view. Therefore
we believe that there is significant value in explaining how
the parity anomaly works from the point of view of the
Dirac Hamiltonian on two-dimensional (2D) space. It is also
worth noting that the TI is one of the few symmetry-protected
topological phases that have been realized experimentally (see
[19] and the review [20]), and so further study and clarification
of the parity anomaly in the context of TI physics seems
justified.

The second reason for our review of the parity anomaly is
to explain the precise connection between the time-reversal
symmetry of the massless Dirac fermion and the half-
quantized electric charge of :i:% (in units of e) that appears
on the surface of the TI when a magnetic monopole is
present in the bulk. In [1], Niemi and Semenoff studied the
massive Dirac fermion in the Hamiltonian formalism using
a regularization scheme based on the Atiyah-Patodi-Singer
(APS) eta invariant [21], or spectral asymmetry of the Dirac
Hamiltonian on 2D space. Within this scheme they found that
the ground state of the massive Dirac fermion has a charge of
:I:% when the 2D space is pierced by a single unit of magnetic
flux, and they also found that this charge persists in the limit
in which the mass of the fermion is sent to zero. The fractional

2One exception is the recent mathematical treatment of the parity
anomaly in [13]. There the authors studied the projective represen-
tation of the U (1) gauge group on the Hilbert space of the massless
Dirac fermion.
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charge of 2D electrons in a magnetic field was also studied by
Jackiw in [22].

In this paper we point out that the regularization scheme
used by Niemi and Semenoff is consistent with the time-
reversal symmetry of the massless Dirac fermion, in a sense
that we make precise below. To the best of our knowledge,
the fact that the regularization scheme in [1] is consistent
with time-reversal symmetry has not been demonstrated in
detail in the existing literature. The closest discussion that
we know of can be found in [23], where it was shown that
the results obtained by Niemi and Semenoff are identical
to the results obtained from a point-splitting regularization
scheme that preserves parity (and time-reversal) symmetry.
The fact that the regularization in [1] is consistent with time
reversal should not be unexpected though, as it fits in with the
general picture of the parity anomaly discussed above [i.e.,
the regularization of [1] violates large U (1) gauge invariance,
so we expect that it should be consistent with time-reversal
symmetry]. This fact also makes the regularization scheme of
[1] the correct scheme to use in the physical situation where
the massless Dirac fermion resides on the surface of the TI.

In the path-integral approach, which was pioneered by
Redlich [2,3], the easiest way to see the parity anomaly is to
use Pauli-Villars regularization to compute the partition func-
tion of the massless Dirac fermion. This regularization scheme
preserves large U(1) gauge invariance, but it breaks time-
reversal symmetry because of the mass of the Pauli-Villars
regulator fermion. An alternative regularization scheme, also
considered by Redlich, is to define the partition function
of the massless Dirac fermion as the square root of the
determinant of a Dirac operator for two copies of a massless
Dirac fermion. This latter determinant can be regularized in
a time-reversal invariant way, which leads to a time-reversal
invariant regularization of the original single massless Dirac
fermion. Redlich then showed that this second regularization
scheme violates large U (1) gauge invariance. We also note
here that in a more sophisticated treatment [4,5,15,16] Pauli-
Villars regularization leads to an expression for the partition
function of the massless Dirac fermion in which the phase of
the partition function is proportional to the APS eta invariant
of the space-time Dirac operator. The APS eta invariant is
constructed from the spectrum of the Dirac operator, and so
it is manifestly gauge invariant, but this scheme still breaks
time-reversal symmetry, again due to the mass of the regulator
fermion.

The purpose of this paper is to explain how to see the
conflict between time-reversal symmetry and large U(1) gauge
invariance when the massless Dirac fermion is studied from
the Hamiltonian point of view. To this end, we study the Dirac
fermion in the Hamiltonian formalism using two different reg-
ularization schemes. The first regularization scheme leads to
states in the theory with half-integer charge, but we show that
this scheme is consistent with time-reversal symmetry. The
second regularization scheme explicitly breaks time-reversal
symmetry but does not lead to any fractionalized quantum
numbers associated with the U(1) symmetry. Thus, these
two regularization schemes serve to demonstrate the parity
anomaly in the Hamiltonian or Hilbert-space approach.

The first regularization scheme that we consider is exactly
the scheme used by Niemi and Semenoff [1]. For this scheme

we work on a general curved two-dimensional space M that
is a closed® manifold, instead of on flat space R?. The specific
physical quantity that we calculate within this regularization
scheme is Q4 ,, the charge (in units of e) of the ground state
of the theory in the presence of a time-reversal breaking mass
term (with mass m), and in the presence of a background
time-independent spatial gauge field A = A ;dx/ (we use dif-
ferential form notation and also sum over the spatial index
j =1,2). We show that the regularization scheme of [1] is
consistent with time-reversal symmetry in the sense that it
leads to the result

QA,m - Q—A,—m- (11)

Physically, this result means that in this regularization scheme
the charge in the ground state of the theory with mass m and
background field A is equal to the charge in the ground state of
the time-reversed theory with mass —m and background field
—A (a spatial gauge field is odd under time reversal). On the
other hand, the explicit result for Q4 ,, [Eq. (3.23) in Sec. III]
shows that it can be integer or half-integer valued,

QA.m € %Z’

which shows that this regularization scheme violates large
U (1) gauge invariance.

The second regularization scheme that we consider is a
lattice regularization scheme for the massless Dirac fermion
on a spatial torus. The lattice model that we use for this
regularization is on the square lattice, but this model is closely
related to the model on the honeycomb lattice that was intro-
duced in the seminal work of Haldane [24] on a model for
the quantum Hall effect without Landau levels. The specific
physical quantity that we calculate in this scheme is oy ,, the
Hall conductivity (in units of %) of the Dirac fermion with
mass m in the presence of a background time-independent
electric field E. We find that oy ,, is given by

(1.2)

~1
(,Hymz%e

This result demonstrates two things. First, the Hall conduc-
tivity is an integer for either sign of m, which shows that
large U (1) gauge invariance is preserved by this regularization
scheme [there is no fractionalization of quantum numbers
associated with the U (1) symmetry]. Second, the Hall con-
ductivity for the theory with mass m is not equal to minus the
Hall conductivity for the time-reversed theory with mass —m:

Z. (1.3)

OH.m 75 —OH,—m- (14)

This shows that this regularization scheme is not consistent
with the time-reversal symmetry of the original massless

3We consider closed manifolds (e.g., the two-sphere S?) instead of
R? to make the problem mathematically simpler. In particular, on
closed manifolds the Dirac operator has discrete eigenvalues, and
in this case we can also apply the Atiyah-Singer index theorem
to answer certain questions regarding the zero modes of the Dirac
operator. See [22] for a discussion of the difference between the case
of the plane R? and the case of closed manifolds.
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Dirac fermion (a regularization scheme consistent with time-
reversal symmetry should give oy ,, = —oy,—, since the Hall
conductivity is odd under time reversal).

Note that in both cases we never treat the massless theory
directly—the quantities Qg4 ,, and oy ,, that we study are both
computed for the theory with a nonzero time-reversal breaking
mass m. Instead, we determine whether the result is consistent
with time-reversal symmetry by comparing the answers for
two massive theories that are related to each other by the time-
reversal operation.

Finally, for both regularization schemes we also compute
the effective action Sei[A] that encodes the response of the
massive theory to the background gauge field A = A, dx"

(u =0, 1, 2). We find that the effective action Sg;s)[A], com-
puted using the regularization scheme of Niemi and Semenoff,
is related to the effective action ng?m“) [A], computed using
the lattice regularization, as

i 11
(lattice) (NS)
SEIAT = S [A]_EE/ Anda. (13)

The last term on the right-hand side is a Chern-Simons term
(written in differential form notation), but with a fractional
level equal to —%. Thus, the two effective actions differ by a

Chern-Simons counterterm with fractional level —%, which is
exactly the result that we expect based on the original path-
integral treatment of the parity anomaly [2,3].

This paper is organized as follows. In Sec. II we review
the form of the Hamiltonian for the Dirac fermion on flat
and curved 2D space, and we also review the time-reversal
symmetry of the massless Dirac fermion. In Sec. III we study
the Dirac fermion on a closed spatial manifold M using
the regularization scheme of Niemi and Semenoff [1], and
we compute the charge Q4, of the ground state for the
massive Dirac fermion in the presence of a background time-
independent spatial gauge field A. In Sec. IV we study the
Dirac fermion using a lattice regularization scheme on a spa-
tial torus, and we compute the Hall conductivity oy ,, for the
massive Dirac fermion in the presence of a time-independent
electric field E. In Sec. V we compute the effective action
Seif[A] for both regularization schemes, and we show that
the two effective actions are related as shown in Eq. (1.5).
In Sec. VI we present concluding remarks and propose the
study of a similar anomaly in bosonic systems for future work.
Finally, the Appendix contains important background material
on Dirac fermions on curved space and on the notation used
in the paper.

We close the Introduction with a few comments about our
notation. Throughout the paper, we work in a system of units
where the Dirac fermion has charge e = 1 and where 7 = 1
(so h=2nh — 2m) and ¢ = 1. Here ¢ would be the speed
of light in a high-energy context or the Fermi velocity in a
condensed matter context. We use a summation convention in
which we sum over any index that appears once as a subscript
and once as a superscript in any expression, and we use Latin
indices j, k, ... taking values {1, 2} to label spatial directions
and Greek indices u, v, ... taking values {0, 1,2} to label
space-time directions. We also use Latin indices a, b, . .. near
the beginning of the alphabet for frame indices on curved
space (see the Appendix). In general, we recommend that

readers glance at the Appendix before reading the paper, to
make sure that they are familiar with our notation and con-
ventions for the Dirac operator on curved space, and also to
review the relation between the U (1) gauge field A = A, dx*
and the ordinary electric and magnetic fields E and B on flat
space.

II. DIRAC HAMILTONIAN AND TIME-REVERSAL
SYMMETRY

In this section we introduce the Dirac fermion on flat
and curved two-dimensional space. We also discuss the time-
reversal symmetry of the massless Dirac fermion, and we
discuss the effect of time reversal on the Dirac fermion with
nonzero mass m and in the presence of a background time-
independent spatial U (1) gauge field A = A jdxf .

A. Flat space

We start with the action for the massless Dirac fermion on
flat Minkowski space-time:
S[V, ] = /d3x Wiphy,w. 2.1
The quantities appearing here are as follows. First, x =
(x°, x!, x?) is the space-time coordinate; 9, = 52 for u =
0,1,2; and ¥ = W¥(x) is a two-component Dirac spinor field
on space-time. Next, #* is a set of gamma matrices that
satisfy the Clifford algebra {y*, 7"} = 2n*", where n =
diag(1, —1, —1) is the Minkowski metric in “mostly minus”
convention. Finally, ¥ = W'} is the Dirac adjoint of W.
Next, we discuss the coupling to a background U (1) gauge
field (electromagnetic field) represented by the vector poten-
tial one-form A = A, dx". Our convention is that the Dirac
fermion has charge 1. The correct action for W coupled to A
is then
SV, W, Al = f Ax Wiph (9, +iA,)V. (2.2)
To see that the sign of the coupling to A, is correct for
fermions with charge 1, note that the term with Ay is
- / d*x W A, (2.3)
and this is the correct action for a distribution of charge with
charge density W'W in the presence of a scalar electromag-
netic potential Ao (for charge e the correct covariant derivative
is 9, + ieA,). We refer the reader to the end of the Appendix
for more details on how the components of the one-form A are
related to the usual electric and magnetic fields E and B in the
case of flat Minkowski space-time.
Finally, the mass term for the Dirac fermion takes the
simple form
Sul¥, W] = —m / d’x U, (2.4)
where the mass m is a real parameter that can be positive or
negative.
We now pass to the Hamiltonian formulation of the mass-
less Dirac fermion on flat space. The momentum canonically
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conjugate to W is iW. As a result, the Dirac Hamiltonian on
flat 2D space takes the form

A= —/dzx Uhippia, 0, (2.5)
where x = (x!, x?) is the spatial coordinate; j = 1,2; and
U = WU(x) is the operator-valued Dirac spinor on 2D space.*
To proceed, it is convenient to define a new set of spatial
gamma matrices by y/ = —7°7/. These new gamma matrices

obey the Clifford algebra {y/, y*} = 28/%. In addition, we
define the Dirac (differential) operator H on 2D space by

H=iy’d;. (2.6)

In terms of these new quantities the massless Dirac Hamilto-
nian on flat space takes the form
A= / d’x V. 2.7)

The Hamiltonian H for the massless Dirac fermion commutes
with a time-reversal operator T that is defined as follows.
First, we define a third gamma matrix ¥ = %e wyiyk =
iy'y?, which satisfies {77, y/} = 0 and 7> = 1. The matrix
v is sometimes referred to as the chirality matrix. Next, we
choose a concrete realization for the three gamma matrices y/
(j = 1,2) and ¥ such that the y/ have real matrix elements
and y has imaginary matrix elements. For example, we could
choose y! = 0¥, y? = 0%, and then ¥ = o, where o7 are
the Pauli matrices.

With these conventions in place, the action of the time-
reversal operator 7' on W is defined to be

TV, 77" =7, ¥, (2.82)
TOHT~ =4y, (2.8b)

where \TJO,, o = 1,2, are the two components of the spinor-
valued field ¥, ¥ are the two components of W', and
v,P are the matrix elements of 7. As usual, T is an antiu-
nitary operator, so it will complex conjugate any ¢ numbers
that it passes through. With this definition of 7 we find
that 72d, 72 = —W, and likewise for W' [this property is
usually summarized by the equation 72 = (—1)1Q , where N
is the fermion number operator]. In addition, one can show
that the massless Dirac Hamiltonian above commutes with the
time-reversal operator

A

TAT'=H, (2.9)

and to show this it is necessary to use the fact that 7' is
antiunitary. We emphasize here that in the definition of T
it was crucial that we chose the gamma matrices so that )
has imaginary matrix elements and the y/ have real matrix
elements.

4“Later on we define the operator W(x) more precisely using a
mode expansion in terms of eigenfunctions of the appropriate Dirac
differential operator on flat or curved space—see Eq. (3.5).

In Sec. III we will be interested in coupling this theory to a
time-independent background electromagnetic field which is
specified by the spatial vector potential A = A ;dx’/ (we do not
turn on a time component Ay for this discussion). We will also
be interested in adding a mass term to H. Starting from the
Dirac action coupled to A and with a nonzero mass term, it is
straightforward to see that the resulting Hamiltonian takes the
form

Hyp = / d*x VI H, . (2.10)
where Hg4 ,, is the massive Dirac operator coupled to A on 2D
space:

Ham = iy (3; +iA;) + my.

To arrive at this form of H,, we have also chosen our
gamma matrices so that 7° =73, where 7° was the original
gamma matrix associated with the time direction. Since A is
a background field (as opposed to a quantum operator), and
since it is real valued, it commutes with 7. Then we find that
under time reversal the Hamiltonian for the massive theory
coupled to A transforms as

Phu T = Hop .

@2.11)

(2.12)

In other words, the theories with (A4, m) and (—A, —m) are
time reverses of each other, and only the theory with A = 0
and m = 0 is invariant under the action of 7.

B. Generalization to curved space

We now discuss the form of the Dirac Hamiltonian on
curved space. In this case the flat two-dimensional plane R?
(the spatial part of Minkowski space-time) is replaced by a
curved manifold M. We assume that M is a 2D orientable
Riemannian manifold. We also assume that M is closed
(i.e., compact and without boundary) and connected. In a
coordinate patch on M with coordinates x = (x', x2), the
components of the metric g will be denoted by g;(x), and
det[g(x)] > 0 is the determinant of g at the point x. Since M
is 2D it is also a spin manifold, and so we do not need to worry
about the issue of whether or not fermions can be consistently
placed on M.

The Hamiltonian for the massless Dirac fermion on M
takes the form

H= / d’x \/det[g(x)] ¥ THW, (2.13)
where
H =iy (2.14)

is the Dirac operator on M. In the Appendix we review the
form of the Dirac operator on a general spin manifold M,
including our conventions for gamma matrices and so on, and
we suggest that readers take a look at the Appendix before
reading the rest of this paper.

In 2D the Dirac operator simplifies greatly and we have

4 i
V= eéy“(ﬁj - any),

where y¢, a = 1, 2, are gamma matrices with frame indices,
e}, are the components of the frame vector field e, = e},0 ; on

(2.15)
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M, w; are the components of the spin connection one-form
w=w jdxj on M, and the matrix y is now defined using the
gamma matrices with frame indices as y = %eahyayb (it still
satisfies {77, y} = 0 and 72> = 1). We can write the Dirac op-
erator in this simplified form in 2D because in this dimension
the only nonzero components of the spin connection w;“, on
M are a)j12 = —a)jzl, and so we can write everything in terms
of the single quantity »; := w;',.

The massless Dirac Hamiltonian on the curved space M
has the same time-reversal symmetry as on flat space. If we
choose the gamma matrices with frame indices so that the y¢
are real, then we again find that ¥ is imaginary, and the time-
reversal operation for the case of curved space can be defined
using ¥ just as in Eq. (2.8) on flat space. With that definition
we again find that THAT-' = H, so that the massless Dirac
fermion is still time-reversal invariant even on curved space.

Finally, on curved space the Hamiltonian for the massive
Dirac fermion coupled to the time-independent spatial gauge
field A = A;dx/ takes the form

Hym = [ d*x /det[g(x)| ¥ Hy ¥, (2.16)
where
Ham =iVa+my 2.17)
and
, i
WAze{ly“<8j+iAj—§wj7) (218)

is the massless Dirac operator on curved space and coupled to
A. We again find that Hy ,, transforms under time reversal as
THy T ' =H 4.

III. REGULARIZATION SCHEME 1

In this section we study the Dirac fermion using our first
regularization scheme, which is the scheme used by Niemi
and Semenoff in [1]. In this regularization scheme we com-
pute the charge Qg4 ,, in the ground state of the massive Dirac
fermion theory on the curved space M and in the presence
of the time-independent background spatial gauge field A =
A;dx’. We then explain that this regularization scheme is con-
sistent with the time-reversal symmetry of the massless Dirac
fermion, in the sense that Eq. (1.1) holds, i.e., in the sense
that this regularization leads to equal ground-state charges
for the theory with (A, m) and the time-reversed theory with
(A, —m).

We start by introducing the normal-ordered charge opera-
tor O for the Dirac fermion:

0= % d’x detgOIP* (), Y] (B.D)
For comparison, the non-normal-ordered version of
this operator would just be the familiar expression
fdzx JVdet[gx)T¥ T (x)W(x). The reason that we use the
normal-ordered charge operator is that the expectation value
of this operator is zero in the ground state of the theory with

the background field A set to zero. Using the time-reversal
operation defined above, it is simple to show that this operator

is time-reversal invariant,

7O = 0.
which is exactly what we expect for the physical electric
charge.

(3.2)

A. Ground-state charge and the eta invariant of the spatial
Dirac operator

We now calculate the charge of the ground state of the mas-
sive Dirac fermion theory in the presence of the background
field A. Our discussion is similar to the original derivation in
[1], but adapted to the case of curved space. The key idea
of the calculation is to define the regularized charge of the
ground state using the APS eta invariant [21] of the spatial
Dirac operator H4 ,,. Note that in [1] the APS eta invariant
was also referred to as the spectral asymmetry, since the APS
eta invariant of a differential operator is a regularized version
of the difference between the numbers of positive and negative
eigenvalues of that operator. We also note that the calculation
of the ground-state charge in this subsection is quite general,
and would also apply to the massive Dirac fermion on a
general D-dimensional space. Thus, although our notation is
specialized to the case of D = 2, the final result of Eq. (3.13)
is also valid for spatial dimensions D # 2 as well.

The operator H, ,, has discrete? eigenvalues E, with corre-
sponding eigenfunctions @, (x), where n is an index labeling
the different eigenfunctions. The differential operator H4 ,, is
self-adjoint with respect to the inner product

d*x /det[g(x)1p" (X)¥ (x),

and we assume that the eigenfunctions ®, are orthonormal
with respect to this inner product:

(q)n’ q)n/) = 6nn’-

(9. %)= (3.3)

34

Then the fermion operators can be defined by the mode
expansion

Ux) =) b,®,(x), (3.5)

where b, are fermionic annihilation operators with the stan-
dard anticommutation relations {13,1,13};,} = §w- Using this
mode expansion, we find that the Hamiltonian operator takes
the diagonal form

Ham =) Eub}b,. 3.6)

We now define the ground state |0)4, for this system,
corresponding to a Fermi (or Dirac) sea filled up to the energy
E =0. In the case that H4, has zero modes, we have a
choice about whether to keep those states empty or filled when
we define the ground state |0)4 ,,. For mathematical reasons
that we discuss below, we choose to leave the zero energy
states empty in the state |0)4 ,,. Note also that once we have
computed the regularized charge of the ground state |0)4 ,, the
charges of all other states will be well defined and will differ

SThe eigenvalues are discrete because M is a closed manifold.
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from the charge of |0)4 ,, by integer amounts. This follows
from the fact that we can obtain all of the other states by acting
on |0),, ,, with the Bn and l;; operators, which add or remove
charge 1 from the state [0)4 -

With these considerations in mind, we now define the
ground state |0)4 ,, by the conditions

bal0)am =0, E, >0,
bi10)4m =0, E, <0,

(3.7a)
(3.7b)

i.e., |0)4,, has all states with E, < 0 occupied. The charge in
the ground state |0)4 ,, is then given by

Oam = am{01010) 4 m,

where  is the normal-ordered charge operator from Eq. (3.1).
If we plug the mode expansion for ¥ (x) into this expression
for Qs . then after some algebra we find the ill-defined
expression

QA,m=—%[< o= > 1)+h}, (3.9)

n; E,>0 n; E,<0

(3.8)

where

h = dim[Ker[H4 1] (3.10)

is the number of zero modes of H4 .

As discussed by Paranjape and Semenoff [25] (and then
used later by Niemi and Semenoff in [1]), it is possible
to make sense of this expression by defining a regularized
version of it using the APS eta invariant of the spatial® Dirac
operator H, ,,. Recall that the eta function n(s) associated
with Ha ,, 1 [21]

()= Y sgn(E)|E|™",

n;E,#0

(3.11)

which is an analytic function of s € C when the real part of s
is sufficiently large. It is a nontrivial fact that n(s) possesses
a well-defined analytic continuation to s = 0. This analytic
continuation is known as the APS eta invariant and it is
denoted by 7n(0). Following [1,25], we can now use 1(0) to
define the regularized difference of the numbers of positive
and negative eigenvalues of Hy ,, as

(zl—zl)m

n; E,>0 n; E, <0

= n(0). (3.12)
Q.

Using this regularization scheme, we find that the charge
of the ground state |0)4 ,, is given by

Qum = —3[n(0) + hl. (3.13)

Note that if we had instead decided to define the ground state
|0)4.» as having the zero modes all filled then this would be
modified to

Qam = —3[n(0) = h. (3.14)

SThis is not the same as the eta invariant of the space-time Dirac op-
erator that appears in path-integral treatments of the parity anomaly
[4,5,15,16].

The mathematical reason for choosing the ground state |0)4
to have all zero modes empty is that the combination

n0)+h

is exactly the combination that appears in the APS index
theorem (Theorem 3.10 of [21]). This means that if we choose
to define |0)4 ,, in this way then the APS index theorem can
be applied to compute the ground-state charge Q4 ,, in various
systems that we might want to study. As we remarked above,
once we have computed an appropriate regularized charge
for the state [0)4,, the charges of all other states in the
Hilbert space are well defined and differ from Qg4 ,, by integer
amounts.

B. Ground-state charge of the 2D Dirac fermion

We now compute 7(0) + A for the Dirac fermion in 2D
with Hamiltonian A, ,,. This will give us the ground-state
charge Q4 ,, within the regularization scheme of [1]. To com-
pute 1(0) + A, first note that since {Vy4, ¥} = 0 we have

Hy = (V) +m’, (3.15)

which means that Hy4 ,, has no zero modes, and so h = 0.
Next, we consider the calculation of 1(0) for Hy ,,. Let €, and
¢,(x) be the eigenvalues and eigenfunctions of the massless
spatial Dirac operator iV 4:

iVAqbn (X) = 6nﬁbn (X)

Then for eigenfunctions ¢, (x) with nonzero eigenvalue €, we
have

(3.16)

HA,md’n(X) = €n¢n(x) + m?(l),,(x), (3173)
Ham¥ Pn(X) = my(X) — €,V Pu(X). (3.17b)
By diagonalizing the 2 x 2 matrix
€, m
<m —Gn)’ (3.18)

we see that for any nonzero €, the massive Dirac Hamiltonian
Ha.m has eigenvalues + e,% + m?. These cancel each other
in the computation of the eta invariant 7(0) of H4 , so this
means that only zero modes of iV, will contribute to 7(0).
We consider these zero modes next.

As is well known, zero modes of iV, can be chosen to
be eigenvectors of the chirality matrix y with eigenvalue
(chirality) equal to £1. It is now easy to see that zero modes
of iV 4 that have chirality +1 are also eigenfunctions of H,.,,
with eigenvalue £m. Let us assume for the moment that
m > 0. Then we find that the eta invariant for H,4 ,, reduces
in this case to

7(0) = (no. of positive chirality zero modes of ¥ 4)
— (no. of negative chirality zero modes of i¥,)
= Index[iV4], (3.19)
where the last line follows from the definition of Index[iV 4],
the index of the massless Dirac operator i¥ 4. An application

of the Atiyah-Singer index theorem [26] (a useful reference
for physicists is [27]) for the Dirac operator i¥ 4 on the closed

235144-6



PARITY ANOMALY FROM THE HAMILTONIAN POINT OF ...

PHYSICAL REVIEW B 99, 235144 (2019)

spatial manifold M then gives

: 1
Index[iV4] = —/ F,
2w M
where F = 1F;;dx' Adx/ = dA is the field strength for the
spatial gauge field A = A;dx/.

It is important to note here that we have assumed that
the background field F obeys a Dirac quantization condition,
which states that the flux of F through M must be an integer
multiple of 27:

(3.20)

1
— FeZ.

3.21
. (3.21)

Since the index of i¥, is integer valued by definition, it
is clear that Eq. (3.20) would not make sense without this
condition. Mathematically, this condition is equivalent to the
statement that A is a connection on a complex line bundle over
M, and the integer (27)~! f m F s the first Chern number of
this line bundle (see, for example, Sec. 6 of [27]).

As a final comment on the Atiyah-Singer index theorem,
we note that the sign on the right-hand side of Eq. (3.20) can
be seen to be correct by considering a simple example with
M = 52, the unit two-sphere. In this case we have / mdo =
4m by the Gauss-Bonnet theorem (the Euler characteristic
of 2 is 2). If we consider the field configuration A = %a)
then we have (27)~! f F =1, and we can also see from
Eq. (2.18) that for this choice of A the operator ¥, has
a zero mode equal to a constant function on M times the
eigenvector of y with eigenvalue +1. This confirms that the
sign in Eq. (3.20) is correct.

Using the result from the Atiyah-Singer index theorem
(3.20), we find that within this regularization scheme the
ground-state charge for this system, for m > 0, is
1 11

F=——| F.

3.22
22w M ( )

QA,m>0 - 47_[ v
This is in agreement with the result of Niemi and Semenoff,
who considered the case of flat space [1]. We see that curving
the space does not change the result. This is true because the
Atiyah-Singer index theorem for the Dirac operator in 2D
shows that the index of the operator ¥, does not receive
any gravitational contribution (this is not true in higher di-
mensions). The connection of the expression for Q4 ,, to the
Atiyah-Singer index theorem was pointed out by Jackiw in
[22].

The above result was derived under the assumption that
m > 0. If we instead chose m < 0, then our expression for the
ground-state charge would change sign because we would in-
stead find that 1(0) = —Index[i¥ 4]. Therefore, in the general
case we find that

Onm = _Sgn(m)L/ P
M

o (3.23)
An important property of this formula is that when F is an
odd multiple of 27r we find a half-integer charge in the ground
state. This can occur, for example, if the Dirac fermion theory
is located on the surface of the TI (i.e., M is the surface of
the TT) and if there is a magnetic monopole of the background
electromagnetic field present in the bulk of the TI. In this case
there would be a flux of 277 passing through M, and our result

for Q4 ,, shows that the ground state of the surface theory with
the mass term my would have a charge of :I:% depending on
the sign of m.

C. Discussion on symmetries

We now explain that the regularization scheme of [1],
which we have been studying in this section, violates large
U (1) gauge invariance, but is consistent with the time-reversal
symmetry of the massless Dirac fermion. The violation of
large U (1) gauge invariance is easy to see from the fact that
the charge Qa, from Eq. (3.23) can take on half-integer
values. We now explain the sense in which this regularization
scheme is consistent with time-reversal symmetry.

Recall that time reversal acts on the Hamiltonian I-?A,m
as THy ="' = H_4 _,, ie., the effect of time reversal is
to negate A and m. Within the regularization scheme of [1],
which uses the eta invariant of the spatial Dirac operator H4 ,,
to define Qg4 ,, we find using Eq. (3.23) that Q4 ,, satisfies the
relation

Oam = 0-A,—m- (3.24)

This means that in this regularization scheme the ground-
state charge for the theory with Hamiltonian A, is equal
to the ground-state charge of the time-reversed theory with
Hamiltonian FALA,,,,,. This is the precise sense in which the
eta invariant regularization scheme of [1] is consistent with
the time-reversal symmetry of the massless Dirac fermion.
One way to understand why Eq. (3.24) holds within this
regularization is to note that the eta invariant is built from
the spectrum of the massive Dirac operator Hy ,, and Ha
and H_4 _,, have the same spectrum. To see this, observe
that if ®(x) is an eigenfunction of H, , with eigenvalue E,
then Yy ®*(x) is an eigenfunction of H_,4 _,, with the same
eigenvalue (the star * denotes complex conjugation).

IV. REGULARIZATION SCHEME 2

In this section we study the Dirac fermion using our
second regularization scheme, which is a lattice regularization
scheme for the Dirac fermion on a spatial torus. In this
regularization scheme we compute the Hall conductivity oy ,,
in the ground state of the Dirac fermion with mass m and
in the presence of a background time-independent electric
field E. We find that oy, is always an integer (in units of
%), which implies that this regularization scheme preserves
the large U(1) gauge invariance of the Dirac fermion (there
are no fractionalized quantum numbers found in the Hall
response of the system to the background electric field).
On the other hand, we show that this regularization scheme
explicitly breaks the time-reversal symmetry of the massless
Dirac fermion in the continuum. This fact is also reflected in
the result of the Hall conductivity calculation, where we find
that o,y # —0H —m-

As we mentioned in the Introduction, the calculation in this
section is closely related to the calculation of Haldane [24]
on a lattice model on the honeycomb lattice that displays a
nonzero Hall conductivity in the absence of any net external
magnetic field (i.e., zero total magnetic flux through each
unit cell). Our results here are consistent with the findings in
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[24]. Just as in Haldane’s model on the honeycomb lattice,
the model that we consider also features a single massless
Dirac fermion at low energies, but at the cost of breaking
time-reversal symmetry. In fact, it was emphasized in [24] that
the honeycomb model considered there should be thought of
as a condensed matter realization of the parity anomaly.

A. Lattice regularization and Hall conductivity

For the lattice regularization we consider a set of two-
component fermions on the square lattice and with periodic
boundary conditions, and we set the lattice spacing equal
to 1. The Fourier transform of the two-component lattice
fermion operator will be denoted by W(k), with compo-
nents W, (Kk), o = 1, 2. Here k = (k;, k) is a wave vector in
the first Brillouin zone of the square lattice, k € (—m, ] X
(—m, ]. The Hermitian conjugate of U(k) is ¥i(k) with
components liﬁ'o‘(k), o =1, 2. We take the Hamiltonian for
the lattice regularization of the Dirac fermion to be

Aiaice = Y T H K (K), 4.1
k
where the Bloch Hamiltonian (k) is given by
H(k) = sin(k;)o™ + sin(ky)o*
+ [/ 4+ 2 — cos(ky) — cos(k)]o?. “4.2)

Here 71 is a tunable parameter that, in a certain parameter
regime, can be identified with the mass m of the continuum
Dirac fermion. This model features two bands, labeled “+”
and “—”, with energies given by £, (k) = £A(k) with

A(k):\/sinz(kl) + sin?(ky) + [ + 2 — cos(k;) — cos(ka)]?.
4.3)

In what follows we will be interested in the case in which
the lower band is completely filled and the upper band is
completely empty. We also note here that essentially the same
model was studied in Sec. II.B of [7].

Consider the parameter regime |7/72] < 1. In this regime the
upper and lower bands of the model come closest to each other
at the origin k = (0, 0) of the Brillouin zone, and the two
bands actually touch at k = (0, 0) when m = 0. If we Taylor
expand the Bloch Hamiltonian H (k) near k = (0, 0), then we
find that it takes the approximate form

HEK) ~ kijo* + kro® + mo?. 4.4)

To make contact with our previous discussion of the Dirac
operator in the continuum, recall that we worked in a basis
in which the gamma matrices y“, a = 1, 2, were both real,
and so the third matrix y was imaginary. One concrete choice
for these matrices is y! = o*, y? = ¢, which gives ¥ = o”.
With this choice, we see that the Fourier transform of the
massive Dirac operator iY + m¥ on flat space has exactly the
form of Eq. (4.4) with

4.5)

m = m.

The discussion in the previous paragraph shows that in
the regime || < 1 the low-energy description of this lattice
model consists of a single continuum Dirac fermion with mass
m = m and located at the point k = (0, 0) in the Brillouin

zone of the square lattice. In addition, the full lattice model
does not have any additional phase transitions’ for any 7z > 0,
while the next transition for m < 0 occurs at m = —2. At
m = —2 the upper and lower bands touch at the two points
k = (7, 0) and (0, 7r). This means that this lattice model is a
sensible regularization for a single continuum Dirac fermion
as long as we keep the parameter /% in a region near m = 0
and far away from the next transition at i = —2.

We now turn to the calculation of the Hall conductivity
for the Dirac fermion in this lattice regularization. We first
compute the Hall conductivity o' for the lattice model,
which is well defined for any value of the parameter i for
which there is a gap between the upper and lower bands of
the model. We then identify the Hall conductivity oy, of the
continuum Dirac fermion with the lattice Hall conductivity
ojatlice iy the appropriate parameter regime where the lattice
model is a sensible regularization of the continuum Dirac
fermion. Specifically, we have the following identifications:

lattice

OH,m>0 = Oy j7~0> (4.6a)
lattice

OH,m<0 = O0g 2 /m<0- (46b)

The Hall conductivity alf‘,‘;ilce for the lattice model is defined
precisely as follows. We first place the system in a static
electric field E that points in the x2 direction, so that E =
(0, E;). We then compute the current j' that flows in the x'
direction. Then 0'[1_?%06 is defined as the constant that relates j'
to Ey:

B a;;t’t%ce
7T o Ez.
encodes the spatially uniform (i.e., zero
wave vector) part of the linear response of j' to the applied
field E,. Note also that the factor of (27)~! appearing here is

4.7)

: lattice
More precisely, oy 5

actually % in our units where e = i = 1.

As discussed above, we consider the case where the lower
band is completely filled and the upper band is completely
empty, as this filling corresponds to the continuum ground
state in which the Dirac sea of negative energy states is
completely filled. In this case we can compute 0" using
various methods including a direct linear response calculation
using the Kubo formula [28], or the semiclassical theory of
wave-packet dynamics in solids [29]. Both methods lead to
the result that

lattice de 12
O = / o Q*(k), 4.8)
where /¢ (k) (with j, £ =1, 2) are the components of the
Berry curvature of the filled lower band (the “—” band) of
the lattice model, and where the integral is taken over the
Brillouin zone of the square lattice. The Berry curvatures
Q' (k) for the “+” and “—" bands of the model are defined
precisely as follows. Let |uy 1) be the eigenvector of the Bloch
Hamiltonian corresponding to the + band of the model:

HEK)|uk,+) = Ex(K)uk 1) (4.9)

"By a phase transition we mean a value of the parameter 7 at which
the upper and lower bands touch.
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If we define the Berry connection for the £ band as .Ai k) =

ik 1| =
by

Buk +

) then the Berry curvature for the & band is given

ALk) ALK
ok; dke

We now provide some details of the Berry curvature cal-
culation. For this calculation it is convenient to introduce

spherical coordinate variables ®(k) and ®(k) and to rewrite
the Bloch Hamiltonian in terms of these variables as

H(K) = A[sin(®) cos(D)o™ + sin(®) sin(P)o”
+ cos(®)o?],

. 0
Qf (k) =

(4.10)

@11

where A(k) was defined in Eq. (4.3), and where we have
suppressed the dependence of A(k), ®(k), and ®(k) on k for
brevity. This type of parametrization for a two-band Hamilto-
nian has been used, for example, in Sec. [.C.3 of [29]. In terms
of these variables the eigenvector |uy _) for the lower band of
the model takes the form

(e i® sm((z))

A straightforward calculation then shows that the Berry cur-
vature for the lower band is given by

1 9d(k) 90(K)

4.12)

QR (k) = —=¢; in[O(Kk)], 4.13
Z(k) S €it ok, ok, sin[® (k)] (4.13)
and so we have
. 1 0d(k) 00 (k) .
lattice 2
H,m 4]_[/ €je 3k 3k@ Sln[ ()] ( )

This expression shows that o} is an integer and is equal

to the number of times that the un1t vector specified by ®(k)
and ®(k) covers the unit two-sphere S as k varies over the
Brillouin zone of the square lattice. This can be seen from the
fact that sin(®)d®d® is the area element on S2, and from

the fact that €, Bg);k) ‘)gk(k) is the Jacobian of the map from the

Brillouin zone to 52 (the normalizing factor of 47 is also the
total area of S?).

One way to proceed with the calculation of o}i'3* would
be to work out explicit expressions for ®(k) and ®(k) in
terms of k and 7 and then evaluate the integral in Eq. (4.14).
As a practical matter, however, the easiest way to compute
o,ljmce is to evaluate the integral numerically for a particular
value of / in each parameter range where the Hamiltonian
has a gap between the upper and lower bands. We can use this
method because we already know that Ulamce is an integer-
valued topological invariant that takes a constant value in each
parameter range where the Hamiltonian has a gap. We find
that the Hall conductivity for the lattice model is given by

0, m>0

lattice __ _1» —2<m<0

Hn =11, —4<m<-=2 .15)
0, m< —4

Only the first two cases i > 0 and —2 < /M < 0 are relevant
for our original goal of studying a regularization of the con-
tinuum Dirac fermion. Using Eq. (4.6) to compute oy, from

o},‘mm we find that the result for oy, for either sign of the

mass m, can be written in the compact form
sgn(m) — 1

Ot = (4.16)

B. Discussion on symmetries

We now point out that this lattice regularization preserves
the large U (1) gauge invariance of the original massless Dirac
fermion, but breaks the time-reversal symmetry. To see that
large U (1) gauge invariance is preserved, it is sufficient to
note that this regularization yields an integer value for the Hall
conductivity oy . In other words, we do not find any frac-
tionalization of quantum numbers associated with the U(1)
symmetry of charge conservation. This result makes sense
since in this regularization scheme we are dealing with a well-
defined lattice model with charge conservation symmetry.

We now show that the lattice regularization that we have
been discussing does not possess the time-reversal symmetry
of the continuum massless Dirac fermion, even when the mass
parameter /7 in the lattice model is set to zero. To see this,
note that for the choice y! = 0%, y2 =07, and ¥ = o the
time-reversal operator defined in Eq. (2.8) would act on the
lattice fermions W (k) as

T, k)f*1 = (0")" ¥ s(—k),
= UM (—Kk)(0”)s",

(4.17a)
(4.17b)

where we note that k is negated by the time-reversal op-
eration. Then the condition of time-reversal invariance of
the Hamiltonian, 7 Hyyice? ™' = Hiatice, 18 equivalent to the
matrix equation

"H* (K)o? = H(=k). (4.18)

However, it is easy to check that this condition is not satisfied
by H(k), even when /i = 0. It follows that this lattice regu-
larization explicitly breaks the time-reversal symmetry of the
continuum massless Dirac fermion.

Finally, we note that the breaking of time-reversal symme-
try in this regularization scheme can also be seen from the fact
that

OHm # —OH,—m; (4.19)

i.e., time-reversed theories do not have opposite values of the
Hall conductivity within this regularization scheme.®

V. EFFECTIVE ACTIONS FOR THE TWO
REGULARIZATIONS

In this final section we compute, for each regularization
scheme, the effective action Sei[A] that encodes the re-
sponse of the system to the background electromagnetic field
A = A,dx". On curved space the physical three-current j*(x)

8The electric field E is invariant under time reversal, so the time-
reversal partner of the theory with mass m in the presence of E is the
theory with mass —m in the presence of the same field E.
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that arises as a response to the background field A is obtained
from Se[A] by functional differentiation as

1 8Serr[A]
Vdet[g(x)] Ap(x)

where we remind the reader that x = (x°, x!, x?) is the space-
time coordinate and x = (x', x2) is the spatial coordinate. The
overall minus sign appearing here is a matter of convention.
We chose it because with this sign the j(x) term in the
effective action has the form

— | d*x /det[g(x)]/°(x)Ao(x),

which has the correct sign for the action arising from the
potential energy of the charge density j* in the presence of
the scalar electromagnetic potential Ag.

For both regularizations considered in this paper, we find
that the effective action that encodes the response has the
Chern-Simons form

k k 3 N
Scs[Al=— [ ANdA=— [ d’xe""A,0,A,, (5.2)
4 4

) =— (5.1)

for an appropriate choice of the level k. To find the correct
value of k in each case, we compute the response that follows
from Scs[A] in the two situations considered in this paper.

We start by computing the charge that follows from Scs[A]
for a system on a closed spatial manifold M and in the
presence of a time-independent spatial gauge field. This is
exactly the physical quantity that we computed using the
regularization scheme of Niemi and Semenoff in Sec. III. This
charge is given by

0= / d*x /det[g(x)]j°(x)

k
= —— F, 5.3)
27 M
where in the second line we plugged in the result for j°(x) that
follows from functional differentiation of Scg[A]. To match
with our answer for Q4 ,, from Eq. (3.23), we find that we
must choose the level & to be
sgn(m)
ogs = 22 .
Then for the regularization scheme of Niemi and Semenoff we
find the effective action

(NS) sgn(m) 1
Seff [A] = TE A NdA.

Next, we compute the Hall conductivity for the case where
space is a flat torus, which is exactly the physical quantity
that we computed using the lattice regularization scheme in
Sec. IV. For this calculation we study the current that flows
in the x!' direction in response to a static electric field E =
(0, E>) pointing in the x? direction. For the effective action of
the Chern-Simons form we find that

ik,

J = o
where we needed to use the equation Fog = 0,49 — dpAs =
—E,, which relates the physical electric field to the compo-
nents of A (see the end of the Appendix for a review of this

(5.4)

(5.5)

(5.6)

relation). This equation implies a Hall conductivity of oy = k.
In this case, to match our answer for oy, from Eq. (4.16), we
must choose the level k as

sgn(m) — 1
-
Then for the lattice regularization scheme on a spatial torus
we find the effective action

(lattice) Sgn(m) -1 1
sllauieerpq} — (T o | Anda.

It is now clear that the effective actions computed using the
two different regularization schemes differ by a Chern-Simons
counterterm as

5.7

klattice =

(5.8)

» 11
(lattice) (NS)
Sy Al = o [A] — Y. / ANdA, (5.9)

where we see that the Chern-Simons counterterm has a frac-
tionally quantized level equal to —%. This difference between
the effective actions for these two regularization schemes ex-
actly matches the expectation from the original path-integral
treatment of the parity anomaly [2,3].

VI. CONCLUSION

In this paper we reviewed the parity anomaly of the mass-
less Dirac fermion in 2 + 1 dimensions in the context of the
Hamiltonian formalism, as opposed to the more conventional
discussion within the path-integral formalism. Our first goal
with this presentation was to explain the parity anomaly in
a way that would be more approachable for condensed matter
physicists. To this end, we have tried to show how the anomaly
is manifested in the calculation of concrete physical quantities
such as the charge of the ground state in a background spatial
gauge field A (Sec. III) and the Hall conductivity of the ground
state in a background electric field E (Sec. IV).

Our second goal was to understand the precise relation
between time-reversal symmetry and the charge of :I:% that
appears on the surface of the TI (the surface theory of which
is the massless Dirac fermion) when a magnetic monopole
is present in the bulk of the TI. The regularization scheme
that leads to this half-quantized charge is known and was
originally considered by Niemi and Semenoff in [1]. In this
paper we explained that this regularization scheme is consis-
tent with the time-reversal symmetry of the massless Dirac
fermion, in the precise sense of Eq. (1.1). To the best of our
knowledge, the consistency of the regularization scheme of [1]
with time-reversal symmetry has not been discussed in detail
in the existing literature (see, however, the comparison with
a parity-preserving point-splitting regularization scheme in
[23]). This observation is important because it fits in with the
general picture of the parity anomaly, which states that a given
regularization scheme can preserve either the time-reversal
symmetry or the large U (1) gauge invariance of the massless
Dirac fermion, but not both.

An interesting direction for future work on this topic would
be to investigate a bosonic analog of the parity anomaly in
quantum field theories with U (1) and time-reversal symmetry
that can appear on the surface of the bosonic topological insu-
lator [30,31]. The bosonic topological insulator is the closest
analog, in a bosonic system with U(1) and time-reversal
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symmetry, of the more familiar fermion TI state. Some ideas
about the form of this bosonic anomaly have already been
presented in [32]. The key physical property of the anomaly
that was discussed there was the fact that a bosonic theory
possessing this anomaly can be driven into a time-reversal
breaking state with a Hall conductivity of 1 (in units of %),
which is exactly half of the allowed Hall conductivity that can
be achieved in a (nonfractionalized) phase of bosons that can
exist intrinsically in 2 4 1 dimensions [33,34].

An additional reason to look for such an anomaly in 2 4 1
dimensions is the demonstration in [35] that in 0 + 1 dimen-
sions there is a bosonic anomaly that is an exact analog of a
well-known fermionic anomaly in the same dimension [36].
The action for a massless Dirac fermion in 0 4+ 1 dimensions
coupled to a background gauge field A = Apdx® has both
large U (1) gauge invariance and a unitary charge conjugation
(or particle-hole) symmetry. However, it was shown in [36]
that it is impossible to regularize this theory in a way that
preserves both of these symmetries. This anomaly is clearly
analogous to the parity anomaly of the massless Dirac fermion
in 2 + 1 dimensions, but with charge conjugation instead of
time reversal as the relevant discrete symmetry. It was recently
shown in [35] that an exact analog of this anomaly exists in a
bosonic theory in O + 1 dimensions with the same symmetries.
In addition, the calculation of the bosonic anomaly in [35] em-
ployed the equivariant localization technique, which revealed
that the bosonic and fermionic anomalies in 0 + 1 dimensions
have the same mathematical origin. Indeed, the derivation
showed that both anomalies follow from the form of the APS
eta invariant for the Dirac operator in 0 4- 1 dimensions. Based
on this simple example, we expect that it would be interesting
to search for a bosonic analog of the parity anomaly in 2 + 1
dimensions.
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APPENDIX: CONVENTIONS

In this Appendix we review our conventions and notation
for the Dirac operator on curved space and our conventions for
the electromagnetic field. The information contained in this
Appendix is used in Sec. II of the main text of this paper,
where we review the Hamiltonian for the Dirac fermion on
flat and curved space.

We consider a Dirac fermion on a space-time of the form
M x R, where M represents D-dimensional space and R
represents time. We assume that M is an orientable Rieman-
nian manifold. We also need to assume that M is a spin
manifold so that we can consistently place fermions on M x
R. We also assume that M is closed (i.e., compact and without
boundary) and connected. Coordinates on the full space-time
will be denoted by x* where the (Greek) space-time indices
W, v, ... take the values {0, 1, ..., D}. The spatial coordinates
on M are x/ where the (Latin) spatial indices j, k, ... take
the values {1, 2, ..., D}. We denote by x = @2, ..., xP) the

full vector of space-time coordinates and by x = (x!, ..., xP)
the vector of spatial coordinates. We also use the standard
summation convention in which we sum over any index (Latin
or Greek) that is repeated once as a subscript and once as a
superscript in any expression.

We denote by G, the components of the space-time metric
G, which we choose to have signature (1, —1, ..., —1) (i.e.,a
“mostly minus” signature). Since our space-time is a product
of a curved space M and flat time direction R, the space-time
metric G has the form

G =dx’®dx" — g(x)dx’ ® dx*, (A1)

where gji(x) are the components of an ordinary Rieman-
nian metric g on M. Note that with this definition we have
det[g(x)] > O for all x € M, where det[g(x)] is the determi-
nant of g (x).

We now discuss the construction of the spatial Dirac op-
erator on M. The first step is to define the coframe one-
forms e = e?dxf and frame vector fields e, = €}9; (3; =
%), where frame indices a, b, . .. take the values {1, ..., D}.
The components of these objects are defined in terms of the
metric gjx by

(A2a)
(A2b)

a b __
€i8apey = &k,

j k
e{zgjkeb = 8ab'

The frame and coframe components are inverses of each other
when considered as matrices, ejfei =8¢ and efe} = 5. In
addition, we have the relation det[e(x)] = +/det[g(x)], where
det[e(x)] is the determinant of the cofmmeejf viewed as a
matrix with row index a and column index j.

To construct a Dirac operator on M we also need a set of
gamma matrices y“ with frame indices a € {1, ..., D}. These
satisfy the Clifford algebra {y?, y’} =26%, and in terms
of them we define the rotation generators y* := 1[y, y*]
[these are generators of the group spin(D)]. Note that these
gamma matrices all square to the identity and so we can
choose them to be Hermitian.

The next ingredient we need is the spin connection on
M. The spin connection one-form w%, = w j“bdxj on M is
defined by the relation

Ve, = o, eq, (A3)

where V; = V. denotes the connection on the tangent bundle

of M. Under a local rotation of the coframes e — A%,e?, the
spin connection transforms as

wi®, = (Ao A7, — (AN, (A4)

If we assume metric compatibility of the spin connection, then
we have w,, = —wpq, 1.€., Wy 1s a one-form that takes values
in the Lie algebra of the group SO(D).

The curvature and torsion two-forms on M are

R = dw’y, + 0% A o, (A5a)

T =de* + o' A e (A5b)

If we assume that the torsion vanishes, T¢; =0 for all
a, j, k where T j; are the components of the two-form 7¢ =
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%T“ wdx? A dx*, then the metric-compatible spin connection
takes the explicit form

), = e;The] — eydjef, (A6)

where ka is the Levi-Civita connection:
It = Lo"™(Bigmi + 0:gmk — Omgi A7
jk — zg k8mj + 1 8mk mg/k)- ( )

With all of these conventions in place, we can now con-
struct the Dirac operator on the D-dimensional space M. The
Dirac operator D is given by

D =iV, (AB)
where
Y = e{;y“(aj + %wjbcybc).

One can check that D is Hermitian with respect to the inner
product:

(A9)

W, ) = / dPx detle(x)]y " (x)p(x)
= [ d’x /det[g(x)]y " (x)p(x),

which is the appropriate inner product for spinors ¢ and v on
the Riemannian manifold M. To verify that D is Hermitian
one needs to use the fact that the torsion two-form vanishes,
Ty =0 for all a, j, k, as well as the fact that M is closed
(no boundary terms arise in integration by parts because M
does not have a boundary).

(A10)

To close this Appendix we also discuss our conventions
for the electromagnetic field. We specialize the discussion to
the case of D = 2, which is the case that we consider in the
main text of this paper. Let A = A, dx"* be the one-form for a
configuration of a background electromagnetic field. Since we
assume a space-time metric with signature (1, —1, —1), when
the space M is flat (i.e., M = R?) the components F),, of the
field strength two-form F' = dA = %F,wdx’“’“ A dx” are related
to the usual electric and magnetic fields as

Fi» = —B, (Alla)
Fy = —Es, (Al1b)
F01 = El, (AllC)

where B is the magnetic field perpendicular to the plane and
E = (E1, E») is the usual electric field in the plane. These for-
mulas follow from the fact that when M = R? we can identify
Ay with the usual scalar potential in electromagnetism, while
we have A; = —A/, where A’ are the components of the
usual vector potential A = (A', A?). The usual electric and
magnetic fields on flat space are then defined in terms of these
by the usual formulas

E = —VAj — dA,
B = ;A% — A",

(Al2a)
(A12b)

where V = (0;, d;) is the ordinary gradient operator on flat
space.
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