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Nonlocal order parameters in space-time are proposed to characterize the unconventional orbital-selective
conducting state in fulleride superconductors, called the Jahn-Teller metal. In previous works, it has been argued
that this state can be interpreted as a spontaneous orbital-selective Mott state, in which the electrons in two of the
three #;, molecular orbitals are localized, while those in the third one are metallic. Here, based on the realistic
band structure for fullerides, we provide a systematic study of nonlocal order parameters and characterize the
Jahn-Teller metal, for which there exists no one-body local order parameter in contrast to conventional orderings.
It is shown that the Mottness, or integer filling nature for each orbital due to strong correlation effects, is a relevant
feature of the present orbital order. The local orbital moment thus vanishes and the static distortion associated
with a conventional orbital moment is absent. Transport characteristics are also investigated, and it is found that
the dimensionality is effectively reduced from three to two at low energies, while the cubic nature is recovered
at high energies. This accounts for the high upper critical field observed in the superconducting state of the fcc

fullerides inside the Jahn-Teller metal regime.
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I. INTRODUCTION

Unconventional superconducting states are found in a
broad range of materials with p, d, or f electrons, and
the exploration of the complex physical properties of these
compounds is a central topic in condensed matter physics.
Fullerene-based superconductors [1-5], which exhibit a su-
perconducting dome in the vicinity of a Mott insulating phase,
are an interesting example [6-11]. In A3Cg, three electrons
are doped onto each fullerene molecule from intercalated
alkaline metals denoted by A [12]. In the metallic compounds,
the t;, orbitals form three half-filled narrow bands, and the
electronic correlations are strong [13]. Even though the sym-
metry of the pairing state is s wave, the superconductivity
is different from that of conventional BCS superconduc-
tors [10,14]. An important ingredient in the superconducting
mechanism is an effectively sign-reversed Hund’s coupling
[15,16]. This antiferromagnetic Hund’s coupling favors the
low-spin (S = 1/2) state rather than the high-spin (S = 3/2)
state, which is favored by the usual Hund’s rule coupling. The
low-spin state has doubly occupied orbitals, which can act as
a seed for superconductivity [14,17-19].

Recent experiments have revealed the existence of a highly
anomalous metallic state near the Mott transition [20-23].
Once the electrons are localized in the Mott phase, the
electron-phonon coupling leads to a deformation of the
fullerene molecule, which has been detected by IR spec-
troscopy in the kHz frequency range. On the other hand, in the
conventional metallic regime, the molecules exhibit a nearly
spherical shape. In the unconventional metallic regime close
to the Mott phase, called the Jahn-Teller metal (JTM) [23],
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a deformation of the fullerene molecules has been detected.
Furthermore, recent experiments have also been performed
under a magnetic field [24] and a very large upper critical
field reaching 90 T has been identified in the superconducting
region at temperatures within the JTM regime.

In order to clarify the microscopic origin of the JTM,
the three-orbital Hubbard model has been investigated using
dynamical mean-field theory (DMFT) [25]. This study pro-
posed that the Jahn-Teller metal state may be interpreted as
a spontaneous orbital-selective Mott (SOSM) state, in which
two of the three f;, orbitals are spontaneously selected to
become Mott insulating, while the third one stays metallic,
explaining the basic properties of the JTM [25,26]. Figure 1
schematically illustrates the SOSM state for fcc fullerides. In
the figure, intraorbital electron pairs are formed in the x and
y orbitals, which pair-hop (with a transition rate Jpair-hop/#) t0
the other orbitals. These pairs are spatially localized, which re-
sults in a Mott insulator. Doubly occupied orbitals are favored
by the antiferromagnetic Hund’s coupling originating from
the coupling to Jahn-Teller anisotropic phonon modes [15,27].
The remaining z orbital is metallic, so that the resulting state
is a SOSM state. We note that conventional orbital-selective
Mott states are realized in systems with an originally broken
orbital symmetry, while here it occurs spontaneously in a
system with three degenerate orbitals. Of course, the x or y
orbitals could equally well be selected as the metallic orbital,
since the three orbitals are degenerate in a cubic structure. Uti-
lizing this degeneracy, it has furthermore been proposed that
the ordered state can be switched on the electronic timescale
by electric field pulses [28]. The orbital ordering has also been

©2019 American Physical Society
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FIG. 1. Schematic illustration of the SOSM state in the fcc
fullerides A3Cg. Three ¢, orbitals are schematically drawn for two
fullerene molecules. The orange colored atoms represent the alkali
metal A. A part of this figure is reproduced from Ref. [33].

discussed in a two-dimensional system [29] and in the context
of nonequilibrium superconductivity [30,31].

The first task in the discussion of spontaneous symmetry
breaking is to identify order parameters which are zero out-
side the ordered state. Several order parameters have been
proposed to characterize the SOSM state [25], such as the
orbital-dependent kinetic energy or the orbital-dependent dou-
ble occupancy [32]. We have also characterized the ordered
state by an odd-time dependent orbital moment. However,
the reason why these order parameters coexist is still not
clear. Furthermore, in the previous studies we considered
simple particle-hole symmetric conduction bands and we do
not know how this artificial choice affects the values of the
order parameters. Therefore, a systematic understanding of
the order parameters of the SOSM state is still lacking.

Here, based on the realistic band structure for fulleride
superconductors, we show that the recently proposed SOSM
state is characterized by a nonlocal order parameter and can be
regarded as an unconventional orbital ordering. The physics
behind this ordering is Mottness [34], which leads to a local-
ized character of the electrons and an integer filling per site.
As a consequence, as far as local quantities are concerned, the
one-body order parameters vanish and the orbital-dependent
two-body quantity known as the double occupancy becomes
an order parameter in the SOSM state [25]. Thus the presence
of Mottness distinguishes the JTM case from the previously
proposed nonlocal order parameters [35-39].

In the present study, we focus on spatiotemporally nonlo-
cal single-particle quantities, which are usually more easily
measurable than many-body quantities through, e.g., transport
measurements, while also being easily computable. Building
on the previous DMFT results [25], we characterize the SOSM
state based on nonlocal order parameters and also investigate
the characteristic transport properties using the Boltzmann
equation and through the optical conductivity. Our analysis
thus extends the concepts and theoretical arguments related to
unconventional orders to a more realistic and practical level
that can be directly connected to real materials.

This paper is organized as follows. In the next section,
we first review the nonlocal order parameters previously pro-
posed, to clarify the novel aspect of this work. We introduce
the model that we use in Sec. III. In Sec. IV, we analyze the
order parameters, excitation spectrum, and static/dynamical
transport coefficients. We discuss in Sec. V several aspects
of the unconventional diagonal orders and summarize the
results in Sec. VI. In Appendix A, the symmetry properties
are summarized. Additional data for the frequency-dependent
orbital moment is shown in Appendix B.

II. OVERVIEW ON NONLOCAL ORDER PARAMETERS

Order parameters, which characterize spontaneous symme-
try breaking, can generally be expressed in terms of the Green
functions

Moo (Ri, Rj, 1 —1') = 8(Tel(Ri, ) Rj, 1), (1)

where R;, R; are the spatial coordinates of lattice sites and
«, o’ are flavor (spin/orbital) indices. The symbol § on the
right-hand side represents the deviation from the scalar part
which exists without symmetry breaking, and 7 is the time
ordering operator. The time dependence enters through the
Heisenberg picture as c(t) = ¢”*"ce™”" and we note that
Eq. (1) is a function of relative time only if we focus on
the equilibrium state. The flavor dependence of M,, char-
acterizes the symmetry breaking of the internal degrees of
freedom. In the case of spins, the simplest examples are the
Pauli matrices M o< 0.

For conventional diagonal orders such as magnetic, charge
and orbital orderings, the primary order parameters are con-
sidered to be local both in space and time. The corresponding
local quantity can be written as My, (R;, R;, 0), and its Fourier
transform is given by

1 .
_ R —iQ-R;
My (Q) = N E[ Mooy (R;, R, 0) e , (2

where N is the total number of sites. Here only the spatial
modulation of this local quantity and its flavor structure
matter, and the time dependence does not necessarily enter
(locality in time). On the other hand, there also exists the
possibility that the order parameter is nonlocal in space or
time. We refer to this case as unconventional diagonal order,
following the terminology for superconductivity.

With the nonlocality kept, the single-particle correlation
functions (1) can be transformed using Fourier components
as

1
Mook, Q. 0) = - Z, / dt Moo (R1. R} 1)

X e—ik-(R,'—Rj) e—iQ-(Ri-FRj)/Z eiwt’ (3)

where k and Q are wave vectors originating from the Fourier
transform with respect to relative and center-of-mass spatial
coordinates, respectively.

The historically first example of a nonlocal order parameter
is the Pomeranchuk instability, which results in a spontaneous
deformation of the Fermi surface [35,40,41]. This mechanism
is based on a weak-coupling picture with well-defined Fermi
surfaces, and the order parameter describing the symmetry
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TABLE 1. Previously proposed electronic orderings with nonlocal order parameters in correlated systems. All the listed order parameters
are zero above the transition temperature, i.e. they are associated with a spontaneous symmetry breaking. The components with r = 0 and
t = 0 correspond to a local quantity in space and time, respectively.

Diagonal orders Examples of order parameters Oft-diagonal-order analog

Pomeranchuk instability [35,40,41]/bond-order wave [36]
spin nematic [37,39]
diagonal odd-frequency order [25,38]

Mk, Q,t =0) <k, k,k,, cosk,
Mk, Q,t =0) x k,k,0", k0"
Mir=0,0,0) xow

anisotropic pairing
spin-triplet pairing
odd-frequency pairing

lowering is k dependent and therefore nonlocal. A tight-
binding analog of this effect has also been proposed and
is called the bond-order wave [36]. If the spin-symmetry
breaking is considered at the same time, and a d-wave like
k-space structure is assumed, the resulting state is called “spin
nematic” [37]. For example, M(k, Q,t = 0) xxd (k) - 0 with
d(k) o< (kyk;, 0, 0) for small wave vectors and Q # 0 a center-
of-mass momentum to break the translational symmetry. A p-
wave structure in M has also been proposed recently [39], with
the specific form Mk, 0,t = 0) o« k0" and Q = 0. These
order parameters can be classified based on the point-group
symmetry [43]. In terms of nonlocality of the order parameter,
these concepts are clearly related to unconventional super-
conductivity with p- and d-wave pairings. Pair density waves
have also been discussed [44-46], but their properties are
associated with the local center-of-mass coordinates and are
not directly related to the nonlocality of the order parameters.

Concerning time-dependent order parameters, Balatsky
and Abrahams considered time-dependent spin correlations
in quantum spin systems and proposed such a quantity as
an order parameter for the chiral spin nematic state [42].
Although this order is realized in spin systems and is beyond
the scope of this paper, which focuses on electronic order-
ings characterized by Eq. (3), its electronic analog has also
been proposed in a two-channel Kondo lattice with sponta-
neous channel symmetry breaking. The order parameter is
M(r=0,0 =0, ») together with the spatially nonlocal one
M (ex, O = 0,1 = 0) where ¢ is the energy dispersion of the
bare conduction electrons [38]. This concept is closely related
to the odd-frequency pairings with odd-time-dependent pair
amplitudes [47-50]. A brief summary of the different nonlocal
order parameters is provided in Table I.

In the following, we discuss in detail the nonlocal order
parameter in a model for alkali-doped fullerides, where the
nonlocal orbital moments inevitably coexist with vanishing
local orbital moments due to Mottness. We also demonstrate
that two or more nonlocal order parameters can be induced in
general.

III. MODEL

Let us consider the orbital symmetry breaking in fulleride
superconductors. In the following, we focus on the zero
center-of-mass momentum case (Q = 0) for ordered states.
The noninteracting Hamiltonian is given by

Sy = Z Z Z tyy (R; — Rj)Cj,(7 Ri)cys(R;) (4

ij yy' o
=D 33 eyplc), (k)ey o (). )
k yy o

According to Ref. [13], the hopping matrix is given by

h B
r-gol=(m A | ®
Fy
Fs
t[r = (a00)] = Fy , 7
F

where r = R; — R; is a relative space coordinate and a is the
lattice constant (see Fig. 1). The other matrices are constructed
by symmetry considerations. The parameters for Rb3Ce,
which are considered here for simplicity, are F; = —1.6, F; =
—30.6, F3 =39.2, Fy = —15.9, F5s = —17.5, Fx = —0.8, and
F; = 1.5 in units of meV [13].

Now we consider the SOSM state, where one of the three
orbitals is metallic and the other two are Mott insulating with
localized electrons. To qualitatively discuss the SOSM phase,
we introduce the self-energy for the electron Green function
and an orbital-dependent chemical potential and write

Gy ke, Q) = [Q+ 11, — T, (D18, — &, k), (8)

where 2 is a complex frequency and we set 7 = 1. The
physical quantities on the real frequency axis w are derived
by the analytic continuation & — w + in with n = 40. The
local self-energy is justified in the limit of high dimensions
as in DMFT [51]. We summarize the symmetry properties in
Appendix A. At sufficiently low energies the self-energies for
the SOSM state are given by

02
Zey(Q) == €))
2.(2) =0, (10)

where U is a constant with the dimension of energy that
is related to the orbital-selective Mott gap. The form of the
self-energy is derived from the results obtained by DMFT in
the three-orbital Hubbard model with an antiferromagnetic
Hund’s coupling [25], and this parametrization suffices for
the following discussion. In the case without particle-hole
symmetry, the self energy can have the form X%, ,(Q2) =
U? /(2 — A). However, A, which is smaller than the Mott
gap, can be absorbed into a shift of the chemical potential.
The quasiparticle renormalization is neglected since it only
modifies the bandwidth.

Since the Mott insulating (x,y) orbitals have an even
number of electrons, the single-particle spectrum itself cannot
distinguish a Mott insulator from a band insulator. However,
the origin of the gap is very different in the two cases: The
Mott insulator is characterized by a self-energy of the form
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~1/€ for small €2, while the band insulator results from the
static one-body hybridization between the x and y orbitals
which leads to bonding (x + y) and antibonding (x — y) or-
bitals. In the latter case, the corresponding order parameter is
a conventional local orbital moment. The previous numerical
calculations clearly demonstrated the frequency dependence
of the self-energy [25], consistent with the realization of a
Mott insulator.

Let us introduce a convenient expression for the above
Green function. By doubling the matrix size, the Green func-
tion can be written as

N

A ~ ~ -1

11

where ‘11’ means that the upper-left 3 x 3 matrix block
is extracted from the generalized 6 x 6 matrix. We have
defined [ = diag (uy, py, u;) and U = diag (U, U,,U;) =
diag (U, U, 0). This form can be interpreted as a “hybridiza-
tion” of electrons with the composite particles induced by
strong Coulomb interactions [52-55]. Through diagonaliza-
tion, the Green function can be rewritten as

Gk, Q) =VEn[Ql - 1 'V idn, (12

where the check symbol () represents the 6 x 6 matrix.
V(k), is the upper half block of V(k) and is not a square
matrix. Note that the matrix sizes of V (k), and [V~ (k)], are
3 x 6 and 6 x 3, respectively. Thus the energy dispersion for
the “quasiparticles” in Mott insulators are described by the
eigenenergies Ay (k).

The orbital-dependent potential ., is determined in such a
way that

> inyo(R)) =1 (13)

[

is satisfied for every site i and orbital y. Here we have intro-
duced the local number operator 7, (R;) = c}T,a (Ri)cys (R)).
These constraints are due to the fact that a Mott insulator can
be realized only for integer filling, so that Eq. (13) reflects the
property of Mottness. Since the total number per site is also
fixed to three, each orbital including the metallic one must
have an average filling of one electron in the orbital selective
Mott state considered here.

Let us add a comment on the constraint for a related
orbital symmetry broken state. Recently, the existence of
another interesting spontaneously orbital-selective state with
two metallic unpaired orbitals has been revealed at higher
temperatures [56]. Here only one orbital is in a paired state
and this pair can hop from site to site with the hopping
energy 72/AE, where { is a renormalized hopping and AE
is the energy needed to break the pair. We call this state
the spontaneous orbital-selective itinerant doublon (SOSID)
state, to emphasize its physical nature, which is different
from the SOSM state. In this case the Mottness constraint is
not active since all the electrons are delocalized, and a local
order parameter (conventional orbital moment) can generally
appear. Thus, from the perspective of nonlocality of the order
parameter, the SOSID state is qualitatively different from the
SOSM state realized at low temperatures. We finally note that,

if the system has particle-hole symmetry, the local one-body
order parameter is zero even for the SOSID state.

IV. ANALYSIS

A. Order parameters

Since the orbital symmetry is clearly broken by the orbital-
dependent field X, (£2), we consider the corresponding orbital
moment

1
M) =5 >0 A8 el Riey s (R))S(r— Ri +R)).

ijyy'o
(14)
M) = / drM(r)e *T, (15)
8 1 !
A== 1 , (16)
3 2

where the Gell-Mann matrix A% describes the symmetry
breaking in orbital space [57]. With these quantities, the local
orbital moment is obtained by taking the wave vector sum-
mation as M(r =0) = N"! Zk M (k). Its value is, however,
zero due to the Mottness constraint represented by Eq. (13).
Thus, we need to consider the nonlocal order parameter,
which distinguishes the present system from the previously
discussed conventional ones. The simplest nonlocal quantity
that describes the orbital symmetry breaking is M (k = 0).

The k = 0 and r = 0 components have the same symmetry
with respect to k-space rotations, and hence these two quanti-
ties can be simultaneously nonzero, as far as symmetry is con-
cerned. However, due to the Mottness constraint, the spatially
local (r = 0) component becomes zero in the SOSM case,
while the k = 0 component can be nonzero. This Mottness
constraint is distinct from the symmetries which are usually
considered to impose constraints on physical quantities.

We can also consider the following nonlocal order param-
eter in imaginary time or the frequency domain:

M) =Y 2 (Tcl,Rieyo (R, 1)), (17)
iyy'o
B .
M(Q =ivw,) = / dt M(—it)e' T, (18)
0

which is now chosen as spatially local. 8 = 1/kgT is the
inverse temperature and w, = (2n + 1) /B is the fermionic
Matsubara frequency. The real-frequency representation can
be obtained by analytic continuation 2 — w + in. In a similar
manner to the discussion above, the + = 0 component (lo-
cal in time) vanishes due to Mottness, while the frequency
dependent component M (£2) can be finite. The simplest or-
der parameter is the 2 =0 component. In this case, the
even-frequency orbital moment is mixed with the dominant
odd-frequency moment, which is discussed in more detail in

Sec. IV B.

The short-time behavior can be characterized in another
way. As pointed out in Ref. [25], the short-time ¢ behavior
is dominated by the composite order parameters. Namely,
the z-linear coefficient is given by ([clTW, H]ciyer), Which
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includes two-body quantities originating from the commuta-
tion relation between the fermion operator and the interaction
term. Thus time- or frequency-dependent order parameters
provide an alternative view of composite order parameters.

Let us comment on the particle-hole asymmetry in the
electronic band structure. In a previous study [25], we have
used a particle-hole symmetric density of states (DOS) with a
semicircular shape to mimic the electron conduction band. In
this case, the moment M (k = 0) at the I" point also vanishes,
in addition to M(r = 0) (= 0). This is a peculiar feature of
the particle-hole symmetric DOS, which is generally absent in
real materials. The same observation applies to the frequency
dependent case: The value at w = 0 also vanishes in the
particle-hole symmetric model. We have checked that in the
more realistic model considered here, there is no constraint
which enforces M(k = 0) and M(w = 0) (see Sec. IV B).
Let us add a further comment on the k-dependent order
parameters: The finite orbital moment at the I" point discussed
above may be regarded as a monopole in terms of the mul-
tipolar expansion in k space around the I" point [43]. This
however vanishes for the particle-hole symmetric case, and in
such a situation higher-order multipoles such as quadrupoles
in k space must be considered to characterize the ordered
state.

Another subtle issue is that there exist two or more order
parameters at the same time. Thus the question arises: Which
of these is the primary order parameter? The comparison
of the magnitude is difficult since there is an ambiguity
in the normalization process. Instead, we have to look at
the structure of the potential that induces the spontaneous
symmetry breaking, namely the anomalous self energy. In the
present case, the self-energy is local and frequency dependent
(as in DMFT), and the primary order parameter should be
regarded as the odd-frequency diagonal order parameter given
in Eq. (18). We note that this argument may change depending
on the structure of the self-energy: If the anomalous self-
energy is k dependent, the primary order parameter would be
a spatially nonlocal order parameter.

B. Single-particle excitation spectra

Here we consider some dynamical quantities relevant for
fulleride superconductors. We define the single-particle spec-
trum as

1
A, (k,0) = —;ImGW(k,a)—i—in), (19)

Ay(w) = (A (k, )k, (20)

where (- - - ) denotes the average over k space, which results
in a spatially local quantity. We also define the quantity

Mk, 0) =25 A,k o). Q1)
Y

which gives us information on the spectral decomposition of
the orbital moment.

We first show in Fig. 2(a) the band structure of the fulleride
superconductor Rb;Cg( without any interaction effects, which
has been obtained by density functional theory calculations
[13]. Panels (b1)—(b3) plot the corresponding orbital-resolved

spectra Ay , . (k, w). Since the spectral weight is not unique, it
is represented as a color map with an appropriate broadening
factor (n =8 meV is taken to visualize the spectra). The
orbital moment spectrum . (k, w) is shown in Fig. 2(c).
Although the orbital ordered moment is zero for the disor-
dered phase considered here, .# (k, w) can be nonzero for
low-symmetry k points other than, e.g., the I and L points.
In the following, we will compare these noninteracting results
to those in the SOSM state.

Figure 2(d) shows the electronic dispersion relations in
the SOSM state. The number of bands increases due to the
splitting (for two orbitals) into upper and lower Hubbard
bands. Since it is not easy to understand the nature of this state
from the total spectral function, we also plot orbital-resolved
spectra A, —, , - (k, ) in Figs. 2(e1)-2(e3). The orbitals x and
y exhibit a Mott gap, while the orbital z is metallic. Its Fermi
surface is basically consistent with that of a system with
only z orbitals, whose noninteracting dispersion is plotted
in Fig. 2(e4). The orbital moment spectrum is shown in
Fig. 2(f). One sees that the insulating and metallic orbitals
give contributions of opposite sign. The finite values at I" and
along the cut from I' to L, which is enclosed with a green
dotted line in Figs. 2(c) and 2(f), clearly illustrate the orbital
symmetry breaking.

Let us now discuss the spatially local but frequency
dependent quantities. The DOS for each orbital is plotted
in Fig. 3, where we again compare the normal metal and
SOSM states. It follows from the comparison of panels
(a) and (b) that the spectral weight is strongly reduced at
low energy for the Mott insulating orbitals (x,y), while
it increases for the z orbital. In Fig. 3(c), we push the
Hubbard bands away by taking U — oo. This leaves only
the metallic z orbital, whose local spectral function qual-
itatively reproduces the low-energy result in Fig. 3(b). A
noteworthy feature is that the particle-hole asymmetry seen
in the normal metal is strongly modified in the SOSM state,
which features an almost particle-hole symmetric DOS for
the z orbital near the Fermi level. Furthermore, a van-Hove
singularity-like structure, as obtained, e.g., in a square lattice,
emerges near the Fermi level. We will return to this point in
Sec. IV C.

Even though the value of the DOS at the Fermi level given
by Zy A, (w = 0) in the SOSM state remains comparable to
that of the normal state, the system is effectively reduced to a
single-orbital model. In this situation the multiorbital nature
is lost, which is unfavorable for negative-Hund’s coupling
superconductivity, where the multiorbital nature is essential
for intraorbital pairing. This is consistent with the reduction of
the superconducting transition temperature in the JTM region
[23].

We next discuss the spatially local but frequency-
dependent orbital moment defined in Eq. (18). The result on
the real frequency axis is obtained by the analytic continuation
M(Q2 = w + in). Figure 4(a) shows the real and imaginary
parts of M(w + in). The integration of Im M (w + in) multi-
plied with the Fermi distribution function is proportional to
the local order parameter. The data shown in the figure are
consistent with a vanishing local order parameter. We note
that, for the real part, the integral does not become zero, but
this cannot be represented by a time-local quantity.
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FIG. 2. (a)—(c) Single particle spectra for the fulleride Rb;Cqy without orbital ordering. (a) bare band dispersion and (b1)—(b3) orbital-
resolved spectra A, —, , . (k, ). The spectrally decomposed orbital moment . (k, w) is plotted in (c). (d)—(f) are plots similar to (a)—(c), but for
the SOSM state. The parameter U is chosen as U = 0.1 eV and the broadening factor as 7 = 8 meV. The path in momentum space connects

the points I'(0,0,0) — X(0,1,0) — U(4,

D> T(1,1,1), T0,0,0) — L(L, L1y - K3, 2,00 - W(l, 1,00 = X(1,0,0) where

the coordinates for the symmetric points in k space are shown with the unit 7 /a.

It is notable that the real part of M(w + in) is a nearly
odd function with respect to w. In contrast, for conventional
orders, Re M(w + in) has an even-function shape, since the
symmetry-breaking anomalous self-energy has a dominant
constant contribution in the frequency domain. The result
in Fig. 4 thus provides support for the interpretation of the
SOSM state as an “odd-frequency orbital order.”” Whereas we
focus on the real frequency axis in the main text, the odd-
frequency nature can also be seen in the imaginary frequency
domain, which is discussed in Appendix B.

C. Anisotropic transport properties
1. Boltzmann transport

We now consider the transport properties of the SOSM
state. We employ the Boltzmann theory [58] and calculate

the electronic current j and heat current j,, which can be
expressed as

j=oE, (22)

Jjo=Kk(=VT)/T. (23)

The transport coefficient tensors o (electrical conductivity)
and « (thermal conductivity) are given by

0f (ra
_ . zz<vka ke J;(i" )>k, 24)
3 (ra
x=—%§<vkavka<eka— )? g(i" )>k, (25)

where f(¢) =1/ (e?/®T 1 1) is the Fermi distribution func-
tion. The velocity is defined as wvg, = 0k /0k, and the
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FIG. 3. Wave vector integrated orbital-dependent spectra for
(a) the normal metal and (b) the SOSM state. The spectrum with
only the z orbital considered is shown in panel (c).

eigenenergies €, with o = 1, 2, 3 are obtained by diagonal-
izing &, (k). A single relaxation time 7 is assumed. For the
SOSM state, the Fermi surface is approximately given by that
of the z-orbital-only model. Hence we choose i, — &, (k)
with @ summation dropped.

We have calculated the above transport coefficients in
the normal metal and SOSM state. In the normal state they
evaluate to

11.8 0.383
2_ 11.8 I 0.383 ,
%0 11.8) *o 0.383
(26)
while in the SOSM state one obtains
o 0.7 « 0.023
- = 8.2 , — = 0.261
% 7.9] Ko 0.257
27
The units are given by oy = hz x 1 meV and ky = nga X

(1 meV)® where we have explicitly written /. It is notable
that in the SOSM case, the y and z components are much
larger than the x component. This implies the emergence

J

M(w +in) [eV™Y]

02 03 04

-03 -02 -01 0 0.1
w [eV]

FIG. 4. Spatially-local and frequency-dependent orbital ordered
moment on the real axis.

of two-dimensional transport through the spontaneous orbital
symmetry breaking in fullerides.

The above observation, emergent two-dimensionality, is
consistent with the DOS plotted in Fig. 3. Namely, the DOS
has a similar shape as that of a square lattice with a van-Hove
singularity near the Fermi level. This can be qualitatively
understood by the large tight-binding parameter F3 for the z
orbital, which forms a nearly square lattice within the yz plane.
The slight shift of the van Hove singularity from zero seen in
Figs. 3(b) and 3(c) is due to the effect of small next-nearest-
neighbor hoppings.

We note that the ¢y, molecular orbitals are sometimes
interpreted as analogs of atomic p orbitals, which in the
case of the orbital-selective metal might incorrectly suggest
a one-dimensional character, since the atomic p orbitals are
directed along a certain direction. The two-dimensionality of
the SOSM state in the fullerene-based materials, demonstrated
above, is a characteristic behavior originating from the com-
plex shape of the molecular orbitals.

2. Optical conductivity

The characteristic features of the frequency-dependent
orbital-symmetry breaking field can be seen in the optical
conductivity. We introduce the current density operator

e
J = v Z vyy’(k)cltyacky’aa (28)
kyy'o

where the velocity is defined by v, (k) = d¢,,(k)/0k and
V is the volume. The dynamical current correlation function
with imaginary time/frequency is given by

B
Kuntivn) =V [ detoie, @)
where v,, = 2mrm/f is a bosonic Matsubara frequency. We
assume that vertex corrections can be neglected, which is
justified for the local vertex functions as in DMFT [59]. The
analytic continuation iv,, — w + in is performed, and the
final expression reads

2 /
K (@) = 2% > f i‘: (f(@)Tr [0* (k)G (k, & — )" (k)G ke, )] = f()Tr [0 (k)G (k, @)D" (K)GR (K, @ + )]
1
k

—[f (@ + @) — f(]ITr [0* k)G (k, 0D H)GR (k, @' + w)]),

where GA(k, w) = G(k, w — in) and GR(k, w) = Gk, w +
in) are the advanced and retarded Green functions on

(30)

(

the real frequency axis, respectively. In practical calcula-
tions, it is convenient to use the diagonalized form given
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FIG. 5. Frequency dependence of the optical conductivities o, 0,,, and o, for (a),(b) the SOSM state [Z, ,(2) = U? /2, £.(2) = 0] and
(c),(d) the system with static mean fields [%, ,(R2) = U, 2.(Q) = 0]. The damping parameter and effective Coulomb interaction are chosen
as'=15.6 meV and U = 0.1 eV. In (b),(d), the dotted lines show the value corresponding to the isotropic limit realized in the original cubic

phase.

in Eq. (12). The complex conductivity is then calculated
as

3D

Thus the frequency-dependent transport properties can be
studied through o, ().

The numerical results for the real part of the optical con-
ductivity Re o (w) are shown in Fig. 5. We have introduced the
single-particle impurity scattering rate I, which is included
by the replacement 2 — 2 + iI'sgn (Im 2) in Eq. (8), and
have taken the zero-temperature limit. The anisotropic con-
ductivity discussed above can be seen in Fig. 5(a): In the low-
frequency regime, the anisotropy is substantial, while it is not
pronounced at high frequencies. This behavior is more clearly
visualized by looking at the ratio of conductivities shown in
Fig. 5(b). We note that the two dimensionality appears only
in the low-frequency regime. This behavior results from the
frequency-dependent orbital-symmetry breaking field.

For comparison, we also show results obtained with a
frequency-independent self-energy. Here, we simply replace
¥, (R2) = Uf/Q — U, corresponding to a static orbital-
dependent mean field (we have chosen Uy, = U # 0 and
U, = 0). The corresponding optical conductivity is shown
in Fig. 5(c), and the ratio characterizing the anisotropy
in Fig. 5(d). In strong contrast with the SOSM state the
anisotropy is not enhanced at low frequencies. Hence the
frequency dependence of the symmetry-breaking fields is
clearly reflected in the optical conductivity.

V. DISCUSSION
A. Relevance to real materials

We first discuss possible implications for the interpretation
of experimental results on fulleride compounds. The emergent
two-dimensionality should be a characteristic property of the
JTM state, which is interpreted here as the SOSM state.
Indeed, recent experiments show an enhancement of H,, in

the superconducting state below the JTM regime [24]. If the
external magnetic field is applied along the emergent two-
dimensional plane, the orbital motion by the Lorentz force
is not effective, which results in higher H,, values. The use
of polycrystals in the experiments implies that the above
situation inevitably occurs, so that our finding accounts for
the enhancement of H, in the JTM region.

Even single crystals should exhibit a multidomain nature
due to entropic effects, so that an enhancement of H,, can
still be expected. To align the domains in the SOSM state, it
is necessary to apply a uniaxial stress in the single crystal or
to produce a small enough sample with length scale below
the domain size. In this case, a characteristic magnetic field
angle dependence should be observed reflecting the emergent
two-dimensionality.

We also note that in real materials, the appearance of the
JTM is observed as a crossover, while the theory predicts a
transition with spontaneous symmetry breaking. One possi-
bility is that the order parameter of the SOSM state is an
unconventional one and the entropy release might be small,
resulting in a small anomaly at the transition point. Another
possibility is that with multidomains in polycrystals, a uni-
axial pressure is effectively applied and turns the transition
into a crossover. We should also consider the possibility of a
short-range ordered state, in which the SOSM characteristics
can only be observed over a certain finite time or length scale.
In principle, this can be theoretically investigated by including
spatial correlations. Since numerical simulations based on
DMEFT and its extensions are limited to small-size clusters,
spatial correlations are difficult to incorporate. Therefore, a
Ginzburg-Landau (GL) type analysis would be a better choice.
A dynamically extended GL analysis would also be interest-
ing for an effective description of the nonequilibrium dynam-
ics including time-dependent changes in collective excitations
and the switching of the order parameters [28]. A study of the
physics in the presence of disorder and inhomogeneity would
provide important information for a more direct connection
with experiments.
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Three-orbital Hubbard model
[Orbital order (SOSM)]
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Mott or Kondo gap I

FIG. 6. One-dimensional schematic illustrations for (left) orbital
ordering (SOSM) in the half-filled three-orbital Hubbard model with
antiferromagnetic Hund’s coupling and (right) channel ordering in
the half-filled two-channel Kondo lattice. The bottom panel shows
the single-particle excitation energy having both metallic and insu-
lating bands.

B. Analogy to multichannel Kondo lattices

In this paper we have discussed the effect of the frequency-
dependent orbital symmetry breaking field on the electronic
structure of fullerides, where the originally equivalent orbitals
split into metallic and insulating ones spontaneously. Here we
point out that these behaviors are analogous to the ordered
state of the multichannel Kondo lattice [38,60,61]. In the
two-channel Kondo lattice, the local interaction part of the
Hamiltonian is given by [62]

jﬁnt = % Z Z S- Clgaao’caa’s (32)

a=1,2 o,0'=1,]

where o = 1,2 is the channel (orbital) and o =%, | is
the spin. The localized spin-1/2 operator is written as S.
The Hamiltonian has a SU(2) symmetry in the channel
space, which is spontaneously broken to result in a channel-
inequivalent state at low temperatures, where the o« = 1 sub-
system forms Kondo singlets with the localized spins, while
the o = 2 subsystem is effectively decoupled from the local-
ized spins [38]. Hence, the o = 1 subsystem plus localized
spins becomes a Kondo insulator, while the @ = 2 subsystem
behaves as nearly free electrons. The above picture is sum-
marized in Fig. 6. It is known that the Kondo insulator can
be intuitively interpreted as a hybridization of the electron
with a composite fermion involving the localized spin [61,63].
Namely, the Kondo interaction for « = 1 can be written as

J .
%mzzgkﬁﬁ+@q@ (33)

where F, = ZU,S - 0445 Clo’- Indeed, the Heisenberg equa-
tion of motion in the strong-coupling limit becomes id;c;, =
[c1o, Fnt] = %FG, which is consistent with the one-body
hybridization picture. We note that the interaction parameter
J should be replaced by an effectively renormalized one once
the hybridization picture is applied.

In the present paper, on the other hand, we have considered
electrons in a three-orbital Hubbard model, which sponta-
neously split into one metallic orbital plus two Mott-insulating
orbitals. This insulating behavior can also be interpreted in
terms of the hybridization picture [see also Eq. (11)], which is
best visualized in the ordinary single-orbital Hubbard model.
Here, the interaction part can be rewritten as

U ¥ ¥
Unyny = 2 Y (o +n3co), (34)

where n, = c;cg and n, = nzc,. This effectively explains
the presence of the upper and lower Mott-Hubbard band
within the Hubbard-I approximation [64] (¢, — 27, instead
of 1, is more rigorous in developing the hybridization picture
[53-55]). Although a more detailed analysis involving the
multiorbital interaction should be considered for our Mott
insulator, the basic idea of the hybridization of the original
fermion with the composite ones should be the same.

In this way, the ordered states of the multichannel Kondo
lattice and the multiorbital Hubbard model share the same
features: the metallic and insulating parts coexist (see Fig. 6).
Note that the ordered states in both models have no entropy at
zero temperature and can be a ground state (i.e., the insulating
parts form spin singlets). The above analogy suggests a unified
concept which may be applied to strongly correlated systems
with multiple degrees of freedom. In order to establish the
connection, as the first step, it would be interesting to compare
the effective impurity Kondo problems for the two models in
the context of DMFT, which is left as a future study.

VI. SUMMARY

We have discussed unconventional order parameters which
are nonlocal in space or time and are relevant for the descrip-
tion of the Jahn-Teller metal in fulleride superconductors. The
Jahn-Teller metal can be interpreted as a spontaneous orbital-
selective Mott state, which is inevitably characterized by a
nonlocal order parameter. In particular, we have emphasized
the role of Mottness in constraining the nature of this ordered
state.

We have further explored the single-particle spectra and
transport properties, which show the emergence of two-
dimensionality in the orbital symmetry broken state. This is
consistent with the observation of a high upper critical field
in the Jahn-Teller metal regime. The characteristic dynamics
is also found in the optical conductivity, where we have
revealed the frequency-selective anisotropic transport origi-
nating from the frequency-dependent orbital-symmetry break-
ing fields. We have also pointed out the similarity between
the multichannel Kondo lattice and the multiorbital Hubbard
model with antiferromagnetic Hund’s coupling. These in-
sights should be useful for the further exploration of strongly
correlated electron phenomena in fulleride-based supercon-
ductors and for the construction of more general concepts for
ordering phenomena in condensed matter physics.
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APPENDIX A: EFFECTIVE IMPURITY ACTION FOR
CUBIC FULLERIDES

Here we explain the symmetry of the fulleride supercon-
ductors in terms of DMFT, where the self-energy is dynamical
but spatially local. This local self-energy is determined by
solving the effective impurity problem with the action

B
Seffzf drdt’ Y Y el (AT = T)eye(T)
0

y=xy.z o=1,]

B
+ / dr[Zc;(,mach(r)+%ioc<r>}. (A1)
0

yo

The first term represents the hybridization with the self-
consistently determined effective bath, and the second term
is the impurity part which includes the local electronic de-
grees of freedom only. Because of the cubic symmetry, the
noninteracting part has a high symmetry: all six components
[(yo)=(x1), (xd), 1), (). (2 1), (z{)] are equivalent,
i.e., SU(6) symmetric. On the other hand, the interaction term
in J#,. is of the standard Slater-Kanamori type with antiferro-
magnetic Hund’s coupling. Its symmetry is SU(2)xSO(3) in
spin-orbital space [25], which is identical to the symmetry of
the whole impurity system. We note that the above continuous
symmetry is characteristic for the DMFT approach with effec-
tive local action and should be regarded as an approximation
when it is applied to real materials.

In the orbital-ordered state as in the SOSM state, the con-
tinuous SO(3) symmetry is spontaneously broken. The type
of the orbital order can be classified by using the eight 3 x 3
Gell-Mann matrices (A;_g). For a time-reversal symmetric
state, we have five choices described by the matrices A} 3468
whose explicit forms are given in the Supplemental Material
of Ref. [25] (X, 57 represent orbital magnetism and break the
time-reversal symmetry). Due to the original SO(3) symmetry,
we only have to consider the two-dimensional plane of Ag and
Az, which are diagonal matrices in orbital space. The other
order parameters (1] 46) can be shown to be equivalent to the
ones located in the Ag-A; plane. This can be checked in the
same way as showing that s, and s, are equivalent to s, due to
the SU(2) symmetry in spin space.

We denote the order parameter corresponding to the Gell-
Mann matrix X, by 7,, which can be any single-particle
quantity, e.g., a local Green function or self-energy. Within
the 7g-73 plane, there are the following three independent

M (iwy,) [eV™1]
IS

-0.3 -0.2 -0.1 0 0.1
wy, [eV]

02 03 04

FIG. 7. Spatially-local and frequency-dependent orbital ordered
moment on the imaginary axis.

components: (7g, 73) = r(0, 1), r(1,0), and r(—1, 0), where
r > 0 is a scaling constant. We note that (0,1) and (0, —1)
are equivalent, but (1,0) and (—1, 0) are not (i.e., cannot be
connected by symmetry). Using the cubic symmetry, we can
write down the Landau free energy in the 75-73 plane as [25]

F=Fy+a(T§ +T3) +bT(T = 3T7) + (75 + T7)’,
(A2)

where the sign change of the coefficient a signals the phase
transition and ¢ > 0 to make the order parameters finite. The
third-order term with b is characteristic for the present case,
which makes the solution (7g, 73) = (0, 1) unstable. Hence
we have only the following two candidates for the most stable
state, depending on the sign of b: (7g, 73) = r(1,0) forb < 0
and (7g, T3) = r(—1,0) for b > 0. Indeed, our self-energy
in Egs. (9) and (10) can be written by using Ag and the
identity matrix, both of which are diagonal. Note that the
above discussion is based only on the symmetry and is valid
for cubic systems with three degenerate (molecular) orbitals
as far as only the orbital degrees of freedom are concerned.
We also note that the symmetry is discrete once we focus
on the 7g-7; plane although the original Hamiltonian has a
continuous symmetry in orbital space.

In the main text we denote the (1,0) state as the SOSM
state and the (—1, 0) state as the SOSID state. As discussed in
Sec. III and Ref. [56], the SOSM state is more stable at low
temperatures because of the smaller entropy and the energy
gain from the pair hopping.

APPENDIX B: IMAGINARY FREQUENCY
REPRESENTATION OF THE ORBITAL MOMENT

The odd-frequency nature of the order parameter in the
SOSM state can be even more clearly seen in the imaginary
(Matsubara) frequency domain. Figure 7 shows the real and
imaginary parts of M(Q2 = iw,), which is the imaginary-
frequency version of Fig. 4. The imaginary part, which is an
odd function of w,, dominates the real part.
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