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In the study of strongly correlated, many-electron systems, the Hubbard-Kanamori (HK) model has emerged
as one of the prototypes for transition metal oxide physics. The model is multiband in nature and contains
Hund’s coupling terms, which have pronounced effects on metal-insulator transitions, high-temperature super-
conductivity, and other physical properties. In the following, we present a complete theoretical framework for
treating the HK model using the ground-state auxiliary field quantum Monte Carlo (AFQMC) method and
analyze its performance on few-band models whose parameters approximate those observed in ruthenates,
rhodates, and other materials exhibiting Hund’s physics. Unlike previous studies, the constrained path and
phaseless approximations are used to respectively control the sign and phase problems, which enables high-
accuracy modeling of the HK model’s ground-state properties within parameter regimes of experimental interest.
We demonstrate that, after careful consideration of the Hubbard-Stratonovich transformations and trial wave
functions employed, relative errors in the energy of less than 1% can routinely be achieved for moderate to large
values of the Hund’s coupling constant. Crucially, our methodology also accurately predicts magnetic ordering
and phase transitions. The results presented open the door to more predictive modeling of Hund’s physics within
a wide range of strongly correlated materials using AFQMC.
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I. INTRODUCTION

Since the unanticipated discovery of high-temperature su-
perconductivity in the cuprates, the single-band Hubbard
model [1] has been the focus of an unparalleled level of
theoretical scrutiny and associated algorithmic development
[2–5]. Nevertheless, most materials exhibiting strong corre-
lation, including most transition metal oxides [6–8] as well
as the pnictides [9–11], fullerides [12,13], and chalcogenides
[9,10,14] possess multiple bands that cross their Fermi levels
and are therefore fundamentally multiband in nature [15]. In
recent years, it has become increasingly evident that some of
the most significant effects in such multiband materials stem
from Hund’s coupling [10,11,16]. According to Hund’s rules,
electrons favor maximizing their total spin by first occupying
different, degenerate orbitals with parallel spins; only after the
parallel spins fill all available orbitals do electrons then begin
to doubly occupy the same orbitals [15]. As such, the effective
Coulomb repulsion among electrons in a half-filled shell is
increased due to Hund’s rules, while that at any other filling
is decreased. Hund’s effects therefore drive half-filled d- and
f -electron materials closer to a Mott transition for a given
Coulomb repulsion, yet drive non-half-filled materials away
from a Mott transition while also increasing the correlation
within their metallic phases. The consequences of these ef-
fects are perhaps best illustrated in 4d transition metal oxides
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that have more than a single electron or hole in their 4d shells
[17–20]. Unlike their rhodate counterparts, which possess a
single hole in their shells, many ruthenates and molybdenates
exhibit substantial mass enhancements [21], unexpected Mott
insulator transitions [22–24], novel quantum phase transitions
[25], and even superconducting phases [26]—all of which
may be attributed to Hund’s physics.

Despite both the prevalence and importance of Hund’s
effects, they remain a challenge to model. Most analytical
and numerical treatments revolve around solving a multiband
Hubbard model, most often the Hubbard-Kanamori (HK)
model [27], containing a mixture of kinetic, Coulomb U , and
Hund’s J terms. Although analytical studies have been per-
formed [28–32], just as in the case of the single-band Hubbard
model containing a repulsive U term [2,33], accurate treat-
ments of these models necessitate methods capable of treating
strong correlation nonperturbatively. However, because these
models possess significantly larger state spaces and involve
additional pair-hopping and Hund’s exchange terms, they are
often even more difficult to treat than the Hubbard model.

Due to the complicated interactions involved, there is no
general analytical solution for these problems. Thus, numer-
ical treatments are in high demand. To date, most numerical
studies of multiband models have employed dynamical mean-
field theory (DMFT) [34,35] either on its own or in com-
bination with density functional theory (DFT) [36] because
of DMFT’s ability to treat band and atomic effects on equal
footing by self-consistently solving an impurity problem
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within a larger bath. DMFT has been very successful at
mapping out multiband phase diagrams at finite temperatures
[19,20,23,37–40]. Nevertheless, DMFT is fundamentally lim-
ited by the accuracy and scaling of its impurity model solver.
Some DMFT studies rely upon exact diagonalization (ED) to
solve their impurity models, yet the computational cost of ED
grows exponentially with the number of bands involved, thus
thwarting its application to many-band models. Some DMFT
algorithms employ continuous-time quantum Monte Carlo
(CTQMC) [41] to solve their impurity models. CTQMC can
solve larger impurity models than ED, but is still hampered
by the sign problem, an exponential decrease in the signal to
noise ratio observed in stochastic simulations [42], in certain
parameter regimes and low-temperature calculations remain
difficult [43]. A method that can accurately simulate larger
system sizes at lower temperatures is thus in need.

One suite of techniques particularly well-suited for study-
ing the large state spaces inherent to multiband models are
quantum Monte Carlo (QMC) techniques [44,45]. Both finite
temperature QMC methods, including the CTQMC [43] and
Hirsch-Fye QMC [46] algorithms that have been employed as
impurity solvers within DMFT, and ground state [47,48] QMC
algorithms have been developed and applied to multiband
Hubbard models. Nonetheless, the Hund’s terms of the HK
Hamiltonian have posed challenges for all of these methods.
This is because Hund’s terms are not readily expressed as
products of density operators and are therefore not readily
amenable to standard QMC transformations. Straightforward
decoupling of the exchange and pair hopping terms leads to
a severe sign problem [49]. Attempts have therefore been
made to simplify the Hund’s contribution to the Hamiltonian
to make it more palatable to QMC methods by constrain-
ing its direction to the z axis [49,50], but such treatments
often fail to properly capture the model’s expected physics.
Several Hund’s specific transformations have been proposed,
including a discrete transformation by Aoki [51,52] and a
continuous transformation by Imada [47,48]. Nevertheless,
these transformations ultimately do not eliminate the sign
problem and are limited to parameter regimes with only high
signal to noise ratios. These algorithmic constraints obscure
our fundamental understanding of multiband physics.

In this paper, we present an auxiliary field quantum Monte
Carlo (AFQMC) framework especially suited for the study of
ground-state multiband Hubbard models and demonstrate its
accuracy over a range of realistic parameters using different
signal-preserving approximations and trial wave functions.
Key to our approach is the strategic use of two forms of
both the continuous and discrete Hubbard-Stratonovich (HS)
transformations to decouple the Hund’s term: a charge decom-
position for negative values of the Hund’s coupling parameter,
and a spin decomposition for positive values of the Hund’s
coupling parameter. We also employ an unconventional form
of importance sampling in which we shift propagators instead
of auxiliary fields so as to enable importance sampling of
discrete transformed propagators. This enables us to combine
importance sampling with both discrete and continuously
transformed propagators. Unlike previous works, we further-
more utilize flexible Generalized Hartree-Fock (GHF) trial
wave functions which enable us to calculate highly accu-
rate background subtraction terms and apply highly accurate

sign/phase constraints. Altogether, we find that these im-
provements yield promising results for a variety of HK model
benchmarks. Although the algorithm presented is designed
for the ground state, it can easily be adapted for use in finite
temperature methods [54,55]. Our algorithm therefore paves
the way to high-accuracy modeling of the low-temperature
physics of a wide range of multiband models and materials
over a dramatically larger portion of the phase diagram.

The remainder of the paper is organized as follows. In
Sec. II, we outline the HK model, summarize the key features
of the AFQMC method, and describe how the conventional
AFQMC technique may be modified to best treat the HK
Hamiltonian. In Sec. III, we then present benchmarks of our
method’s performance within different parameter regimes,
using different trial wave functions and employing different
approximations on two- and three-band HK models for which
exact diagonalization results may be obtained. Towards the
end of this section, we also demonstrate the accuracy with
which our techniques can predict the charge gaps and mag-
netic ordering of two-dimensional lattice models beyond the
reach of most other techniques. We conclude with a discussion
of the broader implications of this work and future directions
in Sec. IV.

II. METHODS

A. Hubbard-Kanamori model Hamiltonian

The HK model is a multiband version of the Hubbard
model designed to account for the competition between the
spin and orbital degrees of freedom observed in the physics
of d- and f -electron materials [15,27]. In order to accomplish
this, the model includes not only standard Hubbard on-site
density-density interactions, but also interorbital (interband)
density, exchange, and pair hopping terms. The full HK
Hamiltonian, written as generally as possible, reads

ĤHK ≡ Ĥ1 + Ĥ2 ≡ Ĥ1 + ĤU + ĤJ , (1)

where

Ĥ1 =
∑
imσ

∑
jm′σ ′

tσσ ′
im, jm′ ĉ†

imσ ĉ jm′σ ′ , (2)

ĤU =
∑
i,m

Uimn̂im↑n̂im↓ +
∑

i,m �=m′
U ′

imm′ n̂im↑n̂im′↓

+
∑

i,m<m′,σ

(U ′
imm′ − Jimm′ )n̂imσ n̂im′σ , (3)

and

ĤJ =
∑

i,m �=m′
Jimm′ (ĉ†

im↑ĉ†
im′↓ĉim↓ĉim′↑ + ĉ†

im↑ĉ†
im↓ĉim′↓ĉim′↑

+ H.c.). (4)

In the above, ĉ†
imσ (ĉimσ ) creates (annihilates) an electron with

spin σ in band m at site i. n̂ denotes the number operator and
n̂im↑, for example, represents the number of spin-up electrons
at site i in band m. Ĥ1 contains all one-body contributions
to the Hamiltonian, including terms parameterized by the
constants tσσ ′

im, jm′ that describe the hopping of electrons in dif-
ferent bands between sites i and j and the spin-orbit coupling
common within realistic materials. Ĥ2 denotes the collection
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of all two-body operators. ĤU contains all density-density
interactions, including the intraband (U ) and interband (U ′)
Coulomb interactions, and the z (or Ising) component of the
Hund’s coupling. In contrast, ĤJ contains all of the terms
that cannot be written as density-density interactions, which
consist of the x and y components (spin exchange) of the
Hund’s coupling, (ĉ†

im↑ĉ†
im′↓ĉim↓ĉim′↑ + H.c.), as well as the

pair-hopping interaction (ĉ†
im↑ĉ†

im↓ĉim′↓ĉim′↑ + H.c.), in which
two electrons in a given band transfer as a pair to another
band. J denotes the Hund’s coupling constant. Note that our
formalism is general and allows for band- and site-dependent
U, U ′, and J constants.

B. Modified Hubbard-Kanamori model Hamiltonian

In order to facilitate programming and the generalization
of this HK Hamiltonian into a form in which all coupling
constants are independent, we map the Hamiltonian given by
Eqs. (1)–(4) into a one-band model whose terms only depend
upon their band indices. If we now let i and j denote su-
perindices that combine both lattice site and band information,
then

Ĥ = Ĥ1 + Ĥ2

=
∑

i j,σσ ′
tσσ ′
i j ĉ†

iσ ĉ jσ ′ +
∑

i

U in̂i↑n̂i↓

+
∑
i< j

U i j
1 (n̂i↑n̂ j↓ + n̂i↓n̂ j↑) +

∑
i< j

U i j
2 (n̂i↑n̂ j↑ + n̂i↓n̂ j↓)

+
∑
i< j

Ji j (ĉ†
i↑ĉ†

j↓ĉi↓ĉ j↑ + ĉ†
i↑ĉ†

i↓ĉ j↓ĉ j↑ + ĉ†
j↑ĉ†

i↓ĉ j↓ĉi↑

+ ĉ†
j↑ĉ†

j↓ĉi↓ĉi↑). (5)

tσσ ′
i j describes the hopping and spin-orbit coupling between

different sites and bands. In keeping with the
∑

i,m<m′ and∑
i,m �=m′ summations in Eqs. (3) and (4),

∑
i< j only sums over

index combinations that reference different bands on the same
site. In this modified HK model, the U term describes density-
density interactions only between electrons with opposite
spins in the same band, the U1 term describes interactions
between electrons with opposite spins in different bands on
the same site, the U2 term describes interactions between
electrons with parallel spins in different bands on the same
site, and the J term describes spin-exchange and pair hopping
interactions on the same site. Thus, in going from Eqs. (3) and
(4) to Eq. (5), the original U ′ term has become the U1 term, the
original (U ′ − J ) term has become the U2 term, and the J term
has been re-expressed. Using Eq. (5), we map a multiband
model into a single-band model in which the number of lattice
sites has been enlarged into the number of bands. Since there
is no explicit band index in our model, we can deal with any
number of bands as long as the mapping is done correctly.

C. Overview of AFQMC

In the remainder of this work, AFQMC will be employed
to obtain accurate numerical solutions to the HK model.
AFQMC is a quantum many-body method that solves the
ground-state Schrodinger equation by randomly sampling

an overcomplete space of nonorthogonal Slater determinants
[56–58] and has consistently been demonstrated to be among
the most accurate of modern many-body methods for mod-
eling the Hubbard model over a wide range of parameter
regimes [2,33,59–61]. At its heart, AFQMC is an imaginary-
time projection quantum Monte Carlo technique that applies
a projection operator e−βĤ onto an initial wave function |�I〉,

|�0〉 ∝ lim
β→∞

(e−βĤ )|�I〉. (6)

In the limit of infinite imaginary projection time (β → ∞),
it converges to the ground-state wave function |�0〉 as long
as the initial wave function is not orthogonal to the ground-
state wave function. Because the projection operator cannot be
evaluated for large values of β, it is discretized into n = β/�τ

smaller time slices for which it can be evaluated

|�0〉 ∝ lim
n→∞(e−�τ Ĥ )n|�I〉, (7)

and the projection is carried out iteratively as follows:

|� (n+1)〉 = e−�τ Ĥ |� (n)〉. (8)

For sufficiently small �τ , the projection operator may be
factored into one- and two-body pieces via a Suzuki-Trotter
factorization [62,63]

e−�τ Ĥ ≈ e−�τ Ĥ1/2e−�τ Ĥ2 e−�τ Ĥ1/2. (9)

The two-body propagator may be further decomposed into the
four terms given in Eq. (5)

e−�τ Ĥ2 ≈ e−�τ ĤU e−�τ ĤU1 e−�τ ĤU2 e−�τ ĤJ

= e
−�τ

∑
i

U in̂i↑n̂i↓
e
−�τ

∑
i< j

U i j
1 (n̂i↑n̂ j↓+n̂i↓n̂ j↑ )

× e
−�τ

∑
i< j

U i j
2 (n̂i↑n̂ j↑+n̂i↓n̂ j↓ )

× e
−�τ

∑
i< j

Ji j (ĉ†
i↑ ĉ†

j↓ ĉi↓ ĉ j↑+ĉ†
i↑ ĉ†

i↓ ĉ j↓ ĉ j↑+H.c.)
. (10)

A time step extrapolation is needed to make sure the Trotter
error is negligible in the Monte Carlo simulation.

D. Hubbard-Stratonovich transformation of the modified
Hubbard-Kanamori Hamiltonian

According to Thouless’s theorem [64], acting the exponen-
tial of a one-body operator on a determinant results in another
determinant, reducing the process of projecting a one-body
operator onto the wave function into standard matrix multipli-
cation. Nevertheless, no such theorem applies to exponentials
of two-body operators, which necessitates re-expressing these
operators into integrals over one-body operators using the
so-called Hubbard-Stratonovich transformation [65].

In order to transform the two-body propagator given by
Eq. (10), both discrete [66,67] and continuous [68] HS trans-
formations need to be performed. The U, U1, and U2 terms
are products of density operators, much like the single-band
Hubbard model U term, and may therefore be decomposed
using discrete transformations. For α < 0, where α may de-
note U, U1, or U2, it is usually better to use the discrete charge
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decomposition

e−�ταn̂1n̂2 = e−�τα(n̂1+n̂2−1)/2
∑

x=±1

1

2
eγ x(n̂1+n̂2−1), (11)

where cosh(γ ) = e−�τα/2, while for α > 0, it is usually better
to use the spin decomposition

e−�ταn̂1n̂2 = e−�τα(n̂1+n̂2 )/2
∑

x=±1

1

2
eγ x(n̂1−n̂2 ), (12)

where cosh(γ ) = e�τα/2. In both Eqs. (11) and (12), x repre-
sents the namesake auxiliary field that may assume the dis-
crete values of +1 or −1. For the subsequent discussion, note
that the charge decomposition is so named because it produces
a one-body propagator involving the sum of n̂1 + n̂2, which
would be equivalent to the charge on a site if 1 represented an
up and 2 a down spin on that site. Along similar lines, the spin
decomposition is so named because it involves the difference
between n̂1 and n̂2, which would represent the spin on a site
under the same assumptions.

Because ĤJ contains terms that are not simple products of
density operators, decomposing it is a much more challenging
task. Past attempts have either neglected or simplified ĤJ

[49,50]. Several techniques have employed exact decomposi-
tions [47,51,52], but all such decompositions are accompanied
by a sign problem that thwarts explorations of wide swaths
of the phase diagram. Unlike these past attempts, in the
following, we define a unique decomposition that can be
employed in both continuous and discrete transformations,
and accompany it by importance sampling that first mitigates
and the constrained path and phaseless approximations that
subsequently eliminate the sign and phase problems. As part
of our decomposition of e−�τ ĤJ , we first re-expressed ĤJ in
terms of squares of one-body operators. Let

ρ̂i j ≡
∑

σ

(ĉ†
iσ ĉ jσ + ĉ†

jσ ĉiσ ). (13)

Then,

ρ̂2
i j =

∑
σσ ′

(ĉ†
iσ ĉ jσ + ĉ†

jσ ĉiσ )(ĉ†
iσ ′ ĉ jσ ′ + ĉ†

jσ ′ ĉiσ ′ ), (14)

and ĤJ may be re-expressed as (see Ref. [53], Sec. I A, for
more details about the deduction)

ĤJ =
∑
i< j

Ji j (ĉ†
i↑ĉ†

j↓ĉi↓ĉ j↑ + ĉ†
i↑ĉ†

i↓ĉ j↓ĉ j↑ + H.c.)

=
∑
i< j

Ji j

2

[
ρ̂2

i j −
∑

σ

(n̂iσ + n̂ jσ − n̂iσ n̂ jσ − n̂ jσ n̂iσ )

]

=
∑
i< j

Ji j

2
ρ̂2

i j −
∑
i< j,σ

Ji j

2
(n̂iσ + n̂ jσ ) +

∑
i< j,σ

Ji j n̂iσ n̂ jσ .

(15)

The second term of Eq. (15) consists of one-body operators
and can be combined with the other one-body operators into
Ĥ1. The third term consists of a product of density operators
and can therefore be transformed according to either Eqs. (11)
or (12). The first term, however, consists of a square that can-
not be resolved into products of density operators. In general,

the two-body term can be decoupled via either a discrete [69]
or a continuous [65] Hubbard-Stratonovich transformation.
A continuous HS transformation was employed based on
previous experience [61] that the statistical errors that accom-
pany transformations with near optimal background subtrac-
tion terms have substantially smaller slopes as a function of
projection time than the errors that accompany discrete trans-
formations without any background subtraction. In general,
the continuous HS transformation may be written as

e−�τ Â2/2 =
∫

dx
1√
2π

e−x2/2ex
√−�τ Â, (16)

where Â represents any one-body operator and x denotes an
auxiliary field, as before. Letting Â ≡ ρ̂i j , it follows that the
most obvious way to transform the exponential formed from
the first term of Eq. (15) is using the charge decomposition

e
−�τ

∑
i< j

Ji j

2 [
∑
σ

(ĉ†
iσ ĉ jσ +ĉ†

jσ ĉiσ )]2

=
∏
i< j

∫
dxi j

1√
2π

e−x2
i j/2e

xi j

√−�τJi j [
∑
σ

(ĉ†
iσ ĉ jσ +ĉ†

jσ ĉiσ )]
. (17)

As long as Ji j < 0 for all i, j, all of the propagators produced
by this transformation will be real, as is desirable within
AFQMC simulations. However, if any of the Ji j are greater
than 0,

√−�τJi j will be complex resulting in a complex
propagator that immediately introduces a complex phase into
simulations. To prevent complexity from being introduced
into the operators, in certain cases, we take a cue from the dis-
crete case and define a continuous spin decomposition that in-
volves the difference between spin up and down operators. Let

ρ̂i j =
∑

σ

δσ (ĉ†
iσ ĉ jσ + ĉ†

jσ ĉiσ ), (18)

where δ↑ = 1 and δ↓ = −1, then (see Ref. [53], Sec. I A, for
further details)

ρ̂2
i j =

∑
σσ ′

δσ δσ ′ (ĉ†
iσ ĉ jσ + ĉ†

jσ ĉiσ )(ĉ†
iσ ′ ĉ jσ ′ + ĉ†

jσ ′ ĉiσ ′ ). (19)

Using this to re-express ĤJ , we have

ĤJ =
∑
i< j

Ji j (ĉ†
i↑ĉ†

j↓ĉi↓ĉ j↑ + ĉ†
i↑ĉ†

i↓ĉ j↓ĉ j↑ + H.c.)

=
∑
i< j

−Ji j

2
[ρ̂2

i j −
∑

σ

(n̂iσ + n̂ jσ − n̂iσ n̂ jσ − n̂ jσ n̂iσ )]

=
∑
i< j

−Ji j

2
ρ̂2

i j +
∑
i< j,σ

Ji j

2
(n̂iσ + n̂ jσ ) −

∑
i< j,σ

Ji j n̂iσ n̂ jσ .

(20)

Employing this form for the decomposition, the exponential
that stems from the first term of Eq. (20) may now be
transformed to yield

e
�τ

∑
i< j

Ji j

2 [
∑
σ

δσ (ĉ†
iσ ĉ jσ +ĉ†

jσ ĉiσ )]2

=
∏
i< j

∫
dxi j

1√
2π

e−x2
i j/2e

xi j

√
�τJi j [

∑
σ

δσ (ĉ†
iσ ĉ jσ +ĉ†

jσ ĉiσ )]
, (21)
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which is real for Ji j > 0. Using the charge decomposition
[Eq. (17)] when Ji j < 0 and the spin decomposition
[Eq. (21)] when Ji j > 0 thus completely eliminates complex
propagators, easing simulation. In Sec. III A, we compare
the merits of using this mixed decomposition approach to
exclusively relying upon the complex charge decomposition
on the accuracy of our overall results.

Inserting the HS transformations defined by Eqs. (11), (12),
(17), and (21) into Eqs. (9) and (10) and combining terms,
one arrives at the final AFQMC expression for the projection
operator

e−�τ Ĥ =
∫

dxp(x)B̂(x), (22)

where x = {x1, x2, . . . , xNF } denotes the set of NF total nor-
mally distributed auxiliary fields sampled at a given time slice,
B̂(x) represents the amalgamation of all one-body operators,
and p(x) is a combination of all scalar functions of the
fields. Example expressions for B̂(x) and p(x) are given in
Ref. [53], Sec. I B. As is clear from Eq. (22), the series of
HS transformations described ultimately maps the original
two-body propagator into a weighted integral over one-body
propagators that are functions of external auxiliary fields.

E. Sampling in AFQMC

1. The sampling process

One of the most computationally efficient ways of evaluat-
ing many dimensional integrals such as that given by Eq. (22)
is to use Monte Carlo sampling techniques. As described in
more detail in previous publications [56–58,70], if |�I〉 is
represented by a single Slater determinant, after each appli-
cation of the projection operator, a new Slater determinant
will be produced. Thus, if k instances (so-called “walkers”)
are initialized to |�I〉 and the projection operation given by
Eq. (22) is applied to each of them by independently sampling
sets of fields, then a random walk through the space of
nonorthogonal determinants is realized in which the overall
wave function at time slice n, |� (n)〉, is represented by an
ensemble of k wave functions |ψ (n)

k 〉 with weights w
(n)
k

|� (n)〉 =
∑

k

w
(n)
k

∣∣ψ (n)
k

〉
. (23)

Here, the w
(n)
k consist of the products of scalars accumulated

over all time slices by walker k, which can be complex.
Ground-state observables at each time slice, such as the

energies reported below, may then be computed by evaluating
the mixed estimator [44] over the ensemble

〈Â〉mix = 〈�T |Â|� (n)〉
〈�T |� (n)〉 =

∑
k w

(n)
k 〈�T |Â∣∣ψ (n)

k

〉
∑

k w
(n)
k

〈
�T

∣∣ψ (n)
k

〉 , (24)

where |�T 〉 denotes a trial wave function that approximates
the true ground-state wave function. To facilitate the evalu-
ation of the mixed estimator, it is common to introduce the
local energy

EL[�T ,] ≡ 〈�T |Ĥ |〉
〈�T |〉 , (25)

such that Eq. (24) may be simplified to

〈Â〉mix =
∑

k w
(n)
k

〈
�T

∣∣ψ (n)
k

〉
EL

[
�T , ψ

(n)
k

]
∑

k w
(n)
k

〈
�T

∣∣ψ (n)
k

〉 . (26)

After a sufficiently large number of time slices such that |� (n)〉
approaches the ground state, final estimates of 〈Â〉 may be
obtained by averaging over each time slice expectation value.

A population control procedure [71] is needed during the
random walk. During this procedure, walkers with larger
weights are replicated and those with smaller weights are
eliminated probabilistically. The weight used in population
control is

W (n)
k = w

(n)
k

〈
�T

∣∣ψ (n)
k

〉
. (27)

When there is a sign or phase problem, W (n)
k may become

negative or complex. As described in Secs. II E 5 and II E 6,
W (n)

k is always positive or zero if the constrained path or
phaseless approximations are employed.

2. The sign and phase problems

Unfortunately, the “free” projection process just described
is typically beset by either the sign [42,72] or phase prob-
lems [73]. These problems fundamentally stem from the fact
that observables computed using a single Slater determinant,
|�〉, remain invariant to arbitrary rotations, eiθ |�〉, of that
determinant, where θ is a phase angle. Consequently, dur-
ing the course of an AFQMC simulation involving complex
propagators, walkers may accumulate infinitely many possible
phases (as there are infinitely many possible phase angles,
θ ∈ [0, 2π )), resulting in infinitely many possible determi-
nants. Since these phases are directly multiplied into the
walker weights of Eqs. (24) and (26), after many iterations,
the walker weights end up populating the entire complex plane
and many of the terms summed to compute weighted averages
of observables cancel one another out. This cancellation leads
to an exponential decline in observable signal to noise ratios
that manifests as infinite variances [61] called the phase
problem. If transformations that preclude propagators from
becoming complex are employed as described above, positive
and negative versions of each determinant may still be gen-
erated, resulting in a somewhat less pernicious cancellation
of positive and negative weights termed the sign problem. If
left unchecked, the sign and phase problems render obtaining
meaningful observable averages nearly impossible, thwarting
AFQMC simulations. We therefore mitigate these problems
using a combination of background subtraction, importance
sampling, and either the constrained path (for the sign prob-
lem) or phaseless (for the phase problem) approximations.

3. Background subtraction

One of the simplest ways of reducing variances within
AFQMC is via background subtraction [74]. As part of back-
ground subtraction, the two-body portion of a Hamiltonian is
rewritten so that a mean field average is subtracted from each
one-body operator. Thus, if the original two-body operator
may be written as a square such that V̂ = − 1

2

∑
i v̂

2
i to make

it amenable to a HS transformation, as part of background
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subtraction, it would be re-expressed as

V̂ = −1

2

∑
i

(v̂i − 〈v̂i〉)2 −
∑

i

v̂i〈v̂i〉 + 1

2

∑
i

〈v̂i〉2, (28)

where 〈v̂i〉 denotes the mean field average of the operator v̂i

(see Ref. [53], Sec. II, for more details on how this mean field
average is obtained). Because the modified v̂i − 〈v̂i〉 operator
will be smaller in magnitude than the bare v̂i operator, back-
ground subtraction reduces the variance involved in AFQMC
simulations. In this work, we perform background subtraction
on the only term in the Hamiltonian that is not a product of
on-site densities, the Ji j

2 ρ̂2
i j term of Eq. (15) or the − Ji j

2 ρ̂2
i j term

of Eq. (20), yielding

∑
i< j

Ji j

2
ρ̂2

i j =
∑
i< j

Ji j

2
(ρ̂i j − 〈ρ̂i j〉)2 −

∑
i< j

Ji j

2
〈ρ̂i j〉2

+
∑
i< j

Ji j〈ρ̂i j〉ρ̂i j (29)

and

∑
i< j

−Ji j

2
ρ̂2

i j =
∑
i< j

−Ji j

2
(ρ̂i j − 〈ρ̂i j〉)2 +

∑
i< j

Ji j

2
〈ρ̂i j〉2

−
∑
i< j

Ji j〈ρ̂i j〉ρ̂i j, (30)

respectively.

4. Importance sampling

In order to further reduce the variance of walker weights
and to make our simulations more amenable to the constrained
path and phaseless approximations, we additionally perform
importance sampling, which aims to shift the center of the
distribution from which we sample our auxiliary fields so
that the most important fields are sampled more frequently.
The conventional way of performing importance sampling
in AFQMC simulations is by introducing a force bias that
shifts each sampled field by an amount dependent upon
the operator being transformed and the current walker wave
function [73,75–77]. Because we utilize a mixture of discrete
and continuous transformations and force bias importance
sampling is only applicable to continuous transformations, in
this work, we employ a formally equivalent strategy in which
we shift the propagators instead of the auxiliary fields.

For continuous HS transformations, this may be accom-
plished by shifting the operator Â by 〈Â〉 in Eq. (16)

e−�τ Â2/2 =
∫

dx
1√
2π

e−x2/2ex
√−�τ Â

=
∫

dx
1√
2π

e−x2/2ex
√−�τ 〈Â〉ex

√−�τ (Â−〈Â〉), (31)

where 〈Â〉 is the mixed estimator of Â

〈Â〉 ≡ 〈�T |Â∣∣ψ (n)
k

〉
〈
�T

∣∣ψ (n)
k

〉 . (32)

If we define the dynamic force as F ≡ √−�τ 〈Â〉, then
Eq. (31) may be re-expressed as

e−�τ Â2/2 =
∫

dx
1√
2π

e−x2/2exF ex
√−�τ Â−xF

=
∫

dx
1√
2π

e−(x−F )2/2e
1
2 F 2

ex
√−�τ Â−xF

=
∫

dx
1√
2π

e−(x−F )2/2e
1
2 F 2−xF ex

√−�τ Â. (33)

In order to realize this transformation, fields are sam-
pled from the shifted Gaussian probability density function,

1√
2π

e−(x−F )2/2, and the propagator ex
√−�τ Â is applied with

weight e
1
2 F 2−xF . The field distributions are now centered

around the dynamic force, which can be shown to minimize
the variance. If the dynamic force F is complex, our auxiliary
fields will have the same imaginary part to ensure x − F is
real. Then, the probability function 1√

2π
e−(x−F )2/2 will remain

real and therefore amenable to sampling.
Shifting the propagator within a discrete transformation

proceeds in exactly the same fashion. Comparing Eqs. (16)
and (12), the dynamic force needed to shift the propagator in
Eq. (12), for example, would be F ≡ γ (〈n̂1〉 − 〈n̂2〉), resulting
in the transformation

e−�ταn̂1n̂2 e−�τα(n̂1+n̂2 )/2
∑

x=±1

1

2
eγ x(n̂1−n̂2 )

= e−�τα(n̂1+n̂2 )/2
∑

x=±1

1

2

(
exF

W

)
Weγ x(n̂1−n̂2 )−xF . (34)

As in the continuous case, in order to realize this transforma-
tion, fields are now sampled from a shifted probability density
function, exF /W , where W is the normalization factor, W =
exF + e−xF , and the propagator e(−�τα/2+γ x)n̂1 e(−�τα/2−γ x)n̂2 is
applied with weight 1

2We−xF . A shifted transformation may
similarly be constructed for the discrete charge decomposition
given by Eq. (11). Propagators that include background sub-
traction may be shifted by simply replacing Â with Â − 〈Â〉 in
Eqs. (31) and (33) above (see Ref. [53], Sec. III, for a detailed
formula).

It can readily be proven that shifting auxiliary fields is
equivalent to shifting propagators [76–78]. Shifting propaga-
tors therefore entails a convenient way of combining impor-
tance sampling with discrete transformations, whose discrete
fields cannot be shifted by the continuous force bias terms
of conventional importance sampling techniques. Overall, the
importance sampled propagation produces the same observ-
able averages as free propagation, but favors the sampling of
determinants with larger overlaps with the trial wave function
and suppresses the sampling of determinants with no overlap.

5. Constrained path approximation

In order to address the sign problem that may emerge when
our propagators, B̂(�x), are real, we employ the constrained
path approximation [56]. Here, we impose this approximation
by requiring that all walkers maintain a positive overlap with
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the trial wave function after each propagation step

w
(n)
k

〈
�T

∣∣ψ (n)
k

〉
> 0. (35)

As in typical constrained path implementations, walkers with
negative overlaps with the trial wave function will be killed
(have their weights set equal to zero), preventing them from
being propagated further. This condition will select for only
walkers with positive determinants, eliminating the sign prob-
lem. It can be shown that if the trial wave function is the exact
ground-state wave function, this condition will be exact [79];
however, since the trial wave function is typically unknown,
constraining the propagation path in this way results in a
small, but consequential approximation [61,80].

6. Phaseless approximation

In cases in which our propagators are complex, instead of
employing the constrained path approximation, we employ
the more general phaseless approximation [73,74]. The phase-
less approximation controls the phase problem by projecting
complex walker weights onto the positive real axis according
to the equation

W (n)
k = ∣∣W (n)

k

∣∣ × max(0, cos(�θ )), (36)

where W (n)
k is defined in Eq. (27) and �θ , the phase angle, is

defined as

�θ = Arg

[
〈�T |B̂(x)

∣∣ψ (n)
k

〉
〈
�T

∣∣ψ (n)
k

〉
]

≈ O(Im(xF )). (37)

The use of the cosine function to project also ensures that the
density of the walkers will vanish at the origin. Because this
cosine projection does not affect walkers with real weights, in
practical implementations, we apply Eq. (36) to realize both
the constrained path and phaseless approximations.

F. Trial and initial wave functions

Although AFQMC can readily accommodate multideter-
minant trial wave functions, we restrict ourselves to employ-
ing single determinant trial wave functions that satisfy certain
symmetries [61] such as the free electron (FE), restricted
Hartree-Fock (RHF), unrestricted Hartree-Fock (UHF), and
generalized Hartree-Fock (GHF) wave functions. RHF wave
functions preserve spin symmetry. While RHF and UHF wave
functions separately conserve the number of spin up and down
electrons, GHF wave functions only conserve the total number
of electrons. See Ref. [53], Sec. IV, for details about how these
wave functions are generated.

As illustrated in what follows, because GHF wave func-
tions do not impose any spin symmetries and are therefore
the most flexible of these wave function ansatzes, they enable
the fastest AFQMC wave function relaxation to the global
energy minimum. Nevertheless, when the number of up and
down electrons must be fixed, UHF/RHF wave functions were
employed instead. Even though our formalism permits our
initial wave functions to differ from our trial wave functions,
we take our initial and trial wave functions to be the same,
except where otherwise noted.

III. RESULTS AND DISCUSSION

A. Two-band Hubbard-Kanamori model benchmarks

In order to test the accuracy of our theoretical framework,
we began by benchmarking our method against ED results for
the one-dimensional, two-band HK model on 5 × 1 and 6 × 1
lattices with periodic boundary conditions small enough to
diagonalize. For these benchmarks, we simplify the Hamil-
tonian given by Eqs. (1) and (2) so that hopping can only
occur between adjacent sites within the same bands and may
be described by a single site- and spin-invariant constant t ,
such that

Ĥ
′
1 = −t

∑
〈i j〉,σ

2∑
m=1

ĉ†
imσ ĉ jmσ . (38)

We moreover assume that the parameters are site-invariant,
such that U i = U, U i j

1 = U1, U i j
2 = U2, and Ji j = J .

Table I presents our results for a 6 × 1 HK model over
a representative set of parameters at half filling. All of the
calculations presented were initialized using 560 walkers and
employed FE trial and initial wave functions, except for the
U = 3.0, U1 = 5.0, U2 = 1.0, J = 0.5 case. In this case, it
was found that an RHF trial wave function yielded a lower
QMC energy and manifested a different spin order [antiferro-
magnetic (AFM) order between two bands] than the FE solu-
tion. Thus an RHF trial wave function was employed instead.
This demonstrates that trial wave functions should first be
analyzed to determine whether their global minima exhibit the
correct order before using them to guide propagation within
AFQMC. Unless otherwise noted, all of the results presented
in this section were obtained using a charge decomposition for
J and the phaseless approximation to tame the related phase
problem that emerges.

As is clear from the table, AFQMC results are within 0.01t
or less of the exact results, with the smallest discrepancy
occurring for the U = 2.0, U1 = 1.5 case and the largest
occurring for the U = 6.0 case. In all of these cases, exact
results are within two standard derivations of the Monte Carlo
results, despite the use of the phaseless approximation.

To pinpoint AFQMC’s systematic bias, as well as to better
understand which regions of the phase diagram are the most
challenging for AFQMC, we independently scanned through
each of the U, U1, U2, and J parameters holding the others
fixed for a 5 × 1 HK model. In Figs. 1 and 2, we present our
scans over U and J; see Ref. [53], Sec. V, for figures of our U1

and U2 scans.

TABLE I. The ground-state energy of the two-band, 6 × 1 HK
model with N↑ = N↓ = 6 over a range of parameters using ED and
AFQMC. All energies and parameters are reported in units of t .

U U1 U2 J ED AFQMC

2.0 1.5 1.0 0.5 −3.773268 −3.774(3)
2.0 1.5 1.0 1.0 −4.234037 −4.230(6)
2.0 1.5 3.0 0.5 0.758540 0.755(4)
3.0 5.0 1.0 0.5 2.460374 2.466(5)
6.0 1.5 1.0 0.5 1.496509 1.503(6)
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FIG. 1. AFQMC ground-state energy vs the density-density pa-
rameter U for the two-band, 5 × 1 HK model using the charge
decomposition and FE trial wave functions. Here, all of the other
Hamiltonian parameters are held fixed at t = 1, U1 = 0, U2 = 0, and
J = 0 with N↑ = N↓ = 6. Relative errors, �E , taken with respect to
ED results are plotted in the inset for clarity.

As shown in Fig. 1, although the magnitude of the error
bars on our energies grows with U , the relative error remains
within 0.1% to 1% throughout this range. Similar trends are
observed for U1 and U2, and using RHF, UHF, or GHF wave
functions. This gives us reason to believe that our method
can readily accommodate some of the even larger U values
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FIG. 2. AFQMC ground-state energy vs the Hund’s coupling
parameter J for the two-band, 5 × 1 HK model using the charge
decomposition and FE/RHF trial wave functions (WF). Here, all
of the other Hamiltonian parameters are held fixed at t = 1, U =
0, U1 = 0, and U2 = 0 with N↑ = N↓ = 6. Relative errors, �E ,
taken with respect to ED results are plotted in the inset for clarity.
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FIG. 3. Comparison of phaseless and constrained path AFQMC
energy errors as a function of J for a two-band, 5 × 1 HK model.
Open circles denote parameters at which the constrained path ap-
proximation was employed, while closed circles denote parameters
at which the phaseless approximation was employed. Here, we set
N↑ = N↓ = 6, t = 1, U = 0, U1 = 0, and U2 = 0. FE trial wave
functions were used for both the initial and trial wave functions, and
560 walkers were employed in each calculation.

used in studies of strongly correlated materials. Nevertheless,
much larger relative errors are observed as J is varied, as
depicted in Fig. 2. This is consistent with previous work,
which also implicates the J terms as being most conducive
to QMC errors [49]. Fortunately, for most real materials, J is
usually a small fraction of U . For small J values, the relative
errors are observed to remain less than 1% and are therefore
controllable.

What may also be gleaned from Fig. 2 is that the quality
of the J > 1.5 energies depends upon the type of trial wave
function employed. While free propagation calculations yield
results that are independent of the trial wave function, the
quality of the constrained path and phaseless approximations
fundamentally depend on the accuracy of the trial wave func-
tion. As depicted in Fig. 2, the relative errors in the energies
produced by FE trial wave functions surpass 10% and increase
with increasing J; in contrast, the relative errors produced by
RHF trial wave functions not only remain less than 10%, but
plateau as a function of J . As J increases, the RHF electron
density becomes nonuniform, yielding a lower variational
energy than the FE wave function. Figure 2 thus demonstrates
that AFQMC becomes more accurate as trial wave functions
better describe the ground state. Note that we also tested UHF
and GHF wave functions, which all converged to the same
states as RHF wave functions.

The accuracy of AFQMC predictions are also influenced
by the constrained path and phaseless approximations em-
ployed. In Fig. 3, we compare the errors produced by these
approximations. As discussed in Sec. II D, for J > 0, the spin
decomposition will yield real propagators that we constrain
using the constrained path approximation, while for J < 0,
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FIG. 4. Schematic of our three-band model on a 4 × 4 lattice. At
each site, there is one atom with three bands, one of which is lower
in energy by � than the other two degenerate bands. The top right
box illustrates a situation in which AFM order is present between
adjacent lattice sites.

the spin decomposition will yield complex propagators that
we constrain using the phaseless approximation. The charge
decomposition behaves in the opposite fashion with respect
to J . As shown in Fig. 3, the constrained path approximation
behaves significantly better than the phaseless approximation,
which appreciably differs from the exact results for |J| > 1.5.
Indeed, the constrained path approximation nearly reproduces
the exact results for J < 0, only manifesting a slight deviation
for larger positive values of J . These results attest to the
fact that using the transformations we describe to prevent the
phase problem from emerging is key to maintaining AFQMC
accuracy. They also underscore that our method is capable
of simulating −J values, which have been unattainable in
previous QMC simulations. We expect these trends in ac-
curacy to generalize to models with more bands and higher
dimensionality.

B. Application to three-band Hubbard-Kanamori models

In order to understand how our techniques generalize to
models that approximate more realistic materials and their
magnetic phase transitions, we constructed a three-band
model with an adjustable band gap. As illustrated in Fig. 4,
in this model, three bands are located at each site, one band
of which is lower in energy by a “band gap” parameter, �,
than the other two degenerate bands. When � = 0, all three
bands are completely degenerate. Similar to the two-band
model, the hopping occurs between adjacent sites within the
same bands, with hopping constant ti j = 1. While the band
gap would be fixed in any given material, creating a separate
� parameter enables us to sample a range of band gaps and,
by extension, to drive magnetic ordering transitions. We
moreover assume that U i = U and Ji j = J = 0.15U with
U i j

1 = U1 = U − 2J and U i j
2 = U2 = U − 3J , which are

appropriate for the description of transition-metal oxides with
a partially occupied t2g shell [81]. In the following discussion,
we fix our filling such that an average of four electrons occupy
the three bands at each lattice site.

As an initial step, we benchmarked our AFQMC method
against ED results. Diverging from our previous two-band
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FIG. 5. AFQMC ground-state energy as a function of the band
gap magnitude, �, for the three-band, 2 × 2 HK model using the
charge decomposition and GHF trial wave functions. Here, all of the
other Hamiltonian parameters are held fixed at t = 1, U = 6, U1 =
U − 2J, U2 = U − 3J , and J = 0.15U with N↑ = N↓ = 8. Relative
errors, �E , taken with respect to ED results are plotted in the inset
for clarity.

analysis, as part of our three-band benchmarks, we studied
our model on two-dimensional lattices with periodic boundary
conditions, only varying � and U while keeping the other
parameter relationships fixed in order to preserve realism. Our
simulations were initialized with 560 walkers and GHF initial
and trial wave functions for all of the benchmarks described
below. The charge decomposition with the phaseless approxi-
mation was employed throughout this section.

In Fig. 5, we illustrate how the energy and relative errors
change as � is varied from 0 to 1 with U = 6 on a 2 × 2
lattice. At fixed U , the relative error remains fairly stable and
less than 0.1% throughout this range. This may be anticipated
since the band gap only modifies the magnitude of the one-
body terms and does not change the phase of the model, which
does not directly contribute to our method’s stochastic errors.

In Fig. 6, instead of scanning �, we scan U with � = 0.8.
As shown in Fig. 6, the relative errors are larger in this case,
but still range from 0.1% for U < 6 to 1% for U > 6. Errors
would be expected to grow in this manner as the system be-
comes more correlated. Overall, the magnitudes of these rela-
tive errors suggest that AFQMC’s performance is promising.

The rationale for introducing the band gap � parameter is
to enable tuning of the magnetic order of the model system.
Intuitively, when the band gap is small, the three bands are
nearly degenerate and the four electrons have the largest
freedom to move among the bands. Such a situation would
favor ferromagnetic (FM) order. However, when the band gap
becomes sufficiently large, two electrons will populate the
lower band, forcing the other two electrons to reside among
the higher energy bands. Such a situation would favor AFM
order.
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FIG. 6. AFQMC ground-state energy vs U for the three-band,
2 × 2 HK model using the charge decomposition and GHF trial
wave functions. Here, all of the other Hamiltonian parameters are
held fixed at t = 1, � = 0.8, U1 = U − 2J, U2 = U − 3J , and J =
0.15U with N↑ = N↓ = 8. Relative errors, �E , are taken with respect
to ED results are plotted in the inset for clarity.

This intuition was confirmed by comparing the AFQMC
energies attained using trial wave functions with FM and AFM
order, respectively (see Fig. 7). Typically, GHF calculations
converge to the lowest state with the same magnetic order as
the initial state. Thus, in order to construct wave functions
with FM order, a randomly initialized density matrix was sup-
plied to the GHF self-consistent equations; to construct wave
functions with AFM order, an AFM-ordered initial density
matrix was supplied. Several independent GHF calculations
were conducted for each system studied to guarantee that
the final GHF wave functions produced attained their global
minima. For large � (� � 1.1) values at which ferromagnetic
order is disfavored, GHF calculations initialized with random
density matrices often developed order. In these situations,
FM wave functions produced at smaller values of � were
used as trial wave functions in “FM” AFQMC calculations
performed at larger � values. Figure 7 depicts the energies
of AFQMC simulations performed with AFM and FM trial
wave functions, respectively, as a function of band gap. All of
the AFQMC energies presented here are the lowest energies
we can obtain at each �. At smaller �s, trial wave functions
with FM order led to the lowest AFQMC energies, while at
larger �s, AFM trial wave functions did so. This confirms that
our model undergoes a ferromagnetic to antiferromagnetic
transition at roughly � = 1.15. In contrast, Hartree-Fock
theory predicts the transition to occur at � = 0.5, which is
reasonable since Hartree-Fock theory tends to favor AFM
order. An illustration of the AFM order exhibited by our
model is depicted in Fig. 4.

To further corroborate the phase transition we observe, we
estimated the magnitude of the charge gap at � = 0.2 and
� = 1.5. To do so, we computed the ground-state AFQMC
energies of 4 × 4, 6 × 6, and 8 × 8 site systems, with three
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FIG. 7. AFQMC ground-state energy vs band gap magnitude, �,
for the three-band, 4 × 4 HK model using the charge decomposition.
GHF trial wave functions with both FM order and AFM order are
used. QMC predicted a phase transition to occur at around � = 1.15,
as illustrated by the orange dotted line. Hartree-Fock predicted a
phase transition to occur at � = 0.5, as illustrated by the green dotted
line. Here, all of the other Hamiltonian parameters are held fixed
at t = 1, U = 6, U1 = U − 2J, U2 = U − 3J , and J = 0.15U with
N↑ = N↓ = 32.

bands occupied by four electrons situated at each site. The
charge gap may be determined by computing EN−1 + EN+1 −
2EN , where N denotes the total number of electrons in the
system. To determine the charge gap in the thermodynamic
limit, we fit a 1/L form, where L denotes the total num-
ber of lattice sites, to the energies and extrapolated to the
infinite L limit (see Ref. [53], Sec. V, for details about the
extrapolation). The energies produced using FM initial trial
wave functions were used to ascertain the � = 0.2 charge
gap, while those produced using AFM wave functions were
employed to ascertain the � = 1.5 charge gap. The charge
gaps obtained are presented in Table II. After extrapolations,
the � = 0.2 charge gap converged to −0.006(47) and the
� = 1.5 charge gap converged to 1.201(41). As one would
expect antiferromagnetic, not ferromagnetic, order to be

TABLE II. The charge gaps of the three-band model at � = 0.2
and � = 1.5 for different system sizes calculated using AFQMC.
GHF trial wave functions with FM order and AFM order are used
at � = 0.2 and � = 1.5, respectively. All of the other Hamilto-
nian parameters are held fixed at t = 1, U = 6, U1 = U − 2J, U2 =
U − 3J , and J = 0.15U . The electron density per band is 4/3.

Number of bands Charge gap (� = 0.2) Charge gap (� = 1.5)

4 × 4 × 3 0.222(29) 1.311(32)
6 × 6 × 3 0.103(27) 1.268(35)
8 × 8 × 3 0.015(72) 1.225(36)
∞ −0.006(47) 1.201(41)
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accompanied by a charge gap, these extrapolations support
our previous conclusions.

The successful determination of the magnetic order and
charge gaps in this model system illustrate our method’s
promise for accurately modeling realistic materials.

IV. CONCLUSIONS

In summary, we have presented a ground-state AFQMC
framework suited for the study of the HK model, a multiband
model designed to capture the Hund’s physics of many d-
and f -electron materials. Diverging with past QMC studies of
the HK model, we employ a novel set of HS transformations
to decouple the Hund’s coupling terms while preserving the
terms’ essential physics. We find that by carefully combining
these transformations with a form of importance sampling that
shifts our propagators, well-optimized GHF wave functions,
and the constrained path and phaseless approximations, we
can accurately predict the energetics of benchmark lattice
models and the magnetic order of much larger models that ap-
proximate realistic materials. Overall, we find that the phase-
less version of our method produces nearly exact energies
for small models for −3 < J < 3, a range of J values which
contains those commonly observed in experiment. This bodes
well for the generalization of our method to other systems.

Our method may readily be extended to include spin-orbit
coupling effects and negative J values, which opens the doors
to the highly accurate study of exotic, −J fulleride physics

[12,13]. In order to describe superconducting physics, our
method can be adapted to use superconducting trial wave
function forms, including Bardeen-Cooper-Schrieffer [77,82]
and Hartree-Fock-Bogoliubov [83] wave functions. We fore-
see our method having the most immediate impact as a way
to delineate low-temperature phase diagrams currently beyond
the reach of DMFT methods. As the same transformations and
importance sampling techniques may readily be adapted into
finite temperature AFQMC formalisms [46,54,55], the same
methods may be used to develop low scaling, sign and phase
problem free impurity solvers. We look forward to employing
our methods to more accurately elucidate the complex many
body physics of 4d transition metal oxides such as the ruthen-
ates, rhodates, and molybedenates in the near future.
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