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Microscopic polarization and magnetization fields in extended systems
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We introduce microscopic polarization and magnetization fields at each site of an extended system, as well
as free charge and current density fields associated with charge movement from site to site, by employing a
lattice gauge approach based on a set of orthogonal orbitals associated with each site. These microscopic fields
are defined using a single-particle electron Green function, and the equations governing its evolution under
excitation by an electromagnetic field at arbitrary frequency involve the electric and magnetic fields rather than
the scalar and vector potentials. If the sites are taken to be far from each other, we recover the limit of isolated
atoms. For an infinite crystal, we choose the orbitals to be maximally localized Wannier functions, and in the
long-wavelength limit we recover the expected linear response of an insulator, including the zero frequency
transverse conductivity of a topologically nontrivial insulator. For a topologically trivial insulator, we recover
the expected expressions for the macroscopic polarization and magnetization in the ground state and find that
the linear response to excitation at arbitrary frequency is described solely by the microscopic polarization and
magnetization fields. For very general optical response calculations, the microscopic fields necessarily satisfy
charge conservation, even under basis truncation, and do not suffer from the false divergences at zero frequency
that can plague response calculations using other approaches.
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I. INTRODUCTION

The optical properties of materials were first related to the
microscopic structure and properties of matter near the start
of the twentieth century [1]. Macroscopic polarization and
magnetization fields, P(x, t) and M(x, t), which appear in the
description of the macroscopic charge and current densities,

�(x, t) = − ∇ · P(x, t) + �F (x, t),

J(x, t) = ∂P(x, t)

∂t
+ c∇ × M(x, t) + JF (x, t), (1)

were associated with charges “bound” in molecules and
attributed to the electric and magnetic dipole moments of
those molecules. The “free” charge and current densities,
�F (x, t) and JF (x, t), were associated with charged carriers
free to move through the medium if driven by applied fields,
as in a conductor. Later developments extended the defini-
tions of P(x, t) and M(x, t) to include contributions from
higher multipole moments of constituent molecules [2,3]. The
work of Power, Zienau, Wooley,1 and Healy [5] established
a framework in which the interaction of a molecule with
the electromagnetic field, fundamentally described by the
minimal coupling Hamiltonian, could be written involving
microscopic polarization and magnetization fields associated
with each molecule and the microscopic electromagnetic field
in the neighborhood of that molecule. An expansion of the
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1For a review and references to original work see Ref. [4].

electromagnetic field about a point in the molecule then leads
to a Hamiltonian involving the multipole moments of the
molecule. For fluid systems, this was combined with the
definition of the macroscopic polarization and magnetization
as ensemble averages of the densities of multipoles and their
derivatives [6], establishing the basis of the modern theory of
the optical properties of fluids.

The approach is based on the identification of molecules as
stable units, with charges moving within units but not moving
from unit to unit. Sometimes this can be a good approximation
even for solids, as in the treatment of molecular crystals. Yet at
a fundamental level it appears problematic: valence electrons
in a periodic solid are typically associated with Bloch waves
extending throughout the crystal, and as the electron motion
is perturbed by an electromagnetic field it is not clear how
a multipole expansion about any point would make sense.
Of course, one can always work directly with the minimal
coupling Hamiltonian and simply calculate the charge and
current densities induced by any applied field, bypassing a
description in terms of polarization and magnetization fields.
However, the physical insight that such a description would
provide is lacking, and when the basis states used in calcu-
lations are truncated, as they inevitably must be, the use of
the electromagnetic potentials in a perturbation calculation
can lead to unphysical divergences due to the violation of
certain sum rules [7,8]. A strategy developed by Adams,
Blount, and others [9] in the 1960s relied on the introduction
of a macroscopic polarization associated with the position
operator, but that operator is poorly defined in a periodic solid
and the calculations must be treated with care [10,11].

A different strategy is that of the “modern theory of po-
larization” [12,13], which has focused on gapped systems
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where physical intuition suggests that to lowest order none
of the response to slowly varying fields should be identi-
fied with “free” currents. Then, under the application of a
uniform applied electric field, a change in polarization is
associated with the induced current density J via the equation
dP/dt ≡ J. Since J can be calculated for an adiabatically
applied uniform electric field, at least the change in P can
be identified. Magnetizations M associated with unperturbed
systems can also be identified [14,15], and for topologically
trivial insulators, the ground-state polarization and magneti-
zation are associated with the electric and magnetic dipole
moments of the filled Wannier functions, respectively. For
the polarization, however, there is a “quantum of ambiguity”
that arises and is related to the way one associates Wannier
functions with lattice sites; this is related to the gauge choice
made in the definition of the Bloch eigenstates. There are also
subtleties arising in the definition of the magnetization that
are associated with the itinerant motion of charges between
lattice sites [14]. Recently the effects of electron-electron
interactions on these quantities have been addressed [16–19].
Yet treatments following this strategy have generally been
aimed only at describing the ground state, or the response to
uniform, adiabatically varying applied fields.2

A more general approach would be to seek microscopic
polarization and magnetization fields p(x, t) and m(x, t), and
microscopic “free” charge and current densities ρF (x, t) and
jF (x, t), such that the expectation value of the microscopic
charge and current density operators would be given by

〈ρ̂(x, t)〉 = − ∇ · p(x, t) + ρF (x, t),

〈 ĵ(x, t)〉 = ∂ p(x, t)

∂t
+ c∇ × m(x, t) + jF (x, t). (2)

For a specified 〈ρ̂(x, t)〉 and 〈 ĵ(x, t)〉, a set of such quantities
(p(x, t), m(x, t), ρF (x, t), jF (x, t)) required only to satisfy (2)
is far from unique.3 Yet to have clear physical significance
we could seek polarization and magnetization fields that con-
sist of contributions associated with different sites, labeled
by R,

p(x, t) =
∑

R

pR(x, t),

(3)
m(x, t) =

∑
R

mR(x, t),

with pR(x, t) and mR(x, t) explicitly related to the microscopic
charge and current densities in the neighborhood of the site R.

Although there is no unique choice for the site(s), there
may be a natural one. For an isolated atom, if the nucleus is

2For a treatment of the magnetic response, see, e.g., Ref. [20].
3As a trivial example, consider (p(x, t), m(x, t), ρF (x, t),

jF (x, t)) = (−e(x, t)/4π, b(x, t)/4π, 0, 0), where e(x, t) and b(x, t)
are the total microscopic electric and magnetic fields, including
contributions from the charge and current densities themselves. Then
Maxwell’s equations guarantee that (2) are satisfied. Indeed, one
could even just choose e(x, t) and b(x, t) to be just the electrostatic
and magnetostatic fields generated by the charge current distribution.
See Ref. [22].

taken to be fixed in space, the position of the nucleus can be
taken to identify the single site R. For a crystal with a single
atom per unit cell, if we neglect the motion of the ion cores,
we can take the sites to be the positions of the ions, such
that the {R} form a Bravais lattice. For a crystal with multiple
atoms per unit cell, there may not be such a natural choice for
the sites. However, we can always choose there to be one site
in each unit cell such that the {R} again form a Bravais lattice.
The positions of the ions composing the crystal lattice are then
described by a Bravais lattice, consisting of the sites {R}, with
a basis; in this case, there will necessarily be positive charge
located away from each site. We refer to a collection of sites
that form a Bravais lattice as the “lattice sites”; dealing with
the periodic structures that host such lattice sites is the primary
focus of this paper. The total charge and current densities will
be unaffected by the choice of the lattice sites, although the
unit cell quantities pR(x, t) and mR(x, t) will depend on that
choice. In most of the paper, we focus only on the charge
and current densities associated with the valence electrons. In
Conclusion, we indicate how the charge density of the ions in
the unit cell can be included in our unit cell quantities, in the
limit that the ions are considered fixed; in a future publication,
we plan to generalize to include the motion of the ions.

The macroscopic fields corresponding to p(x, t) and m(x, t)
would be obtained by taking spatial averages of these mi-
croscopic fields, and a moment expansion of the pR(x, t) and
mR(x, t) about their lattice sites would generate a moment ex-
pansion in the resulting macroscopic fields P(x, t) and M(x, t).
Such an approach could describe the effects of variations of
the electromagnetic field over the unit cell on the optical
response, and could treat the optical response at arbitrary
frequency; it would not be restricted to treating excitation by
adiabatically applied uniform optical fields. The microscopic
polarization and magnetization fields, which could vary sig-
nificantly over the unit cell, would give a physical picture of
the effects of optical excitation.

This is the approach we develop in this paper. Overall, the
framework of the dynamical equations that arise provides the
microscopic underpinning of a lattice gauge theory, involving
matrices that include labels for basis functions associated
with each lattice site. The site charges and link currents are
identified with the free charge and current densities, respec-
tively, and the polarization and magnetization fields (3) arise
from the matrices that are associated with the lattice sites.
And since we find that the free charge and current densities
themselves satisfy continuity by construction, regardless of
the approximations made in the calculation of p(x, t) and
m(x, t), the values of 〈ρ̂(x, t)〉 and 〈 ĵ(x, t)〉 determined from
(2) necessarily satisfy continuity. Therefore, in this approach,
charge conservation is completely robust against any approx-
imations.

In constructing the description of the dynamics of the fields
p(x, t), m(x, t), ρF (x, t), and jF (x, t) we are naturally led to
describe the effects of the electromagnetic field by the electric
and magnetic fields themselves, rather than the scalar and
vector potentials. Thus, calculations following this strategy
should be free of the kind of unphysical divergences that can
plague the use of the minimal coupling Hamiltonian [7,8]. The
transformation from an interaction involving the scalar and
vector potentials to one involving the electric and magnetic
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fields arises because we borrow some of our strategy from
the theory of the optical response of molecules [21]. Yet there
are important differences between that approach and ours.
Because charges can move from site to site, we do not attempt
to construct a Hamiltonian involving operators for pR(x, t),
and mR(x, t), as is usually done for atoms and molecules,
since there is no reasonable protocol by which charges that
would be associated with each site could be identified [22].
Rather, we construct expressions for pR(x, t) and mR(x, t) in
terms of electron Green functions and their expansions in
terms of localized basis functions associated with each site
R. In treating a large molecule these localized orbitals could
be convenient orthonormal molecular orbitals [23], but for the
problem of a periodic solid, that is, the focus of this paper, we
choose the maximally localized Wannier functions that can
be constructed from each set of bands that is topologically
trivial [24–27]; in general, we make no assumption about
the initial occupation of any of these bands. In the process
of constructing pR(x, t) and mR(x, t), we can confirm that
they are indeed related to the microscopic charge and current
densities near R. Thus, for lattice constants much less than the
wavelength of light, a multipole expansion about each lattice
site is justified.

In this first paper, we consider an incident classical elec-
tromagnetic field and neglect interactions between electrons
except as could be captured in a simple mean-field treatment.
While the formalism does not require it, the restriction to
a single-particle Hamiltonian eases our initial formulation,
for it is sufficient to consider only the lesser, equal time
single-particle Green function. We omit the spin contribution
to the magnetization; it could be easily included and does
not affect the kind of issues that arise here. We also assume
the ions are fixed, but do allow for a general dependence of
the unperturbed Hamiltonian on position and momentum. Our
goal here is to present the basic formalism, and so we will only
be able to allude to some of the physical points made above,
and some made below. We plan to return to many of the issues
raised here in future publications and to present a treatment of
electron-electron interactions that will rely on a more general
Green function framework.

After deriving the basic equations for an arbitrary applied
electromagnetic field here, however, we consider four im-
portant limits that can be reached from the general results;
these limits serve as a form of validation for the formalism
we develop, in addition to being helpful examples of its
use. We first confirm that for isolated atoms on a lattice our
result reduces to what would be expected from the usual
treatment of atoms, to all orders in the multipole moments.
We then consider the limit that is often of interest in optical
response, where the applied electric field is approximated as
uniform and the applied magnetic field as vanishing; this is the
so-called “long-wavelength limit.” We show how the current
density in that limit consists of the time derivative of the
polarization and a free current density. For a topologically
nontrivial insulator, the linear response of the free current
density to an applied field includes the current perpendicular
to the applied field described by a transverse conductivity, as
expected [28,29].

For the other two limits under investigation, we restrict
ourselves to topologically trivial insulators. In the first, we

show that the usual expressions for the bulk polarization and
magnetization from the “modern theory” are reproduced in
our treatment of the ground state. We then show that in
the linear response to an electromagnetic field of arbitrary
wavelength there is no free current or change in the free
charge density induced; the first-order response is completely
described by the polarization and magnetization. This is what
one would physically expect of the kind of approach we de-
velop here; it is only to higher order, when injected electrons
and holes can be driven by the electromagnetic field, that one
would expect the appearance of free charges and currents.
We note that this would hold even for excitation by x rays.
In future publications, we will extend these investigations to
systems that are topologically nontrivial, as well as consider
the description of linear and nonlinear response of a range of
materials.

In Sec. II, we present the derivation, in Sec. III, we
present the limits mentioned above, and in Sec. IV, we con-
clude. Many details of the derivation have been relegated to
Appendices.

II. MICROSCOPIC POLARIZATION
AND MAGNETIZATION FIELDS

We work in the Heisenberg picture with the lesser, equal
time single-particle Green function

Gmc(x, y; t) = i〈ψ†(y, t)ψ (x, t)〉, (4)

where ψ (x, t) is the fermionic electron field operator, and the
subscript mc denotes the usual minimal coupling procedure
to include the effect of an external, classical electromagnetic
field specified by a scalar potential φ(x, t) and a vector poten-
tial A(x, t); interactions between the electrons, except as they
might be included within the use of a self-consistent electro-
magnetic field, are neglected. The Green function satisfies the
dynamical equation

ih̄
∂Gmc(x, y; t)

∂t
= Kmc(x, y; t)Gmc(x, y; t), (5)

where

Kmc(x, y; t) = Hmc(x, t) − H∗
mc(y, t), (6)

with the “script” fonts (such as Kmc and Hmc) denoting
differential operators acting on the functions that follow, at
and in the neighborhood of the spatial variable(s) indicated.
We have

Hmc(x, t) = H0(x, pmc(x, t)) + eφ(x, t), (7)

where

pmc(x, t) = p(x) − e

c
A(x, t), (8)

with

p(x) = h̄

i

∂

∂x
− e

c
Astatic(x). (9)

In (9), we have included the possibility of the presence of a
static, periodic magnetic field described by a vector potential
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Astatic(x), where Astatic(x) = Astatic(x + R) for any lattice site
position R; note that we distinguish such a static, periodic
vector potential from the “external” electromagnetic field
associated with φ(x, t) and A(x, t). The use of “normal” fonts
(such as H0) denotes a function of the quantities indicated as
variables, some of which may be differential operators. For the
usual Schrödinger Hamiltonian, for example, in the absence of
an external electromagnetic field, we have

HSch
0 (x, p(x)) = (p(x))2

2m
+ V (x), (10)

but more general forms can be considered. In a system that
is periodic before the application of an external electromag-
netic field, we have H0(x + R, p(x)) = H0(x, p(x)), but for
much of the following this assumption is not necessary; a
large part of the formalism developed here could be used to
introduce microscopic polarization and magnetization fields
to describe the optical response of large molecules. The
dynamical Eq. (5) was obtained from the simpler equa-
tion governing the dynamics of the Green function in the
absence of an external electromagnetic field by the usual
minimal coupling prescription, which in our notation is
written

H0(x, p(x)) → H0(x, pmc(x, t)) + eφ(x, t).

The expectation value of the electronic charge density opera-
tor, ρ̂(x, t), and the electronic current density operator, ĵ(x, t),
are given by

〈ρ̂(x, t)〉 = −ie
[
Gmc(x, y; t)

]
y→x,

(11)
〈 ĵ(x, t)〉 = [

Jmc(x, y; t)Gmc(x, y; t)
]

y→x,

where

Jmc(x, y; t) = − i

2

[
J(x, pmc(x, t)) + J(y, p∗

mc(y, t))
]
,

and the function J(x, pmc(x, t)) follows from H0(x, pmc(x, t))
in the usual fashion, see, e.g., Ref. [30]. For the Schrödinger
Hamiltonian, for example, we have

J(x, pmc(x, t)) = e

m
pmc(x, t).

Many of the expression above involve the scalar and vector
potentials explicitly. It is possible to replace that set of ex-
pressions by a corresponding set of expressions that involve
only the electric and magnetic fields associated with these
potentials,

E(x, t) = −∇φ(x, t) − 1

c

∂A(x, t)

∂t
,

B(x, t) = ∇ × A(x, t).

The strategy for doing this was introduced many years ago
for atoms and molecules where a “special point,” such as the
center of mass of the atom or molecule, or the position of a
nucleus assumed fixed, is identified [21]. We implement an
analogous strategy in the paragraph below without identifying
such a special point, but still employing quantities used in
problems in atomic and molecular physics. Those quantities,

or “relators,” are defined [31,32] as

si(w; x, y) =
∫

C(x,y)
dziδ(w − z),

α jk (w; x, y) = ε jmn
∫

C(x,y)
dzm ∂zn

∂xk
δ(w − z), (12)

β jk (w; x, y) = ε jmn
∫

C(x,y)
dzm ∂zn

∂yk
δ(w − z),

where for each two points x and y we use C(x, y) to indicate
some path from y to x. Here and below superscripts indicate
Cartesian components, ε jmn is the Levi-Civita symbol, and
repeated Cartesian components are summed over.4 Regardless
of the path chosen, the quantities (12) satisfy

∂si(w; x, y)

∂wi
= −δ(w − x) + δ(w − y),

∂si(w; x, y)

∂xk
= δikδ(w − x) − εip j ∂α jk (w; x, y)

∂wp
,

∂si(w; x, y)

∂yk
= −δikδ(w − y) − εip j ∂β jk (w; x, y)

∂wp
(13)

(see Appendix A). It is useful to choose a “symmetric” set
of paths, by which we mean that for each and every x and
y the path C(x, y) is the “reverse” of the path C(y, x). For a
symmetric set of paths, we call the resulting sets of relators
“symmetric,” and they satisfy

si(w; x, y) + si(w; y, x) = 0,

α jk (w; x, y) + β jk (w; y, x) = 0. (14)

(See Appendix A). The second of these means that
β jk (w; y, x) can be eliminated in favor of α jk (w; x, y), which
we generally do in the formulas below.

A. The global Green function

We now use these relators to introduce a new Green func-
tion, Ggl (x, y; t).5 The subscript gl denotes “global,” in that no
special point is introduced, and yet the dynamical equation
for Ggl (x, y; t) and the expressions for the electronic charge
and current densities in terms of it are gauge invariant in that
they depend directly on the electric and magnetic fields, and
not explicitly on the scalar and vector potentials. The gauge
freedom in choosing the scalar and vector potentials for a
given electromagnetic field has in a sense been replaced by a
similar freedom in choosing the paths C(x, y), or in choosing
sets of relators satisfying (13) that are even more general than
(12). While straight lines between y and x are almost always
chosen for the paths C(x, y) in applications (see Appendix A),
the freedom to choose different sets of relators is still there.
To avoid confusion, we use the term “gauge invariant” here to
refer specifically to quantities that do not depend on the scalar
and vector potentials explicitly, but only on the electric and
magnetic fields.

4As the metric for spatial components is identity, covariant and
contravariant objects transform trivially into one another.

5This extends earlier works [31,32,37].
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To obtain the global Green function, Ggl (x, y; t), we intro-
duce

�(x, y; t) ≡ e

h̄c

∫
si(w; x, y)Ai(w, t)dw, (15)

for a general path—note that if a straight-line path is chosen
this is just the standard Peierls phase—and put

Ggl (x, y; t) = e−i�(x,y;t)Gmc(x, y; t). (16)

As we always use symmetric relators, we obtain

G∗
gl (x, y; t) = −Ggl (y, x; t),

following from the fact that Gmc(x, y; t) trivially satisfies this
relation. While each factor on the right-hand side of (16) is
gauge dependent, their product is not. The dynamical equation
for Ggl (x, y; t) is found to be

ih̄
∂Ggl (x, y; t)

∂t
= Kgl (x, y; t)Ggl (x, y; t), (17)

where

Kgl (x, y; t) = H0(x, p(x, y; t)) − H∗
0 (y, p(y, x; t))

− e
0
y (x, t), (18)

with

pk (x, y; t) ≡ pk (x) − e

c

k

y (x, t), (19)

and


0
y (x, t) ≡

∫
si(w; x, y)Ei(w, t)dw,


k
y (x, t) ≡

∫
αlk (w; x, y)Bl (w, t)dw. (20)

Now using (11,16), we can write the expectation value of the
electronic charge and current densities as

〈ρ̂(x, t)〉 = −ie
[
Ggl (x, y; t)

]
y→x,

(21)
〈 ĵ(x, t)〉 = [

Jgl (x, y; t)Ggl (x, y; t)
]

y→x,

where

Jgl (x, y; t) = − i

2

[
J(x, p(x, y; t)) + J∗(y, p(y, x; t))

]
.

Each these quantities is clearly gauge invariant.

B. Wannier functions and adjusted Wannier functions

While the global gauge invariant Green function Ggl (x, y; t)
is interesting in its own right, our goal here is to use it to as-
sociate charge and current densities with each lattice site, and
then associate microscopic polarizations and magnetizations
with those sites in a way similar, as much as possible, with
what one would do to treat a model consisting of “isolated
atoms” where charges could not move from atom to atom.
To do this, we introduce a set of localized basis functions
{WαR(x)}, or “orbitals,” labeled by the lattice site R and a
“type index” α. We take the functions in the set {WαR(x)} to
be orthogonal, ∫

W ∗
βR′ (x)WαR(x)dx = δβαδR′R. (22)

In the special case of a periodic system, which is our main
focus here, we have

WαR(x) = Wα (x − R), (23)

where we identify Wα (x) as a function localized near the
origin—in general the functions will be centered at different
points for different α—and {WαR(x)} is a set of Wannier
functions. We make a particular choice for these Wannier
functions by requiring that they are maximally localized func-
tions; then each N element subset of the Wannier functions
considered will be constructed from a subset of N bands that
do not intersect in energy with elements of other subsets of
bands, and where the subset of bands used is, as a whole,
topologically trivial6 [24–27]; at the moment we make no
assumption about the initial occupation of any of these bands.

In the presence of a uniform vector potential, A(x, t) →
A(t), the set {W ′

αR(x, t)} of modified orbitals

W ′
αR(x, t) = ei�(x,R;t)WαR(x) (24)

are orthonormal and often useful in calculations. Yet for
nonuniform vector potentials the functions in the set {W ′

αR(x)}
are not orthonormal, nor even are their overlap integrals gauge
invariant. However, Löwdin’s method of symmetric orthogo-
nalization [23] can be used to construct an orthonormal set of
functions {W̄ αR(x, t)},∫

W̄ ∗
βR′ (x, t)W̄αR(x, t)dx = δβαδR′R, (25)

which are as close as possible to the functions {W ′
αR(x, t)}, in

the sense that ∑
α,R

∫ ∣∣W̄αR(x, t) − W ′
αR(x, t)

∣∣2
dx (26)

is a minimum at each time t . We refer to these new functions
as “adjusted Wannier functions.” For a finite system, the set
{W̄ αR(x, t)} can be found numerically if the sum over α is
truncated. In any case, it always follows that the {W̄αR(x, t)}
are of the form

W̄αR(x, t) = ei�(x,R;t)χαR(x, t), (27)

where the functions in the set {χαR(x, t)} are generally not
orthonormal, but can be written in a gauge invariant way,
and in fact depend only on the magnetic field and not on the
electric field (see Appendix B). In the limit of a weak applied
magnetic field, one can construct a perturbative expansion for
χαR(x, t); the first two terms are

χαR(x, t) = WαR(x) − 1

2
i
∑
β,R′

WβR′ (x)

×
[∫

W ∗
βR′ (y)�(R′, y, R; t)WαR(y)dy

]
+ . . .

(28)

6In 2D, this condition implies the net Chern number associated with
the bands in the subset used in constructing Wannier functions is
zero.
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(see Appendix B), where very generally

�(x, y, z; t) ≡ �(z, x; t) + �(x, y; t) + �(y, z; t) (29)

is a gauge invariant quantity, since it involves only the flux of
the magnetic field through the surface identified by x, y, z and
the paths connecting them.

Neglecting the spin degree of freedom, which could be
included in a straight-forward way, we expand the fermionic
electron field operator,

ψ (x, t) =
∑
α,R

aαR(t)W̄αR(x, t), (30)

where {
aαR(t), aβR′ (t)

} = 0,{
aαR(t), a†

βR′ (t)
} = δαβδRR′ . (31)

Formally, of course we can take the number of type indices to
be infinite, so we have a complete set of basis functions in the
expansion (30). However, we will derive expressions for the
microscopic charge and current density involving intermedi-
ate quantities such that charge is explicitly conserved, and so
in evaluating those intermediate quantities it will be possible
to truncate the basis without violating continuity. In this basis,
the Green function Gmc(x, y; t) takes the form

Gmc(x, y; t) = i
∑

α,β,R,R′
η̆αR;βR′ (t)W̄ ∗

βR′ (y, t)W̄αR(x, t), (32)

where

η̆αR;βR′ (t) = 〈a†
βR′ (t)aαR(t)〉. (33)

From the dynamical Eq. (5) for Gmc(x, y; t), we immediately
find the equations of motion for the η̆αR;βR′ (t),

ih̄
∂η̆αR;βR′ (t)

∂t
=

∑
λ,R′′

(
ei�(R,R′′;t)H̄αR;λR′′ (t)η̆λR′′;βR′ (t) − η̆αR;λR′′ (t)H̄λR′′;βR′ (t)ei�(R′′,R′;t)) − e
φ

R′ (R, t)η̆αR;βR′ (t), (34)

where


φ
y (x, t) ≡ −

∫
si(z; x, y)

∂φ(z, t)

∂zi
dz,

and the matrix H̄ is Hermitian, H̄∗
αR;λR′′ (t) = H̄λR′′;αR(t), with elements that are gauge invariant,

H̄αR;λR′′ (t) = 1

2

∫
χ∗

αR(x, t)ei�(R,x,R′′;t)H0(x, p(x, R′′; t))χλR′′ (x, t)dx

+ 1

2

∫ (
H0(x, p(x, R; t))χαR(x, t)

)∗
χλR′′ (x, t)ei�(R,x,R′′;t)dx

− e

2

∫
ei�(R,x,R′′;t)χ∗

αR(x, t)
(

0

R′′ (x, t) + 
0
R(x, t)

)
χλR′′ (x, t)dx

− 1

2
ih̄

∫
ei�(R,x,R′′;t)

(
χ∗

αR(x, t)
∂χλR′′ (x, t)

∂t
− χλR′′ (x, t)

∂χ∗
αR(x, t)

∂t

)
dx. (35)

Equations (34) and (35) can be understood as the mi-
croscopic underpinnings of the equations of a lattice gauge
theory. These expressions display five main features: (a) the
functions �(R, R′′; t) and 


φ

R′′ (R, t) allow for an arbitrary
variation of the scalar and vector potential as one moves
between neighboring lattice sites; (b) the “hopping” matrix
elements H̄αR;λR′′ (t) involve a set of states (labeled by Greek
letters) at each site, and thus are matrices even for fixed R
and R′′; (c) in principle the hopping matrix elements connect
each site to every other site, although in practice any site will
only be coupled to sites close to it; (d) the matrix elements
are also more complicated than in tight-binding models, con-
taining the electric and magnetic fields, and are therefore time
dependent; note, however, that they are gauge invariant; (e)
since the complete electronic charge and current densities can
be constructed once the η̆αR;βR′ (t) are found and Gmc(x, y; t)
identified from (32), the solution of (34) in fact allows for a
determination of the full densities within the model identified
by our original orbitals, and not just site charges and link
currents. Indeed, with the use of the matrices H̄αR;λR′′ (t) we
will construct the microscopic polarization and magnetization

fields associated with each lattice site, and the site charges
and link currents identified from the lattice gauge perspective
will be associated with the microscopic version of the “free
charges” and “free currents” of elementary electrodynamics.

C. Density operator dynamics

It is convenient to move to a fully gauge-invariant descrip-
tion by defining a single-particle density matrix

ηαR;βR′ (t) ≡ η̆αR;βR′ (t)ei�(R′,R;t), (36)

from which it follows that the dynamics of ηαR;βR′ (t) are
specified by

ih̄
∂ηαR;βR′ (t)

∂t

=
∑
λ,R′′

ei�(R,R′′,R′;t)(H̄αR;λR′′ (t)ηλR′′;βR′ (t)

−ηαR;λR′′ (t)H̄λR′′;βR′ (t)
) − e
0

R′ (R; t)ηαR;βR′ (t). (37)
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Although the form of (37) is a bit unusual because of the
factor exp(i�(R, R′′, R′; t)), note that all terms appearing in
this equation for ηαR;βR′ (t) are gauge invariant. Also, since any
initial ηαR;βR′ (t) before any fields are applied is trivially gauge
invariant, then ηαR;βR′ (t) itself will be gauge-invariant even as
the fields are introduced. We can write Ggl (x, y; t) in terms of
the ηαR;βR′ (t) via (16,32,36), and from the orthonormality re-
lations (25), we can write the ηαR;βR′ (t) in terms of Ggl (x, y; t);
writing these results in terms of the χαR(x, t) of (27), we have

Ggl (x, y; t) = i
∑

α,β,R,R′
ηαR;βR′ (t)ei�(x,R,R′,y;t)

× χ∗
βR′ (y, t)χαR(x, t),

ηαR;βR′ (t) = −i
∫

χβR′ (y, t)χ∗
αR(x, t)e−i�(x,R,R′,y;t)

× Ggl (x, y; t)dxdy, (38)

where in general

�(x, u, v, y; t) = �(y, x; t) + �(x, u; t)

+ �(u, v; t) + �(v, y; t)

is gauge-invariant. While the first equation of (38) involves
a double sum over lattice sites, we now introduce a Green
function GR(x, y; t) associated with each lattice site R, with
the goal of writing Ggl (x, y; t) involving a sum over these. To
guarantee that each GR(x, y; t) satisfies the property

G∗
R(x, y; t) = −GR(y, x; t),

as do Gmc(x, y; t) and Ggl (x, y; t) [see (4) and (16)], we take

GR(x, y; t) = i

2

∑
α,β,R′

ηαR;βR′ (t)ei�(R′,y,R;t)χ∗
βR′ (y, t)χαR(x, t)

+ i

2

∑
α,β,R′

ηβR′;αR(t)ei�(R,x,R′;t)χ∗
αR(y, t)χβR′ (x, t)

(39)

and then have

Ggl (x, y; t) =
∑

R

e−i�(x,y,R;t)GR(x, y; t). (40)

The quantities (39) are chosen so that the gauge invariant
phase factors exp(−i�(x, y, R; t)) appear in the decomposi-
tion (40) for reasons that will later become clear.7

We use the GR(x, y; t) to identify components of the full
electronic charge and current densities that we associate with
each lattice site, ρR(x, t) and jR(x, t). From (21) and (40), we
have

〈ρ̂(x, t)〉 =
∑

R

ρR(x, t),

〈 ĵ(x, t)〉 =
∑

R

jR(x, t), (41)

7This is a further development of a strategy introduced earlier [32].

where

ρR(x, t) = −ie
[
GR(x, y; t)

]
y→x,

(42)
jR(x, t) = [

JR(x, y; t)GR(x, y; t)
]

y→x,

with

JR(x, y; t) = − i

2

[
J(x, p(x, R; t)) + J∗(y, p(y, R; t))

]
. (43)

In particular, we obtain

ρR(x, t) =
∑

α,β,R′,R′′
ρβR′;αR′′ (x, R; t)ηαR′′;βR′ (t),

jR(x, t) =
∑

α,β,R′,R′′
jβR′;αR′′ (x, R; t)ηαR′′;βR′ (t), (44)

where

ρβR′;αR′′ (x, R; t) = e

2
(δRR′ + δRR′′ )ei�(R′,x,R′′;t)

× χ∗
βR′ (x, t)χαR′′ (x, t) (45)

and

jβR′;αR′′ (x, R; t)

= 1
4δRR′′ ei�(R′,x,R′′;t)χ∗

βR′ (x, t)
(
J(x, p(x, R; t))χαR′′ (x, t)

)
+ 1

4δRR′
(
J∗(x, p(x, R; t))χ∗

βR′ (x, t)
)
ei�(R′,x,R′′;t)χαR′′ (x, t)

+ 1
4δRR′′

(
J∗(x, p(x, R; t))ei�(R′,x,R′′;t)χ∗

βR′ (x, t)
)
χαR′′ (x, t )

+ 1
4δRR′χ∗

βR′ (x, t)
(
J(x, p(x, R; t))ei�(R′,x,R′′;t)χαR′′ (x, t)

)
.

(46)

Note that in the expression (39) for GR(x, y; t) the lattice site R
always appears as one of the indices of the single-particle den-
sity matrix. Then, since χαR(x, t) can be reasonably expected
to be nonzero only for x close to R [see the expansion (28)],
we can expect the ρR(x, t) and jR(x, t) of (42) to be nonzero
only for x close to R as well.

D. Site polarizations and magnetizations

Equations (42) and (43) are precisely the ones that would
be written down in a model for isolated atoms, where there
GR(x, y; t) would be the Green function for the atom at R. The
“special point” R has been identified for the charge-current
distribution about lattice site R, and appears in the expression
for the current density in precisely the way that a “special
point” is identified in the treatment of an atom; it appears in
(42) in that way because the phase factors exp(−i�(x, y, R; t))
were introduced in (40). A difference between our problem
and that of isolated atoms, of course, is that in general

KR(x, t) ≡ ∇ · jR(x, t) + ∂ρR(x, t)

∂t
�= 0, (47)

since electrons can move from the region nearest one lattice
site to regions nearest others. Thus generally the site charges

QR(t) ≡
∫

ρR(x, t)dx = e
∑

α

ηαR;αR(t) (48)
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are time dependent. From the dynamical Eq. (37), we find that
we can write

dQR(t)

dt
=

∑
R′

I (R, R′; t), (49)

where

I (R, R′; t) = e

ih̄

∑
α,λ

(
H̄αR;λR′ (t)ηλR′;αR(t)

− ηαR;λR′ (t)H̄λR′;αR(t)
)
. (50)

Since

I (R′, R; t) = −I (R, R′; t), (51)

I (R, R′; t) can be interpreted as the net current flowing from
site R′ to site R, and thus as a link current.

With the site charges and link currents identified, we can
now define microscopic “free” charge and current densities
associated with them,

ρF (x, t) ≡
∑

R

QR(t)δ(x − R), (52)

jF (x, t) ≡ 1

2

∑
R,R′

s(x; R, R′)I (R, R′; t). (53)

The first simply takes the free charge density to be the sum
of the charges associated with each lattice site placed at
that lattice site. The second introduces a microscopic current
density by distributing the net current from site R′ to R along
the path from R′ to R defined by C(R, R′). From (49,51) and
the second of the properties (13), we immediately find

∇ · jF (x, t) + ∂ρF (x, t)

∂t
= 0. (54)

That is, the microscopic free charge and current densities
themselves satisfy continuity. We shall write the remaining
contributions to the total charge and current densities in terms
of microscopic polarization and magnetization fields associ-
ated with each site. We begin by introducing these terms as
we would were we dealing with isolated atoms. We define site
polarization fields pR(x, t) as

pR(x, t) ≡
∫

s(x; y, R)ρR(y, t)dy, (55)

and define preliminary site magnetization fields as

m̄ j
R(x, t) ≡ 1

c

∫
α jk (x; y, R) jk

R(y, t)dy. (56)

Since ρR(x, t) and jR(x, t) are nonzero only for x close to
R, we can expect pR(x, t) and m̄R(x, t) to share that property
as well. Introducing associated total microscopic polarization
and magnetization fields,

p(x, t) =
∑

R

pR(x, t),

(57)
m̄(x, t) =

∑
R

m̄R(x, t),

with the use of (13) we obtain

〈ρ̂(x, t)〉 = −∇ · p(x, t) + ρF (x, t),

〈 ĵ(x, t)〉 = ∂ p(x, t)

∂t
+ c∇ × m̄(x, t) + j̃(x, t) + jF (x, t),

(58)

where

j̃(x, t) = −
∑

R

∫
s(x; y, R)KR(y, t)dy − jF (x, t). (59)

In contrast with the problem of isolated atoms, here in general
we have a time dependent ρF (x, t), a nonzero jF (x, t), and a
nonzero j̃(x, t), all arising because the functions in {KR(x, t)}
are generally nonzero as charge moves from site to site.
Nonetheless, since total charge is conserved, we have∑

R

KR(x, t) = 0,

and it is easy to confirm that

∇ · j̃(x, t) = 0.

To complete our treatment of the site polarizations and
magnetizations, we express the divergenceless j̃(x, t) in terms
of the curls of magnetizations associated with the different
lattice sites. We begin by writing

j̃(x, t) =
∑

α,β,R′′,R′′′
j̃βR′′′;αR′′ (x, t)ηαR′′;βR′′′ (t),

where the expressions (47) and (53) for KR(y, t) and jF (x, t),
respectively, are used to identify j̃βR′′′;αR′′ (x, t),

j̃βR′′′;αR′′ (x, t) = −
∑

R

∫
s(x; y, R)�αR′′;βR′′′

R (y, t)dy

− 1

2

∑
R,R′

s(x; R, R′)ςαR′′;βR′′′
RR′ (t), (60)

where

ς
αR′′;βR′′′
RR′ (t) = e

ih̄

(
δR′′′RδR′′R′ H̄βR;αR′ (t)

− δR′′RδR′′′R′ H̄βR′;αR(t)
)

(61)

and

�
αR′′;βR′
R (x, t) = ∇ · jβR′;αR′′ (x, R; t) + ∂ρβR′;αR′′ (x, R; t)

∂t

+ 1

ih̄

∑
μ,ν,R1,R2

ρνR2;μR1 (x, R; t)FαR′′;βR′
μR1;νR2

(t), (62)

with

F
αR′′;βR′
μR1;νR2

(t) = δβνδR2R′ei�(R1,R′′,R2;t)H̄μR1;αR′′ (t)

− δαμδR′′R1
ei�(R1,R′,R2;t)H̄βR′;νR2

(t)

− eδβνδαμδR2R′δR1R′′
0
R2

(R1; t). (63)

We associate portions of j̃(x, t) with each lattice site in an
obvious way,

j̃(x, t) =
∑

R

j̃R(x, t),
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where

j̃R(x, t) =
∑

α,β,R′,R′′
j̃βR′;αR′′ (x, R; t)ηαR′′;βR′ (t), (64)

with

j̃βR′;αR′′ (x, R; t) = 1
2 (δRR′′ + δRR′ ) j̃βR′;αR′′ (x, t). (65)

We then define

m̃ j
R(x, t) ≡ 1

c

∫
α jk (x; y, R) j̃k

R(y, t)dy, (66)

which, following the arguments used above for pR(x, t) and
mR(x, t), can be expected to be nonzero only for x close to R.
Using the relator properties (13), we obtain

j̃R(x, t) = c∇ × m̃R(x, t),

as desired. We can now write

mR(x, t) ≡ m̄R(x, t) + m̃R(x, t)

and, with

m(x, t) =
∑

R

mR(x, t), (67)

we can write the second of (58) as

〈 ĵ(x, t)〉 = ∂ p(x, t)

∂t
+ c∇ × m(x, t) + jF (x, t). (68)

E. Summary

We can now separate the “free” and “bound” charge and
current densities, writing the total expectation values of the
microscopic electronic charge and current density operators

as

〈ρ̂(x, t)〉 = ρB(x, t) + ρF (x, t),

〈 ĵ(x, t)〉 = jB(x, t) + jF (x, t). (69)

The free charge density is given in terms of site charges QR(t)
by (52) and the free current density in terms of link currents
I (R, R′; t) by (53); the site charges evolve via the link currents
according to (49), and the link currents evolve according to
(50). This guarantees that the free charge and current densities
satisfy continuity (54). The bound charge and current densities
are given by

ρB(x, t) = −∇ · p(x, t),

jB(x, t) = ∂ p(x, t)

∂t
+ c∇ × m(x, t), (70)

which guarantee that the bound charge and current densities
satisfy continuity as well,

∇ · jB(x, t) + ∂ρB(x, t)

∂t
= 0. (71)

The microscopic polarization and magnetization fields can be
broken up into site contributions,

p(x, t) =
∑

R

pR(x, t),

m(x, t) =
∑

R

mR(x, t). (72)

The site polarizations are given by (55), or

pR(x, t) =
∑

α,β,R′,R′′

[∫
s(x; y, R)ρβR′;αR′′ (y, R; t)dy

]

× ηαR′′;βR′ (t), (73)

where ρβR′;αR′′ (y, R; t) is given by (45), and we have used the
first of (44). The site magnetizations are given by the sums of
(56) and (66), or

m j
R(x, t) = 1

c

∑
α,β,R′,R′′

[∫
α jk (x; y, R)

(
jk
βR′;αR′′ (y, R; t) + j̃k

βR′;αR′′ (y, R; t)
)
dy

]
ηαR′′;βR′ (t), (74)

where jk
βR′;αR′′ (y, R; t) and j̃k

βR′;αR′′ (y, R; t) are given by (46)
and (65) respectively, and we have used the second of (44)
and (64). Each of these quantities involve the single particle
density matrix ηαR′′;βR′ (t), the dynamics of which is governed
by (37). We have omitted the spin degree of freedom and
its contribution to the magnetization, but that could be easily
included.

We emphasize that as long as in any approximations
made the quantities I (R, R′; t) that result still satisfy (51),
and the evolution of the site charges is governed by (49),
the approximate free charge and current densities will sat-
isfy continuity. Moreover, for any approximations made in
evaluating {pR(x, t)} and {mR(x, t)}, the bound charge and
current densities (70) will satisfy continuity (71). Thus, in this
description, full charge conservation at the microscopic level
is extremely robust against approximations.

III. SOME LIMITS OF INTEREST

A. The isolated atom limit

We first consider the limit where the Wannier functions
WαR(x) and WβR′ (x) are assumed to have no common support
if R �= R′. Then we would expect our treatment of the solid to
reduce to that of isolated atoms positioned at the lattice sites.
That is, we would expect to find

〈ρ̂(x, t)〉 =
∑

R

( − ∇ · pR(x, t) + QRδ(x − R)
)
,

(75)

〈 ĵ(x, t)〉 =
∑

R

(
∂ pR(x, t)

∂t
+ ∇ × mR(x, t)

)
,
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where QR is the fixed electronic charge associated with lattice
site R, and pR(x, t) and mR(x, t) are the polarization and
magnetization expressions we would expect from isolated
atoms placed at the indicated lattice sites. In Appendix C, we
review the usual results for an isolated atom, and in Appendix
D, we show that indeed in the limit of no common support
of Wannier functions at different sites our expressions do
reduce to (75). Note that this holds even if the electromag-
netic field varies strongly over the extension of the Wannier
functions.

B. The long-wavelength limit

We next consider our equations in the long-wavelength
limit, taking E(x, t) → E(t), and restrict ourselves to an
infinite, periodic crystal. The magnetic field must then be
time-independent, and we take any applied constant magnetic
field to vanish; microscopic magnetic fields that have the
periodicity of the lattice can be taken into account in the
unperturbed Hamiltonian, H0(x, p(x)), using the expression
(9). This is a standard model often used to calculate the optical
response of crystals [10]. For the paths C(x, y) in (12), we take
straight lines.

With B(x, t) = 0 and E(t) uniform we have �(x, y, z; t) →
0 from (29), χαR(x, t) → WαR(x) from (28) and the discus-
sion preceding it, 
0

x(y; t) → (y − x) · E(t) from (20) and the
choice of a straight-line path, and pk (x, y; t) → pk (x) from
(19). The dynamical equation (37) then simplifies to

ih̄
∂ηαR;βR′ (t)

∂t

=
∑
λ,R′′

(
HαR;λR′′ (t)ηλR′′;βR′ (t) − ηαR;λR′′ (t)HλR′′;βR′ (t)

)
− e(R − R′) · E(t)ηαR;βR′ (t), (76)

where from (35) we have used

H̄αR;λR′′ (t) → HαR;λR′′ (t)

=
∫

W ∗
αR(x)H0(x, p(x))WλR′′ (x)dx

− e

2
E(t) ·

∫ (
W ∗

αR(x)(x − R′′)WλR′′ (x)

+ W ∗
αR(x)(x − R)WλR′′ (x)

)
dx, (77)

as well as the Hermiticity of H0(x, p(x)). Using the orthogo-
nality of the Wannier functions (22) and translational invari-
ance (23) we can manipulate this into the form

HαR;λR′′ (t) = Hαλ(R − R′′; t),

where

Hαλ(R; t) ≡
∫

W ∗
α (x − R)H0(x, p(x))Wλ(x)dx

− eE(t) ·
∫

W ∗
α (x − R)xWλ(x)dx. (78)

We now look at the transform of ηαR;βR′ (t) into crystal mo-
mentum space. Using the identities


uc

(2π )3

∫
BZ

eik·(R−R′ )dk = δRR′ ,


uc

(2π )3

∑
R

ei(k−k′ )·R = δ(k − k′), (79)

where we restrict k and k′ to the first Brillouin zone, and R
and R′ are lattice sites, we introduce the Fourier transform

ηαk;βk′ (t) ≡ 
uc

(2π )3

∑
R,R′

ei(k′·R′−k·R)ηαR;βR′ (t), (80)

and from the dynamical Eq. (76) for ηαR;βR′ (t) we obtain the
corresponding equations for ηαk;βk′ (t),

ih̄
∂ηαk;βk′ (t)

∂t

=
∑

γ

(
Hαγ (k; t)ηγ k;βk′ (t) − ηαk;γ k′ (t)Hγ β (k′; t)

)

− ieE(t) ·
(

∂

∂k
+ ∂

∂k′

)
ηαk;βk′ (t), (81)

where

Hαγ (k; t) ≡
∑

R

e−ik·RHαγ (R; t). (82)

From the inverse Fourier transform of (80),

ηαR;βR′ (t) = 
uc

(2π )3

∫∫
e−i(k′·R′−k·R)ηαk;βk′ (t)dkdk′, (83)

where we have used (79), we see that if we have a state that
shares the translational symmetry of the lattice, for which
ηαR;βR′ (t) depends only on (R − R′), we have ηαk;βk′ (t) of the
form

ηαk;βk′ (t) = ηαβ (k; t)δ(k − k′). (84)

If this holds initially then the dynamical Eq. (81) guarantees
that it will hold at all later times, with

ih̄
∂ηαβ (k; t)

∂t
=

∑
γ

(
Hαγ (k; t)ηγβ (k; t) − ηαγ (k; t)Hγ β (k; t)

)

− ieE(t) · ∂ηαβ (k; t)

∂k
. (85)

We can write (82) in a more familiar form by introduce a
Bloch function associated with each Wannier function,

φαk(x) =
√


uc

(2π )3

∑
R

eik·RWαR(x) = 1√
(2π )3

eik·xuαk(x).

(86)

They are orthonormal according to∫
φ∗

αk(x)φβk′ (x)dx = δαβδ(k − k′),

and in the second line of (86) we have introduced the periodic
function uαk(x), where uαk(x) = uαk(x + R) for any lattice
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constant R. Using the inverse relation of (86),

WαR(x) =
√


uc

(2π )3

∫
e−ik·Rφαk(x)dk

in (78), we find we can write (82) as

Hαγ (k; t) = H0
αγ (k) − eξαγ (k) · E(t), (87)

where

H0
αγ (k) =

∑
R

e−ik·R
∫

W ∗
α (x − R)H0(x, p(x))Wγ (x)dx

= 1


uc

∫
uc

u∗
αk(x)H0(x, p(x) + h̄k)uγ k(x)dx,

with the second integral ranging over any unit cell, and

ξαγ (k) =
∑

R

e−ik·R
∫

W ∗
α (x − R)xWγ (x)dx

= i


uc

∫
uc

u∗
αk(x)

∂uγ k(x)

∂k
dx, (88)

where ξαγ (k) is a non-Abelian connection associated with the
polarization; this object is discussed at length in earlier work,
including, for example, Aversa [10] and Resta [12]. Dropping
the matrix indices and writing, for example, η(k; t) for the
matrix with elements ηαβ (k; t), we can then write (85) in the
standard matrix form,

ih̄
∂η(k; t)

∂t

= [
H0(k) − eξ(k) · E(t), η(k; t)

] − ieE(t) · ∂η(k, t)

∂k
.

(89)

When considering optical response, with the electric field
treated as uniform, one is usually interested in the spatially
averaged current density J(t). Returning to the expression (68)
for 〈 ĵ(x, t)〉, since for excitation by a uniform electric field
we expect this quantity to share the translational symmetry
of the lattice, the spatial average of the magnetization term
will vanish, and we will only recover contributions from
the polarization p(x, t) and the free current density jF (x, t).
Using the decomposition (72) of p(x, t) into contributions
from different lattice sites, and noting that the pR(x, t) for
different R will be the same except for a translation associated
with the difference in the lattice sites, we can introduce a
spatially averaged polarization

P(t) = 1


uc

∫
pR(x, t)dx, (90)

which will be the same regardless of the R chosen to evaluate
it. Similarly decomposing the free current density (53) into
contributions from different lattice sites,

jF (x, t) =
∑

R

jF ;R(x, t), (91)

where

jF ;R(x, t) = 1

2

∑
R′

s(x; R, R′)I (R, R′; t), (92)

we can introduce a free current density,

JF (t) = 1


uc

∫
jF ;R(x, t)dx, (93)

which will be independent of the R chosen to evaluate it. From
(68), we then have

J(t) = dP(t)

dt
+ JF (t). (94)

Using the expression (55,44) for pR(x, t) and ρR(y, t), together
with the form (12) for s(x; y, R), the use of the Fourier
decomposition (83) yields

P(t) = e
∑
α,β

∫
dk

(2π )3
ξβα (k)ηαβ (k; t). (95)

Similarly, performing the integral (53), and in the expres-
sion (50) for I (R, R′; t) replacing the general H̄αR;λR′′ (t) by
Hαλ(R − R′′; t) [see (78) and preceding], we obtain

JF (t) = e

h̄

∑
α,λ

∫
dk

(2π )3

[
∂

∂k

(
H0

αλ(k) − eξαλ(k) · E(t)
)]

× ηλα (k; t), (96)

where we have used (87) for the transform (82) Hαλ(k; t). In
matrix form we write (95) and (96) as

P(t) = e
∫

dk
(2π )3

Tr[ξη(t)],

(97)

JF (t) = e

h̄

∫
dk

(2π )3
Tr

[(
∂(H0 − eξ · E(t))

)
η(t)

]
,

where ∂n = ∂/∂kn. Using these results in the expression (94)
for J(t), together with the dynamical Eq. (89), we obtain

J(t) = e
∫

dk
(2π )3

Tr[vη(t)], (98)

where the matrix

v = ∂H0 − i

h̄

[
ξ, H0

]
. (99)

We note that these results can be derived via an entirely
different strategy that begins directly in the long-wavelength
limit and calculates the response of the system to an applied
electric field E(t) [33]; such an approach is of course more
direct and much easier if only the long-wavelength limit is
desired.

1. Basis transformations

Rather than work with the basis functions {φαk(x)} of (86)
at each k it is often convenient to work with a new set of basis
functions {φ̄nk(x)}, related to the original set at each k by a
unitary transformation,

φ̄nk(x) =
∑

α

φαk(x)Uαn(k), (100)

where at each k the Uαn(k) are elements of a unitary matrix
U . With

H̄0 ≡ U †H0U,

η̄ ≡ U †ηU,
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in our short-hand notation, we find that the equation for η̄(t)
that follows from (89) is

ih̄
∂η̄(t)

∂t
= [

H̄0 − eξ̄ · E(t), η̄(t)
] − ieE(t) · ∂η̄(t), (101)

where

ξ̄ ≡ U †ξU + iU †∂U, (102)

and the matrix ξ̄ at k has components

ξ̄nm(k) = i


uc

∫
uc

ū∗
nk(x)

∂ ūmk(x)

∂k
dx, (103)

[cf. (88)] where ūnk(x) is the periodic component, ūnk(x +
R) = ūnk(x) for any lattice vector R, associated with the basis
function φ̄nk(x),

φ̄nk(x) = 1√
(2π )3

eik·xūnk(x). (104)

Such a transformation is often done as a prelude to a perturba-
tion calculation, and chosen so that H̄0 is diagonal, but more
general transformations can be considered. In terms of the new
matrices, we find that the current density (98) can be written
as

J(t) = e
∫

dk
(2π )3

Tr[v̄η̄(t)], (105)

where the matrix

v̄ = ∂H̄0 − i

h̄

[
ξ̄, H̄0

]
(106)

[cf. (99)]. Thus the form of both the dynamical equations
(101) and the expression (105) for the current density are
invariant under such a set of unitary transformations {U (k)}.
The same does not hold for the polarization and free current
density that lead to the current density via (94). In place of
(97), we obtain

P(t) = e
∫

dk
(2π )3

Tr[ξ̄η̄(t)]

− ie
∫

dk
(2π )3

Tr[(U †∂U )η̄(t)], (107)

JF (t) = e

h̄

∫
dk

(2π )3
Tr

[(
∂(H̄0 − eξ̄ · E(t))

)
η̄(t)

]
+ e

h̄

∫
dk

(2π )3
Tr

[
[(U †∂U ), (H̄0 − eξ̄ · E(t))]η̄(t)

]

+ i
e2

h̄

∫
dk

(2π )3
Tr[(E(t) · ∂)(U †∂U )η̄(t)]. (108)

It is only in the Bloch basis (86) associated with the maximally
localized Wannier functions that our expressions for P(t) and
JF (t) take a simple form (97), since it is those Wannier
functions that were used for the introduction of our quantities
p(x, t), m(x, t), ρF (x, t), and jF (x, t). This kind of dependence
on the details of a unitary transformation changing the Bloch
basis is not unique to our approach; indeed, the appearance
of the second term on the right-hand side of (107) arises
as well in the “modern theory of polarization,” even in the
limit of a topologically trivial insulator, and is associated with

the “quantum of ambiguity” [15]. In the following section,
we show that for a topologically trivial insulator we find
the same expressions for the ground-state polarization and
magnetization as in the “modern theory of polarization and
magnetization,” and it is easy to show that our expression for
JF in such a ground state vanishes even more generally, as
expected. We will turn to our expressions for the ground-state
polarization and magnetization for metals and topologically
nontrivial insulators in a future publication.

2. Perturbative calculation

We close this section by using our approach to calculate
the linear response of an insulator in the long-wavelength
limit. We choose the transformation (100) to be that which
diagonalizes the Hamiltonian, so

H̄0
nm(k) = δnmh̄ωn(k),

and introducing a perturbation expansion of ηnm(k; t) in orders
of the electric field,

ηnm(k; t) = η(0)
nm (k) + η(1)

nm (k; t) + . . .

we take

η(0)
nm (k) = fnδnm,

where fn = 0 or 1 for each n, independent of k. For an electric
field

E(t) = E(ω)e−iωt + E(−ω)eiωt ,

with E(−ω) = E∗(ω), the usual perturbation treatment of
(101) gives

η(1)
nm (k; t) = η(1)

nm (k; ω)e−iωt + η(1)
nm (k; −ω)eiωt ,

where

η(1)
nm (k; ω) = eξ̄nm(k) · E(ω) fmn

h̄(ωnm(k) − ω)
,

where fmn = fm − fn and likewise for ωnm(k). Then either
calculating the first-order result for

J (1)(t) = J(ω)e−iωt + J(−ω)eiωt

directly from (105), or calculating the first order contributions
to P(t) and JF (t) from (105) and (106) and using the expres-
sions in (94), we obtain

Ja(ω) = σ ab(ω)Eb(ω),

where the conductivity σ ab(ω) is given by

σ ab(ω) = −iω
e2

h̄

∑
n,m

∫
dk

(2π )3

fmωnm
(
ξ̄ a

mnξ̄
b
nm + ξ̄ b

mnξ̄
a
nm

)
(
ω2

nm − ω2
)

− i
e2

h̄

∑
n,m

∫
dk

(2π )3

fmω2
nm

(
ξ̄ a

mnξ̄
b
nm − ξ̄ b

mnξ̄
a
nm

)
(
ω2

nm − ω2
) .

Note that in general the conductivity can be finite as ω → 0,

lim
ω→0

σ ab(ω) = e2

h̄

∑
m

∫
dk

(2π )3
fm

(
∂ξ̄ a

mm

∂kb
− ∂ξ̄ b

mm

∂ka

)
, (109)
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which is the well-known expression for the zero frequency
transverse conductivity of a topologically nontrivial insulator
arising from the Kubo formula8 [28,29,34]; here we have used

∂ × ξ − iξ × ξ = 0,

and the fact that the corresponding equation holds for ξ̄ as
well. Note that the zero frequency transverse conductivity
is identified in our treatment with the “free” current density
JF , as follows immediately from the expression (94) for
J(t). This zero frequency response vanishes for a topologi-
cally trivial insulator; in fact, we show in Section II E that
in linear response the full microscopic free current density
jF (x, t) of a topologically trivial insulator vanishes. In the
long-wavelength limit being considered here, the only linear
response of a topologically trivial insulator is from the polar-
ization, J (1)(t) = dP(1)(t)/dt , where

P(1)(t) = P(ω)e−iωt + P(−ω)eiωt ,

and

P(ω) = e2

h̄

∑
n,m

∫
dk

(2π )3

fmnξ̄mn(k)(ξ̄nm(k) · E(ω))

(ωnm(k) − ω)
,

the usual result from perturbation theory [10].

C. Ground-state moments in a topologically trivial insulator

Next we consider both the electric and magnetic dipole
moments associated with the lattice sites in the ground state,
restricting ourselves to a topologically trivial insulator at zero
temperature. In such a system, all bands are either completely
empty or completely filled, and each set of energy overlapping
bands is topologically trivial as a whole. Then a maximally
localized set of Wannier functions are associated with the
filled bands, and another set with the empty bands [24–27],
so we have

ηαR;βR′ = fαδαβδRR′ ,

where fα = 0 or 1, in the expressions (73) and (74) for pR(x, t)
and mR(x, t). Those quantities are then of course independent
of time, and the expressions simplify considerably. Taking
straight-line paths for C(x, y) (see Appendix A), we have∫

si(w; x, y)dw = (xi − yi ),∫
α jk (w; x, y)dw = 1

2ε jmk (xm − ym),

and we find that the electric dipole moment μ and magnetic
dipole moment ν of the charge-current distribution associated
with each site are just

μ =
∫

pR(x)dx,

ν =
∫

mR(x)dx,

8In 2D, this is proportional to the net Chern number of the filled
bands.

and are independent of R, as expected. We obtain

μ =
∑

α

fαμα,

ν =
∑

α

fανα,

where

μα = e
∫

W ∗
α (x)xWα (x)dx,

with Wα (x) ≡ Wα0(x), while να is the sum of two contribu-
tions,

να = ν̄α + ν̃α,

arising from the two contributions to mR(x) in (74). The first
term is an atomic-like contribution,

ν̄ j
α = 1

4c
ε jmk

∫
xmW ∗

α (x)
(
Jk (x, p(x))Wα (x)

)
dx

+ 1

4c
ε jmk

∫
xm

(
Jk (x, p(x))Wα (x)

)∗
Wα (x)dx, (110)

which, for a Hamiltonian of Schrödinger form (10), gives

ν̄α = e

2mc

∫
W ∗

α (x)

[
x×

(
h̄

i

∂Wα (x)

∂x
− e

c
Astatic(x)Wα (x)

)]
dx,

which is familiar from the corresponding expression in atomic
physics, and

ν̃ j
α = 1

2h̄c
ε jmk

∑
λ,R1

Rm
1 Im

[
H (0)

α0;λR1
μk

λR1;α0(R1)
]
, (111)

where H (0)
α0;λR1

is given by (77) in the limit of no applied field,
or more generally by

H (0)
αR1;λR2

≡
∫

W ∗
αR1

(x)H0(x, p(x))WλR2 (x)dx, (112)

where we have defined

μβR1;αR2
(R) = e

∫
W ∗

βR1
(x)(x − R)WαR2 (x)dx.

Here, ν̃α is the itinerant contribution to magnetic moment
defined earlier [14]; taking the macroscopic polarization and
magnetization to be given by

P = μ


uc
, M = ν


uc
.

We are in agreement with earlier results from the modern
theory of polarization and magnetization [34]. In a calculation
such as this, using the basis of Wannier functions, the quantum
of ambiguity arises because one must choose the lattice site
with which a representative Wannier function of given type
α is associated; the lattice sites with which the rest of the
Wannier functions of that type are associated follow from
translational symmetry.

D. Perturbative result for a topologically trivial insulator

We finally consider the general nature of the linear re-
sponse of a topologically trivial insulator to an applied elec-
tromagnetic field. We look at the expression (50) for the link
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current and expand it into terms involving powers of the
electromagnetic field,

I (R, R′; t) = I (0)(R, R′) + I (1)(R, R′; t) + · · · ,

which is achieved by expanding the terms of which it is
composed in a similar way,

H̄αR;λR′ (t) = H̄ (0)
αR;λR′ + H̄ (1)

αR;λR′ (t) + · · · ,

ηαR;λR′ (t) = η
(0)
αR;λR′ + η

(1)
αR;λR′ (t) + · · ·

For a topologically trivial insulator, we have

η
(0)
αR;λR′ = fαδαλδRR′ (113)

as above, and we identify H̄ (0)
αR;λR′ = H (0)

αR;λR′ , with H (0)
αR;λR′

given by (112). Then it immediately follows that I (0)(R, R′) =
0, while

I (1)(R, R′; t)

= e

ih̄

∑
α,λ

(
H̄ (1)

αR;λR′ (t)η
(0)
λR′;αR(t) − η

(0)
αR;λR′ (t)H̄

(1)
λR′;αR(t)

)

+ e

ih̄

∑
α,λ

(
H (0)

αR;λR′η
(1)
λR′;αR(t) − η

(1)
αR;λR′ (t)H

(0)
λR′;αR

)
. (114)

The first of these two terms gives

e

ih̄

∑
α,λ

(
H̄ (1)

αR;λR′ (t) − H̄ (1)
λR′;αR(t)

)
fαδαλδRR′ ,

which vanishes regardless of the form of H̄ (1)
αR;λR′ (t). To in-

vestigate the second term in (114), we look at the equation
for η

(1)
αR;λR′ (t) that follows from a perturbative analysis of the

general dynamical Eq. (37). Expanding terms in the usual
way, we obtain

ih̄
∂η

(1)
αR;βR′ (t)

∂t
=

∑
λ,R′′

(
H (0)

αR;λR′′η
(1)
λR′′;βR′ (t) − η

(1)
αR;λR′′ H

(0)
λR′′;βR′

)

+ fβαH (1)
αR;βR′ ,

and the inhomogeneous term in this equation is proportional
to fβα . As can be confirmed by the formal solution of this
equation in reciprocal space, η

(1)
αR;βR′ (t) will vanish unless one

and only one of α and β is associated with a set of filled bands,
so indeed η

(1)
αR;βR′ (t) will be proportional to fαβ . However,

using this result in the second term of (114), we see that
the second term will involve terms such as fαβH (0)

αR;βR′ , which

vanish. So we have I (1)(R, R′; t) = 0.
Thus, to first order in the optical response of a topologically

trivial insulator at zero temperature, the link current will
vanish, and so we see from (49), (52), and (53) that jF (x, t) =
0 and ρF (x, t) is independent of time. The entire optical
response to first order is described by p(x, t) and m(x, t), even
if the wavelength of light is comparable to or smaller than the
lattice spacing.

IV. CONCLUSION

We have presented a general strategy for constructing
microscopic polarization and magnetization fields, p(x, t) and

m(x, t), which together with microscopic “free” charge and
current densities, ρF (x, t) and jF (x, t), can be used (2) to
represent the expectation value of the microscopic electronic
charge and current density operators, 〈ρ̂(x, t)〉 and 〈 ĵ(x, t)〉.
Our goal has been to write p(x, t) and m(x, t) as sums over
contributions from different sites (3), and we have done this
by associating a set of localized orbitals with each site. In a
periodic crystal, which has been the focus of our work, we
have taken these to be maximally localized Wannier functions,
each set of such functions associated with a set of bands that is
topologically trivial; schemes exist to construct such Wannier
functions, which are primarily ab initio based [35,36], and
can readily be used to implement the formalism presented.
The description that results is one of a lattice gauge theory,
where the free charge and current densities are described by
site charges and link currents, respectively; the polarization
and magnetization fields associated with a given lattice site are
then written in terms of the single-particle density operators
associated with that site and its neighbors, and can be expected
to be nonvanishing only in the neighborhood of the site.

While our site quantities pR(x, t) and mR(x, t), together
with our free charge and current densities, have been defined
to include only valence and conduction electron contributions,
the contributions from ion cores can be identified as well.
In the simple case where the ions are considered fixed and
approximated as point particles, there is a time-independent
ionic charge density

ρ ion(x) =
∑

R

ρ ion
R (x),

where

ρ ion
R (x) =

∑
N

qNδ(x − R − dN ),

and where we assume that in each unit cell there are ions
with charges qN located at R + dN . Following the strategy
used for electrons, we can write ρ ion

R (x) as a contribution that
would arise if all the ions were at the lattice site, and a time
independent polarization,

ρ ion
R (x) = δ(x − R)

∑
N

qN − ∇ · pion
R (x),

where

pion
R (x) =

∫
s(x; y, R)ρ ion

R (y)dy

[compare (55)]. The contributions of the ions can then be
taken into account in our summary equations in Sec. II E by
replacing the old ρF (x, t) by

ρnew
F (x, t) = ρF (x, t) +

∑
N,R

qNδ(x − R)

in (69), and by replacing the old pR(x, t) by

pnew
R (x, t) = pR(x, t) + pion

R (x)

in (72). Note that in equilibrium, ρnew
F (x, t) vanishes and all the

microscopic charge is associated with the polarization fields
of valence electrons and ions. If the motion of the ions is
also considered then additional terms, including contributions
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to the magnetization, appear as they did for valence and
conduction electrons.

To move to macroscopic electrodynamics, spatial averages
of the microscopic polarization and magnetization can now be
identified as the macroscopic polarization and magnetization
fields, and expansions of the polarization and magnetization
fields associated with a site can be used to identify its electric
and magnetic multipole moments; we plan to address these
matters in a following publication. Benefits of this approach
include the fact that the description of the interaction of the
charges with the electromagnetic field involves the electric
and magnetic fields themselves, rather than the scalar and vec-
tor potentials that describe them, and the fact that the structure
of the expressions for 〈ρ̂(x, t)〉 and 〈 ĵ(x, t)〉 in terms of their
“constituent sources” p(x, t), m(x, t), ρF (x, t), and jF (x, t)
are such that continuity is guaranteed by construction, even
if approximations are made in describing those constituent
sources.

We have restricted ourselves to electrons described in
the independent particle approximation, with no interactions
besides those that can be included in a mean-field treatment
of the electromagnetic field. However, while including inter-
actions between the electrons will make the description of the
dynamics more difficult, much of the kinematics associated
with defining the constituent sources will remain unchanged.
Other simplifications we have employed, such as the omission
of the contribution of the electron spin to the magnetization,
would be easier to remedy. Also, although we have formu-
lated our theory in a three-dimensional space, it is readily
applicable to a two dimensional lattice, using some care in
formulating the Fourier transforms and Wannier functions.

For a given 〈ρ̂(x, t)〉 and 〈 ĵ(x, t)〉, there is not a unique
way to construct the constituent sources, even if the set of
localized orbitals being employed is fixed. For example, we
have restricted ourselves to line integral forms (12) of the
quantities that are responsible for relating p(x, t) and m(x, t) to
〈ρ̂(x, t)〉 and 〈 ĵ(x, t)〉. Yet the essential feature of those relators
is only that they satisfy (13), not that they are of line integral
form. And even within the line integral form we have used
straight line paths in our examples, although the equations
we derive are more general. The straight line path does seem
the most natural, since it can be shown that it leads most
naturally to the usual multipole expansion, but other paths
would be worth exploring. The issue then is not what are
the “correct” constituent sources p(x, t), m(x, t), ρF (x, t), and
jF (x, t), since they cannot be uniquely defined, but whether or
not a particular choice is convenient.

We have shown that our choice exhibits a number of
interesting features: First, in a limit where the lattice sites are
moved further away from each other, with the set of orbitals
employed remaining fixed, our description flows naturally
into that of a set of “isolated atoms” on a lattice, regardless
of the wavelength of light. Second, in the long-wavelength
limit of a uniform applied electric field, we found that the
spatially averaged current density is the sum of a free cur-
rent part and a contribution from the time derivative of the
polarization. The first of these is responsible, for instance,
for the transverse dc conductivity in a topologically nontrivial
insulator; the second is the sole contribution to the linear
response of a topologically trivial insulator. More generally,

in a topologically trivial insulator, the linear optical response
is due solely to induced microscopic polarization and mag-
netization fields, again regardless of the wavelength of light.
This is as expected, since it is only to higher order that one
would physically expect that injected quasiparticles could be
driven by the electromagnetic field and lead to induced free
charges and currents. Finally, we showed that in the ground
state of a topologically trivial insulator the expressions for the
polarization and the magnetization agree with results from the
“modern theory of polarization and magnetization.”

We believe these features suggest that our choice of con-
stituent sources is worth developing further as a description of
the ground state of systems of interest, and of the linear and
nonlinear response of matter to radiation very generally. And
we believe that the overall framework we have established
here for introducing microscopic polarization and magnetiza-
tion fields in extended systems will prove to be valuable for
studying electronic dynamics at atomic scales.
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APPENDIX A: RELATOR EQUATIONS

We give a derivation of the relations (13) between relators
that follows the spirit of Healy’s [21], although our notation is
different. We characterize the path from y to x by a function
z(u) such that z(u1) = y and z(u2) = x. Then from the first of
(12), we have

si(w; x, y) =
∫ u2

u1

du
dzi(u)

du
δ(w − z), (A1)

and so

−∂si(w; x, y)

∂wi
= −

∫ u2

u1

du
dzi(u)

du

∂δ(w − z)

∂wi

=
∫ u2

u1

du
dzi(u)

du

∂δ(w − z)

∂zi

=
∫ u2

u1

du
d

du
δ(w − z)

= δ(w − y) − δ(w − x),

which is the first of (13).
Moving to the second of (12), we have

α jk (w; x, y) = ε jmn
∫ u2

u1

du
dzm

du

∂zn

∂xk
δ(w − z), (A2)

so

εip j ∂α jk (w; x, y)

∂wp
= εip jε jmn

∫ u2

u1

du
dzm

du

∂zn

∂xk

∂δ(w − z)

∂wp
.

Now

εip jε jmn = ε jipε jmn = δimδpn − δinδpm,
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so

εip j ∂α jk (w; x, y)

∂wp

= (δimδpn − δinδpm)
∫ u2

u1

du
dzm

du

∂zn

∂xk

∂δ(w − z)

∂wp

=
∫ u2

u1

du
dzi

du

∂zp

∂xk

∂δ(w − z)

∂wp
−

∫ u2

u1

du
dzp

du

∂zi

∂xk

∂δ(w − z)

∂wp

= −
∫ u2

u1

du
dzi

du

∂zp

∂xk

∂δ(w − z)

∂zp
+

∫ u2

u1

du
dzp

du

∂zi

∂xk

∂δ(w − z)

∂zp

= −
∫ u2

u1

du
dzi

du

∂

∂xk
δ(w − z) +

∫ u2

u1

du
∂zi

∂xk

d

du
δ(w − z).

Partially integrating the second term gives

εip j ∂α jk (w; x, y)

∂wp

= −
∫ u2

u1

du
dzi

du

∂

∂xk
δ(w − z)

−
∫ u2

u1

du

(
∂

∂xk

dzi

du

)
δ(w − z) +

[
∂zi

∂xk
δ(w − z)

]u2

u1

= − ∂

∂xi

(∫ u2

u1

du
dzi

du
δ(w − z)

)
+

[
∂zi

∂xk
δ(w − z)

]u2

u1

.

In the second term note the zi(u2) = xi and zi(u1) = yi, so
there will only be a contribution at u2. Then recognizing the
first term from (A1), we have

εip j ∂α jk (w; x, y)

∂wp
= − ∂

∂xk
si(w; x, y) + δikδ(w − x),

which is the second of (13).
The final expression is derived in much the same way. We

have

β jk (w; x, y) = ε jmn
∫ u2

u1

du
dzm

du

∂zn

∂yk
δ(w − z), (A3)

so

εip j ∂β jk (w; x, y)

∂wp

= εip jε jmn
∫ u2

u1

du
dzm

du

∂zn

∂yk
δ(w − z)

= (δimδpn − δinδpm)
∫ u2

u1

du
dzm

du

∂zn

∂yk

∂δ(w − z)

∂wp
,

and following exactly the strategy above we have

εip j ∂β jk (w; x, y)

∂wp

= − ∂

∂yi

(∫ u2

u1

du
dzi

du
δ(w − z)

)
+

[
∂zi

∂yk
δ(w − z)

]u2

u1

= − ∂

∂yi
si(w; x, y) − δikδ(w − y),

because in the last term only the contribution from u1 will
survive. This is the third of (13).

Next we confirm that the relations (14) hold for symmetric
paths C(x, y), where for each and every x and y the path
C(x, y) is the “reverse” of the path C(y, x). More precisely,
if C(x, y) is specified by giving z(u) as u varies from u1 to u2,
with z(u1) = y and z(u2) = x, then C(y, x) is specified by the
same z(u) as u varies from u2 to u1. We have

si(w; x, y) =
∫

C(x,y)
dziδ(w − z) =

∫ u2

u1

du
dzi(u)

du
δ(w − z)

and

si(w; y, x) =
∫

C(y,x)
dziδ(w − z)

=
∫ u1

u2

du
dzi(u)

du
δ(w − z)

= −
∫ u2

u1

du
dzi(u)

du
δ(w − z)

= −si(w; x, y),

while

α jk (w; x, y) = ε jmn
∫

C(x,y)
dzm ∂zn

∂xk
δ(w − z)

= ε jmn
∫ u2

u1

dzm(u)

du

∂zn

∂xk
δ(w − z)

and

β jk (w; y, x) = ε jmn
∫

C(y,x)
dzm ∂zn

∂xk
δ(w − z)

= ε jmn
∫ u1

u2

du
dzm(u)

du

∂zn

∂xk
δ(w − z)

= −ε jmn
∫ u2

u1

du
dzm(u)

du

∂zn

∂xk
δ(w − z)

= −α jk (w; x, y).

Finally, we consider the special case of a straight-line path
C(x, y) for each x and y. That is, taking u1 = 0 and u2 = 1,
for the path C(x, y), we have

z = y + u(x − y).

Then we have

dzi(u)

du
= xi − yi,

∂zn

∂xk
= uδnk,

∂zn

∂yk
= (1 − u)δnk,

and so from (A1) we have

si(w; x, y) =
∫ 1

0
(xi − yi )δ(w − y − u(x − y))du, (A4)

while from (A2) we have

α jk (w; x, y) = ε jmk
∫ 1

0
(xm − ym)δ(w − y − u(x − y))udu,

(A5)
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and from (A3) we have

β jk (w; x, y)

= ε jmk
∫ 1

0
(xm − ym)δ(w − y − u(x − y))(1 − u)du.

(A6)

Since a straight-line path is symmetric, in the terminology
used above, we expect (A4)–(A6) to satisfy (14), and it is easy
to confirm that they do.

APPENDIX B: ORTHOGONALIZATION OF STATES

In this Appendix, we use a short-hand notation, taking

(αR) → n, R → Rn.

Our set of nonorthogonal states (24) are then labeled
{W ′

n (x, t)}; the elements of the overlap matrix S(t) character-
izing them are

Snm(t) ≡
∫

W
′∗

n (x, t)W ′
m(x, t)dx

= ei�(Rn,Rm;t)
∫

W ∗
n (x)ei�(Rn,x,Rm;t)Wm(x)dx.

Clearly S(t) is Hermitian, and although its matrix elements are
in general not gauge-invariant, they can be written as

Snm(t) = ei�(Rn,Rm;t)Ŝnm(t),

where the Ŝnm(t) are gauge-invariant,

Ŝnm(t) =
∫

W ∗
n (x)ei�(Rn,x,Rm;t)Wm(x)dx

and since

Ŝ∗
nm(t) = ei�(Rn,Rm;t)S∗

nm(t) = e−i�(Rm,Rn;t)Smn(t) = Ŝmn(t)

the matrix Ŝ(t) is also Hermitian.
We seek a set {W̄n(x, t)} spanned by the original set that are

orthogonal,

W̄n(x, t) =
∑

p

W ′
p(x, t)Cpn(t), (B1)

where∫
W̄ ∗

n (x, t)W̄m(x, t)dx =
∑
p,l

C∗
np(t)Snl (t)Clm(t) = δnm,

or in matrix notation

C†(t)S(t)C(t) = I.

There are of course many matrices C(t) that can be found
that satisfy this condition. However, the desired matrix C(t)
yielding the minimization of (26) is the Hermitian matrix
satisfying

C(t) = S−1/2(t),

[23]. That is, it is the “Hermitian square root” of the inverse
of the overlap matrix S(t).

To see the structure of C(t), and the nature of the resulting
{W̄n(x, t)}, first introduce T(t) as the inverse of S(t),∑

l

Snl (t)Tlm(t) = δnm

or ∑
l

Ŝnl (t)e
i�(Rn,Rl ;t)Tlm(t) = δnm.

Introducing T̂(t) according to

T̂lm(t) = Tlm(t)e−i�(Rl ,Rm;t),

we have

e−i�(Rm,Rn;t)
∑

l

Ŝnl (t)T̂lm(t)ei�(Rn,Rl ,Rm;t) = δnm

or ∑
l

Ŝnl (t)T̂lm(t)ei�(Rn,Rl ,Rm;t) = δnm,

and we see that the elements of T̂(t) must be gauge-invariant,
since everything else in the equation is. Since C(t) is the
square root of T(t), we have

∑
l

Cnl (t)Clm(t) = Tnm(t) = T̂nm(t)ei�(Rn,Rm;t). (B2)

Now the C(t) we seek is Hermitian, requiring

C∗
nl (t) = Cln(t). (B3)

Introducing Ĉ(t) according to

Ĉnl (t) = Cnl (t)e
−i�(Rn,Rl ;t), (B4)

then using (B3) we see that

Ĉ∗
nl (t) = C∗

nl (t)e
i�(Rn,Rl ;t) = Cln(t)e−i�(Rl ,Rn;t) = Ĉln(t),

and so the Ĉ(t) we seek is Hermitian and, from (B2), satisfies

∑
l

Ĉnl (t)Ĉlm(t)ei[�(Rn,Rl ;t )+�(Rl ,Rm;t)] = T̂nm(t)ei�(Rn,Rm;t)

(B5)

or ∑
l

Ĉnl (t)Ĉlm(t)ei�(Rn,Rl ,Rm;t) = T̂nm(t),

a gauge-invariant equation, and so the matrix Ĉ(t) we seek is
gauge invariant.

In terms of our new quantities we can write (B1) as

W̄n(x, t)

=
∑

p

Wp(x)ei�(x,Rp;t)Ĉpn(t)ei�(Rp,Rn;t)

= ei�(x,Rn;t)
∑

p

Wp(x)Ĉpn(t)ei�(Rn,x;t)ei�(x,Rp;t)ei�(Rp,Rn;t)

= ei�(x,Rn;t)χn(x, t),
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where

χn(x, t) ≡
∑

p

Wp(x)Ĉpn(t)ei�(x,Rp,Rn;t) (B6)

is clearly gauge-invariant, thus establishing (27).
We can easily work out an expansion for the W̄n(x, t) where

the overlap between nonidentical W ′
n (x, t) is small. Defining a

matrix s,

s(t) ≡ S(t) − I,

where I is the identity matrix, we have

S−1/2(t) = (I + s(t))−1/2

= I − 1
2s(t) + 3

8s
2(t) + . . . (B7)

where since S is Hermitian s will be as well. In terms of
components, we have

snm(t) = Snm(t) − δnm

= ei�(Rn,Rm;t)

[(∫
W ∗

n (x)ei�(Rn,x,Rm;t)Wm(x)dx
)

− δnm

]

= ei�(Rn,Rm )ŝnm(t),

where

ŝnm(t) =
(∫

W ∗
n (x)ei�(Rn,x,Rm;t)Wm(x)dx

)
− δnm

is gauge invariant. Clearly the power series expansion (B7)
yields the Hermitian square root of S, and so we have

Cpn(t) = δpn − 1

2
spn(t) + 3

8

∑
u

spu(t)sun(t) + . . .

= δpn − 1

2
ŝpn(t)ei�(Rp,Rn;t)

+ 3

8

∑
u

ŝpu(t)ŝun(t)ei[�(Rp,Ru;t)+�(Ru,Rn;t)] + . . .

Then from (B4) we have

Ĉpn(t) = δpn − 1

2
ŝpn(t)

+ 3

8

∑
u

ŝpu(t)ŝun(t)ei�(Rp,Ru,Rn;t) + . . .

which is indeed gauge-invariant. Using this in (B6) yields

χn(x, t) = Wn(x) − 1

2

∑
p

Wp(x)ŝpn(t)ei�(x,Rp,Rn;t)

+ 3

8

∑
p,u

Wp(x)ŝpu(t)ŝun(t)ei�(Rp,Ru,Rn;t)

× ei�(x,Rp,Rn;t) + . . .

Now defining as usual

�(x, Rp, Ru, Rn; t)

≡ �(Rn, x; t) + �(x, Rp; t) + �(Rp, Ru; t) + �(Ru, Rn; t)

= �(x, Rp, Rn; t) + �(Rp, Ru, Rn; t),

we have

χn(x, t) = Wn(x) − 1

2

∑
p

Wp(x)ŝpn(t)ei�(x,Rp,Rn;t)

+ 3

8

∑
p,u

Wp(x)ŝpu(t)ŝun(t)ei�(x,Rp,Ru,Rn;t) + . . . ,

and reverting to the original notation of the text this gives (28)
as the lowest correction in the magnetic field.

APPENDIX C: THE TREATMENT OF AN ISOLATED ATOM

Here we review the treatment of the response of an iso-
lated atom to an electromagnetic field, neglecting interactions
between the electrons, following the spirit of the earlier work
by Healy [21]. For simplicity, we treat the nucleus as fixed.
Introducing an electron field operator ψ (x, t) and beginning
with minimal coupling, the electronic charge and current
density operators are given by

ρ̂(x, t) = eψ†(x, t)ψ (x, t), (C1)

ĵ(x, t) = 1
2ψ†(x, t)

[
J(x, pmc(x, t))ψ (x, t)

]
+ 1

2

[
J(x, pmc(x, t))ψ (x, t)

]†
ψ (x, t), (C2)

where, as in the main text, the function J(x, pmc(x, t)) follows
from H0(x, pmc(x, t)) in the usual fashion, pmc(x, t) is given
by (8), and the electron field operator ψ (x, t) satisfies the
dynamical equation

ih̄
∂ψ (x, t)

∂t
= [

ψ (x, t), Hmc(t)
]

= [
H0(x, pmc(x, t)) + eφ(x, t)

]
ψ (x, t),

where

Hmc(t) =
∫

ψ†(x, t)
(
H0(x, pmc(x, t)) + eφ(x, t)

)
ψ (x, t)dx.

Assuming the electrons involved remain in a region of space
about the nucleus, which we take to be at R, we introduce a
new field operator

ψsp(x, t) = e−i�(x,R;t)ψ (x, t),

where �(x, R; t) is as given (15) in the main text. Now

ih̄
∂ψsp(x, t)

∂t
= h̄

∂�(x, R; t)

∂t
ψsp(x, t)

+ e−i�(x,R;t)

(
ih̄

∂ψ (x, t)

∂t

)
.

Since

h̄
∂�(x, R; t)

∂t

= e

c

∫
si(w; x, R)

∂Ai(w, t)

∂t
dw

= −e
∫

si(w; x, R)Ei(w, t)dw

− e
∫

si(w; x, R)
∂φ(w, t)

∂wi
dw
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= −e
0
R(x, t) + e

∫
∂si(w; x, R)

∂wi
φ(w, t)dw

= −e
0
R(x, t) − eφ(x, t) + eφ(R, t),

where in the second to the last line we have used the definition
(20) in the last line we have used the first of (13), we can write

e−i�(x,R;t)

(
ih̄

∂ψ (x, t)

∂t

)

= e−i�(x,R;t)
[
H0(x, pmc(x, t)) + eφ(x, t)

]
ψ (x, t)

= [
H0(x, p(x, R; t)) + eφ(x, t)

]
ψsp(x, t),

[recall (19)] and we have

ih̄
∂ψsp(x, t)

∂t

= (
H0(x, p(x, R; t)) − e
0

R(x, t) + eφ(R, t)
)
ψsp(x, t),

where note the term eφ(R, t) depends only on time and there-
fore will contribute only a global phase to ψsp(x, t); it will not
contribute to any operator values and thus can be dropped; we
take

ih̄
∂ψsp(x, t)

∂t
= (

H0(x, p(x, R; t)) − e
0
R(x, t)

)
ψsp(x, t),

and then have

ih̄
∂ψsp(x, t)

∂t
= [

ψsp(x, t), Hsp(t)
]
, (C3)

where

Hsp(t)

=
∫

ψ†
sp(x, t)

(
H0(x, p(x, R; t)) − e
0

R(x, t)
)
ψsp(x, t)dx.

(C4)

Looking at the electronic charge and current densities, we
can write the first (C1) as

ρ̂(x, t) = eψ†
sp(x, t)ψsp(x, t), (C5)

while the second becomes

ĵ(x, t)

= 1

2
ψ†

sp(x, t)e−i�(x,R;t)
[
J(x, pmc(x, t))ei�(x,R;t)ψsp(x, t)

]
+ 1

2

[
J(x, pmc(x, t))ei�(x,R;t)ψsp(x, t)

]†
ei�(x,R;t)ψsp(x, t)

or

ĵ(x, t)

= 1

2
ψ†

sp(x, t)
[
J
(
x, e−i�(x,R;t)pmc(x, t)ei�(x,R;t)

)
ψsp(x, t)

]
+ 1

2

[
J
(
x, e−i�(x,R;t)pmc(x, t)ei�(x,R;t)

)
ψsp(x, t)

]†
ψsp(x, t),

which can be written as

ĵ(x, t) = 1
2ψ†

sp(x, t)
[
J(x, p(x, R; t))ψsp(x, t)

]
+ 1

2

[
J(x, p(x, R; t))ψsp(x, t)

]†
ψsp(x, t). (C6)

For an isolated atom, we can define polarization and mag-
netization operators as

p̂(x, t) ≡
∫

s(x; w, R)ρ̂(w, t)dw,

(C7)

m̂ j (x, t) ≡ 1

c

∫
α jk (x; w, R) ĵk (w, t)dw.

Then from the properties of the relators, we find immediately
that

ρ̂(x, t) = −∇ · p̂(x, t) + Qδ(x − R),

ĵ(x, t) = ∂ p̂(x, t)

∂t
+ c∇ × m̂(x, t) −

∫
s(x; y, R)K̂ (y, t)dy,

(C8)

where

Q =
∫

ρ̂(x, t)dx,

K̂ (x, t) = ∂ρ̂(x, t)

∂t
+ ∇ · ĵ(x, t).

In arriving at (C8), we have only used (13) and the fact that the
charge-current operators are only nonzero in a confined region
of space near R. We write the quantity Q without an operator
hat because it is a conserved quantity and can be taken as a
number; it is the total electron charge. Note however that local
charge conservation (or the ansatz that it holds if we make
various approximations in our equations) leads to K̂ (x, t) = 0.
Hence we can write (C8) as

ρ̂(x, t) = −∇ · p̂(x, t) + Qδ(x − R),
(C9)

ĵ(x, t) = ∂ p̂(x, t)

∂t
+ c∇ × m̂(x, t),

the standard form. There is a great advantage of determining
ρ̂(x, t) and ĵ(x, t) (or their expectation values) by first deter-
mining p̂(x, t) and m̂(x, t) (or their expectation values). For if
the former are found from the latter, regardless of how many
approximations are involved in determining the latter we will
still automatically have charge conservation.

For comparison with the next section of the appendices, we
here define

pR(x, t) ≡
∫

s(x; y, R)〈ρ̂(y, t)〉dy,

m j
R(x, t) ≡ 1

c

∫
α jk (x; y, R)〈 ĵk (y, t)〉dy,

and then from (C9) we can write

〈ρ̂(x, t)〉 = −∇ · pR(x, t) + Qδ(x − R),

〈 ĵ(x, t)〉 = ∂ pR(x, t)

∂t
+ c∇ × mR(x, t). (C10)

Introducing a set of basis function {WαR(x)}, where α varies
but R is fixed,

ψsp(x, t) =
∑

α

cα (t)WαR(x),
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where {
cα (t), cβ (t)

} = 0,{
cα (t), c†

β (t)
} = δaβ,

we can write

ρR(x, t) =
∑
α,β

ρβα (x, R)ηαβ (t),

(C11)
jR(x, t) =

∑
α,β

jβα (x, R; t)ηαβ (t),

with ρβα (x, R) and jβα (x, R; t) given by (D4), and

ηαβ (t) ≡ 〈c†
β (t)cα (t)〉.

From the evolution Eq. (C3), we find that the dynamical of
ηαβ (t) are given by

ih̄
∂ηαβ (t)

∂t
=

∑
λ

(
H̄αλ(R; t)ηλβ (t) − ηαλ(t)H̄λβ (R; t)

)
, (C12)

where

H̄αλ(R; t) = 1

2

∫
W ∗

αR(x)H0(x, p(x, R; t))WλR(x)dx

+ 1

2

∫ (
H0(x, p(x, R; t))WαR(x)

)∗
WλR(x)dx

− e
∫

W ∗
αR(x)
0

R(x, t)WλR(x)dx. (C13)

APPENDIX D: THE “ISOLATED ATOM LIMIT”
OF A CRYSTAL

The isolated atom limit of our equations in Sec. II is
identified by the assumption that WαR(x) and WβR′ (x) have no
common support if R �= R′. In this limit it follows from the
definition (24) that the set of functions {W ′

αR(x, t)} are mutu-
ally orthogonal, so W̄αR(x, t) → W ′

αR(x, t) and, from (24,27),
we see χαR(x, t) → WαR(x). Then from (35), we have

H̄αR;λR′′ (t) → δRR′′ H̄αλ(R; t), (D1)

with H̄αλ(R; t) is given by (C13). Assuming no initial corre-
lation between the electronic motion in the individual atoms,
from (33) and (36), we have

ηαR;βR′ (t) → δRR′ηαβ (R; t) (D2)

at least initially, and this condition will then be maintained as
the dynamics evolve according to (37), which reduces to

ih̄
∂ηαβ (R; t)

∂t
=

∑
λ

(
H̄αλ(R; t)ηλβ (R; t) − ηαλ(R; t)H̄λβ (R; t)

)
.

(D3)

for each R. Comparing with (C12) we see that this is indeed
the dynamics expected for a collection of isolated atoms.
Finally, (39) becomes

GR(x, y; t) = i
∑
α,β

ηαβ (R; t)W ∗
βR(y)WαR(x),

and for use in (44) we can take ρβR′;αR′′ (x, R; t) → ρβα (x, R)
and jβR′;αR′′ (x, R; t) → jβα (x, R; t), where from (45) and (46),

we obtain

ρβα (x, R) = eW ∗
βR(x)WαR(x),

jβα (x, R; t) = 1

2
W ∗

βR(x)
(
J(x, p(x, R; t))WαR(x)

)
+ 1

2

(
J∗(x, p(x, R; t))W ∗

βR(x)
)
WαR(x), (D4)

so (44) become

ρR(x, t) →
∑
α,β

ρβα (x, R)ηαβ (R; t) = −ie
[
GR(x, y; t)

]
y→x,

jR(x, t) →
∑
α,β

jβα (x, R; t)ηαβ (R; t)

= −ie
[
JR(x, y; t)GR(x, y; t)

]
y→x. (D5)

From (D1) and (D2), it follows from (50) that I (R, R′; t) =
0, and from (49) each site charge [see (48)] is independent of
time,

QR =
∫

ρR(x, t)dx = e
∑

α

ηαα (R; t),

and from (52) and (53), we have

ρF (x) =
∑

R

QRδ(x − R), jF (x, t) = 0, (D6)

where the first is independent of time. Now since the Wannier
functions associated with different sites are assumed to have
no common support, from charge conservation (47), we must
have KR(x, t) = 0 for all R, since at any given x at most one
KR(x, t) can contribute to the sum (47); together with the
second of (D6), this guarantees that j̃(x, t) = 0 [see (59)].
With that, and the use of (D5), our general expressions (73)
and (74) reduce to

pR(x, t) =
∑

α,β,R′,R′′

[∫
s(x; y, R)ρβα (y, R)dy

]
ηαβ (R; t)

(D7)

and

m j
R(x, t) = 1

c

∑
α,β,R′,R′′

[∫
α jk (x; y, R) jk

βα (y, R; t)dy
]
ηαβ (R; t).

(D8)

With the aid of the first of (57) and (67),

p(x, t) =
∑

R

pR(x, t),

m(x, t) =
∑

R

mR(x, t),

so from the first of (58) and (68), together with (D6), we can
write

〈ρ̂(x, t)〉 =
∑

R

( − ∇ · pR(x, t) + QRδ(x − R)
)
,

〈 ĵ(x, t)〉 =
∑

R

(
∂ pR(x, t)

∂t
+ ∇ × mR(x, t)

)
, (D9)
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with of course the dynamics of pR(x, t) and mR(x, t) given by
the use of the solution of (D3) in (D7) and (D8). Comparing
(C10) with (D9) we see that the latter is indeed what we would
expect for the charge-current density of a collection of isolated
atoms.

Naturally, in a calculation with a finite set of Wannier
functions one cannot expect KR(x, t) = 0, or even the sum to
be zero. But this situation arose as well for an isolated atom

in Appendix C. There, and indeed as was done in the general
derivation in Sec. II, the approach is to envision a calculation
with an infinite set of basis functions, and construct equations
for the charge and current densities in terms of the polarization
and magnetization fields. By their very structure the equa-
tions guarantee charge conservation, even if the set of basis
functions is truncated and the resulting expressions for the
polarization and magnetization fields are only approximate.

[1] H. Lorentz, The Theory of Electrons (Columbia University
Press, 1909).

[2] L. Rosenfeld, Theory of Electrons (North-Holland Publishing
Company, 1951).

[3] A. Fokker, Philos. Mag. 39, 404 (1920).
[4] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons

and Atoms. Introduction to Quantum Electrodynamics (Wiley,
1989).

[5] W. P. Healy, Phys. Rev. A 26, 1798 (1982).
[6] S. de Groot, in The Maxwell Equations: Non-Relativistic

and Relativistic Derivations from Electron Theory, edited by
J. de Boer and G. Uhlenbeck, Studies in Statistical Mechanics
(North-Holland, 1969), Vol. IV.

[7] R. Zeyher, H. Bilz, and M. Cardona, Solid State Commun. 19,
57 (1976).

[8] J. E. Sipe and E. Ghahramani, Phys. Rev. B 48, 11705 (1993).
[9] E. Blount, Solid State Physics, Advances in Research and

Applications (Academic Press, 1962), Vol. 13.
[10] C. Aversa and J. E. Sipe, Phys. Rev. B 52, 14636 (1995).
[11] R. Resta, Phys. Rev. Lett. 80, 1800 (1998).
[12] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
[13] R. Resta, J. Phys.: Condens. Matter 22, 123201 (2010).
[14] T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta, Phys.

Rev. Lett. 95, 137205 (2005).
[15] D. Ceresoli, T. Thonhauser, D. Vanderbilt, and R. Resta, Phys.

Rev. B 74, 024408 (2006).
[16] J. Shi, G. Vignale, D. Xiao, and Q. Niu, Phys. Rev. Lett. 99,

197202 (2007).
[17] R. Nourafkan and G. Kotliar, Phys. Rev. B 88, 155121 (2013).
[18] R. Nourafkan, G. Kotliar, and A.-M. S. Tremblay, Phys. Rev. B

90, 125132 (2014).
[19] F. Aryasetiawan, K. Karlsson, and T. Miyake, Phys. Rev. B 93,

161104(R) (2016).

[20] Andrei Malashevich, Ivo Souza, Sinisa Coh, and David
Vanderbilt, New J. Phys. 12, 053032 (2010).

[21] W. Healy, Non-Relativistic Quantum Electrodynamics (Aca-
demic Press, 1982).

[22] J. E. Sipe, Phys. Rev. A 27, 615 (1983).
[23] I. Mayer, Int. J. Quantum Chem. 90, 63 (2002).
[24] C. Brouder, G. Panati, M. Calandra, C. Mourougane, and N.

Marzari, Phys. Rev. Lett. 98, 046402 (2007).
[25] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.

Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).
[26] G. Panati and A. Pisante, Commun. Math. Phys. 322, 835

(2013).
[27] G. W. Winkler, A. A. Soluyanov, and M. Troyer, Phys. Rev. B

93, 035453 (2016).
[28] B. A. Bernevig and T. L. Hughes, Topological Insulators

and Topological Superconductors (Princeton University Press,
2013).

[29] S. W. Kim, K. Seo, and B. Uchoa, Phys. Rev. B 97, 201101(R)
(2018).

[30] Michael E. Peskin and Daniel V. Schroeder, An Introduc-
tion to Quantum Field Theory (Addison-Wesley, Reading,
1995).

[31] S. D. Swiecicki and J. E. Sipe, Ann. Phys. 338, 260 (2013).
[32] S. D. Swiecicki and J. E. Sipe, Phys. Rev. B 90, 125115

(2014).
[33] Rodrigo A. Muniz, J. L. Cheng, and J. E. Sipe (unpublished).
[34] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[35] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
[36] I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65,

035109 (2001).
[37] M. Levanda and V. Fleurov, J. Phys.: Condens. Matter 6, 7889

(1994).

235140-21

https://doi.org/10.1080/14786440408636053
https://doi.org/10.1080/14786440408636053
https://doi.org/10.1080/14786440408636053
https://doi.org/10.1080/14786440408636053
https://doi.org/10.1103/PhysRevA.26.1798
https://doi.org/10.1103/PhysRevA.26.1798
https://doi.org/10.1103/PhysRevA.26.1798
https://doi.org/10.1103/PhysRevA.26.1798
https://doi.org/10.1016/0038-1098(76)91728-2
https://doi.org/10.1016/0038-1098(76)91728-2
https://doi.org/10.1016/0038-1098(76)91728-2
https://doi.org/10.1016/0038-1098(76)91728-2
https://doi.org/10.1103/PhysRevB.48.11705
https://doi.org/10.1103/PhysRevB.48.11705
https://doi.org/10.1103/PhysRevB.48.11705
https://doi.org/10.1103/PhysRevB.48.11705
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1088/0953-8984/22/12/123201
https://doi.org/10.1088/0953-8984/22/12/123201
https://doi.org/10.1088/0953-8984/22/12/123201
https://doi.org/10.1088/0953-8984/22/12/123201
https://doi.org/10.1103/PhysRevLett.95.137205
https://doi.org/10.1103/PhysRevLett.95.137205
https://doi.org/10.1103/PhysRevLett.95.137205
https://doi.org/10.1103/PhysRevLett.95.137205
https://doi.org/10.1103/PhysRevB.74.024408
https://doi.org/10.1103/PhysRevB.74.024408
https://doi.org/10.1103/PhysRevB.74.024408
https://doi.org/10.1103/PhysRevB.74.024408
https://doi.org/10.1103/PhysRevLett.99.197202
https://doi.org/10.1103/PhysRevLett.99.197202
https://doi.org/10.1103/PhysRevLett.99.197202
https://doi.org/10.1103/PhysRevLett.99.197202
https://doi.org/10.1103/PhysRevB.88.155121
https://doi.org/10.1103/PhysRevB.88.155121
https://doi.org/10.1103/PhysRevB.88.155121
https://doi.org/10.1103/PhysRevB.88.155121
https://doi.org/10.1103/PhysRevB.90.125132
https://doi.org/10.1103/PhysRevB.90.125132
https://doi.org/10.1103/PhysRevB.90.125132
https://doi.org/10.1103/PhysRevB.90.125132
https://doi.org/10.1103/PhysRevB.93.161104
https://doi.org/10.1103/PhysRevB.93.161104
https://doi.org/10.1103/PhysRevB.93.161104
https://doi.org/10.1103/PhysRevB.93.161104
https://doi.org/10.1088/1367-2630/12/5/053032
https://doi.org/10.1088/1367-2630/12/5/053032
https://doi.org/10.1088/1367-2630/12/5/053032
https://doi.org/10.1088/1367-2630/12/5/053032
https://doi.org/10.1103/PhysRevA.27.615
https://doi.org/10.1103/PhysRevA.27.615
https://doi.org/10.1103/PhysRevA.27.615
https://doi.org/10.1103/PhysRevA.27.615
https://doi.org/10.1002/qua.981
https://doi.org/10.1002/qua.981
https://doi.org/10.1002/qua.981
https://doi.org/10.1002/qua.981
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1007/s00220-013-1741-y
https://doi.org/10.1007/s00220-013-1741-y
https://doi.org/10.1007/s00220-013-1741-y
https://doi.org/10.1007/s00220-013-1741-y
https://doi.org/10.1103/PhysRevB.93.035453
https://doi.org/10.1103/PhysRevB.93.035453
https://doi.org/10.1103/PhysRevB.93.035453
https://doi.org/10.1103/PhysRevB.93.035453
https://doi.org/10.1103/PhysRevB.97.201101
https://doi.org/10.1103/PhysRevB.97.201101
https://doi.org/10.1103/PhysRevB.97.201101
https://doi.org/10.1103/PhysRevB.97.201101
https://doi.org/10.1016/j.aop.2013.09.014
https://doi.org/10.1016/j.aop.2013.09.014
https://doi.org/10.1016/j.aop.2013.09.014
https://doi.org/10.1016/j.aop.2013.09.014
https://doi.org/10.1103/PhysRevB.90.125115
https://doi.org/10.1103/PhysRevB.90.125115
https://doi.org/10.1103/PhysRevB.90.125115
https://doi.org/10.1103/PhysRevB.90.125115
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1088/0953-8984/6/39/010
https://doi.org/10.1088/0953-8984/6/39/010
https://doi.org/10.1088/0953-8984/6/39/010
https://doi.org/10.1088/0953-8984/6/39/010

