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Classifying local fractal subsystem symmetry-protected topological phases
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We study symmetry-protected topological (SPT) phases of matter in 2D protected by symmetries acting on
fractal subsystems of a certain type. Despite the total symmetry group of such systems being subextensively
large, we show that only a small number of phases are actually realizable by local Hamiltonians. Which phases
are possible depends crucially on the spatial structure of the symmetries, and we show that in many cases, no
nontrivial SPT phases are possible at all. In cases where nontrivial SPT phases do exist, we give an exhaustive
enumeration of them in terms of their locality.
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I. INTRODUCTION

Understanding and classifying the possible phases of mat-
ter has been a long running goal of condensed matter physics.
In systems without any symmetries, one can have topolog-
ical ordered phases which are long-range entangled. With
symmetries present, there are many more possibilities: the
symmetry may be spontaneously broken, it may enrich an
existing topological order, or it may lead to nontrivial short-
range entangled phases called symmetry-protected topologi-
cal (SPT) phases [1–7].

Recently, a new type of symmetry, called “subsystem sym-
metries,” has been gaining interest for a number of reasons.
These are symmetries which act on only a rigid (subextensive)
subsystem of the full system, for example, along only a row
or a column of a square lattice. Systems with such symmetries
show up in a variety of contexts [8–15]. Note that there is a
distinction between subsystem symmetries and higher-form
symmetries [16], which act on deformable manifolds. One
reason for the recent interest is due to their connection to frac-
ton topological order [14,17–28]. Namely, systems in D = 3
dimensions with subsystem symmetries of along d = 2 planes
exhibit a gauge duality to (type-I) fracton topological ordered
phases [14,29–31]. More generally, this can be extended to
systems with dimensions D � 3 and symmetries along regular
1 < d < D subsystems, whose gauge dual exhibits a gener-
alized fracton topological order. The case d = D is simply
the duality of a model with some global symmetry and a
(nonfracton) topologically ordered state, e.g., the gauge dual
of the Z2 symmetric Ising model in D � 2 is a Z2 topological
order. The case where d = 1 is another extreme case, whose
gauge dual does not correspond to a topological order. These
should be thought of in analogy to the D = d = 1 Ising
chain, which is dual to another Ising model under the gauge
duality. In the presence of a symmetry group G, it is now
well known that bosonic D = d = 1 chains may be classified
according to the second cohomology group H2[G, U(1)], and
may be understood in terms of how the symmetry acts as
a projective representation on the edges or under symmetry
twists [2,32–38].

Going to one higher dimension, D = 2, d = 1, we have
two dimensional systems with symmetries acting along rigid
lines. It was recently appreciated that such symmetries
could protect nontrivial SPT phases, called subsystem SPT
phases [39]. An example of such a phase is the 2D clus-
ter state on the square lattice [40], where it is shown that
any state within this subsystem SPT phase is useful as a
resource for universal measurement-based quantum comput-
ing (MBQC) [41,42], providing a generalization of the con-
nection between MBQC and SPT phases from one dimen-
sion [41,43–46]. A classification of such subsystem SPT
phases was realized recently in Ref. [47] by the present author
and colleagues, and relied on the definition of a modified
(weaker) equivalence relation between phases. The reason this
was needed in this case is due to the existence of “subsystem
phases”: cases where two states which differ along only a sub-
system may belong to distinct phases of matter. For instance,
consider a D = 2 trivial symmetric state, but along some of
the (d = 1) subsystems, we place a 1D SPT (in such a way
that all symmetries are still respected). This, now, as a whole
represents a nontrivial 2D phase of matter protected by the
subsystem symmetries, despite looking trivial in most of the
bulk. Furthermore, the existence of such phases means that in
the thermodynamic limit where system size is taken to infinity,
there are an infinite number of subsystems, and so an infinite
number of possible phases. The problem with this is that it
now takes a subextensive [growing as O(L) in local systems
of size L × L] amount of information to convey exactly what
phase a system is in, without assuming any form of translation
invariance. In Ref. [47], it was shown that there existed some
intrinsic global “data,” which we call β, which is insensitive
to the presence of subsystem phases. All the infinite phases
of such a system could therefore be grouped into equivalence
classes and classified according to β. This classification has
the nice interpretation of being a classification of phases
modulo lower-dimensional SPT phases and is related to the
problem of classifying 3D (type-I) fracton topological orders
modulo 2D topological orders [30,48–51]. There is also a
connection between this classification and the appearance of
a spurious topological entanglement entropy [47,52–55]. The
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key idea is that a new tool, in this case the modified phase
equivalence relation, was necessary in the classification of
these subsystem SPT phases.

The topic of interest in this paper is another type subsys-
tem symmetry: fractal subsystem symmetries. In 2D, these
may be thought of as “in-between” d = 1 and d = 2, as
symmetries act on subsystems with fractal dimensions 1 <

d f < 2. An early example of such a system is the Newman-
Moore model [56], and such models have been useful as a
translation invariant toy model of glassiness [57] or for their
information storage capacity [58]. Fractal symmetries have
also recently been shown to be able to protect nontrivial SPT
phases [59,60]. An example of this is the cluster state on the
honeycomb lattice, which (like the square lattice example)
has been shown to be useful for MBQC anywhere in the
SPT phase [61,62]. Here, we wish to ask the more general
question of what SPT phases are even possible in such systems
with fractal symmetries. Note that in higher dimensions (D �
3), similar to models with regular d-dimensional subsystem
symmetries, the gauge dual of a fractal symmetric model may
also result in (type-II) fracton topological order [20,29,59], for
which very little is currently known about their classification.

Our main finding is that systems with fractal subsystem
symmetries are free from subsystem phases and the associated
problems that existed for linelike d = 1 subsystem SPTs. The
key factor at play here is locality. Although the total number
of phases is still infinite (a result of the total symmetry group
being infinitely large), the vast majority of these phases are
highly nonlocal and therefore unphysical. If we fix a degree
of locality (what we mean by this will be explained), then
the number of allowed phases remains finite in the thermo-
dynamic limit. This allows for the classification of phases
directly, without needing to define equivalence classes of
phases like before (essentially due to the lack of any “weak”
subsystem SPT phases [39,47]).

We first begin by reviewing some necessary preliminary
topics in Sec. II. We then define fractal symmetries in Sec III,
and discuss the possible local SPT phases in Sec IV. In Sec V,
we give a explicit constructions for local models realizing an
arbitrary local SPT phase. Section VI deals with irreversible
fractal symmetries and introduces the concept of pseudosym-
metries and pseudo-SPTs. A summary and discussion of the
results is presented in Sec. VIII. Finally, a technical proof of
the main result is given in Sec. IX.

II. PRELIMINARIES

A. Linear cellular automata

We first describe a class of fractal structures which de-
termine the spatial structure of all our symmetries in this
work (see Ref. [20] for a nice introduction to such fractals
and their polynomial representation). These fractal structures,
which are embedded on to a 2D lattice, are generated by
the space-time evolution of a 1D cellular automaton (CA). In
particular, the update rule for this 1D cellular automaton will
be linear, translation invariant, local, and reversible. These
terms will all be explained shortly.

Let a( j)
i ∈ Fp denote the state of the cell at spatial index

i at time index j. Each a( j)
i can take on values 0, . . . , p − 1

for some prime p (p = 2 in the cases with Ising degrees of
freedom). We take periodic boundary conditions in i such
that 0 � i < Lx, and define a( j)

i+Lx
≡ a( j)

i . The state of the full
cellular automaton at a time j is given by the vector a( j) ∈ FLx

p

with elements (a( j) )i = a( j)
i , We will use the notation vi to

denote the ith element of a vector v. Bold lowercase letters
will denote vectors, while bold uppercase letters will denote
matrices.

The key ingredient of the cellular automaton is its update
rule: given the state a( j) at time j, how is the state a( j+1) at the
next time step calculated? We will consider only the family of
update rules of the form

a( j+1)
i =

kb∑
k=ka

cka( j)
i−k (1)

where ck ∈ Fp is a set of coefficients only nonzero for ka �
k � kb. Note that all addition and multiplication is modulo p,
following the algebraic structure of Fp. Linearity refers to the
fact that each a( j+1)

i is determined by a linear sum of a( j)
i . Thus

we may represent Eq (1) as

a( j+1) = Fa( j), (2)

where F ∈ FLx×Lx
p is an Lx × Lx matrix with elements given by

Fi′i = ci′−i. For a given initial state a(0), the state at any time
j � 0 is simply given by a( j) = F ja(0).

Translation invariance refer to the fact that the update rules
do not depend on the location i, only on the relative location:
F i′i = F i′+n,i+n. Locality means that F i′i is only nonzero for
small |i′ − i| of order 1. In our case, this means that |ka|
and |kb| should be small O(1) values. Finally, reversibility
means that only one a( j) can give rise to a a( j+1). In other
words, the kernel of the linear map induced by F is empty,
and one can define an inverse F−1 (which will generically
be highly nonlocal) such that F−1F = FF−1 = 1. This is a
rather special property which will depend on the particular
update rule as well as choice of Lx.

While we assume reversibility for much of this paper, we
note that fractal SPTs exist even when the underlying CA is
irreversible. We call such phases pseudo-SPT phases, and are
discussed in Sec VI.

B. Polynomials over finite fields

Cellular automata with these update rules may also be rep-
resented elegantly in terms of polynomials with coefficients in
Fp. By this we mean polynomials q(x) over a dummy variable
x of the form

q(x) =
δq∑

i=0

qix
i, (3)

where each qi ∈ Fp, and the degree δq ≡ deg q(x) is finite. The
space of all such polynomials is denoted by the polynomial
ring Fp[x]. A state a( j) of the cellular automaton may be
described by such a polynomial, a( j)(x),

a( j)(x) =
Lx−1∑
i=0

a( j)
i xi. (4)
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In the case of periodic boundary conditions, one should also
work with the identity xLx = 1.

Application of the update rule is expressed most simply
in the language of polynomials. Let us define f (x) to be a
Laurent polynomial, i.e., f (x) = f̃ (x)xka where f̃ (x) ∈ Fp[x]
is a polynomial (and ka may be negative), given by

f (x) =
kb∑

k=ka

ckxk (5)

after which the update rule may be expressed simply as
multiplication

a( j+1)(x) = f (x)a( j)(x). (6)

Given an initial state a(0)(x) then, the state at any future time
is simply given by a( j)(x) = f (x) ja(0)(x). We will assume
cka and ckb are nonzero, and kb �= ka (so that f (x) is not a
monomial).

The key property of such polynomials that guarantees
fractal structures is that for q(x) ∈ Fp[x], one has that

q(x)pn = q(xpn
) (7)

also known as the “freshman’s dream.” Suppose we start off
with the initial state a(0)(x) = 1. After some possibly large
time pn, the state has evolved to

a(pn )(x) = f (x)pn = f (xpn
) =

kb∑
k=ka

ckxkpn
, (8)

which is simply the initial state at positions separated by
distances pn. At time pn+1, this repeats but at an even larger
scale. Thus the space-time trajectory a( j)

i of this cellular
automaton always gives rise to self-similar fractal structures.

There are various other useful properties that will be used
in the proof of Sec. IX, one of which is that any polynomial
q(x) ∈ Fp[x] (without periodic boundary conditions) may be
uniquely factorized up to constant factors as

q(x) = q1(x)q2(x) . . . qn(x) (9)

where each qi(x) is an irreducible polynomial of positive
degree. A polynomial is irreducible if it cannot be written as
a product of two polynomials of positive degree. This may be
thought of as a “prime factorization” for polynomials.

C. Projective representations

The final topic which should be introduced are projective
representation of finite Abelian groups. Bosonic SPTs in
1D are classified by the projective representations of their
symmetry group on the edge [2,32]. Similarly, subsystem
SPTs for which the subsystems terminate locally on the
edges (i.e., linelike subsystems) may also be described by
projective representations of a subextensively large group on
the edge [39,47]. The same is true for fractal subsystem
symmetries [59].

Let G by a finite Abelian group. A nonprojective (also
called linear) representation of G is a set of matrices V (g) for
g ∈ G that realize the group structure: V (g1)V (g2) = V (g1g2)
for all g1, g2 ∈ G. A projective representation is one such that

this is only satisfied up to a phase factor,

V (g1)V (g2) = ω(g1, g2)V (g1g2), (10)

where ω(g1, g2) ∈ U(1) is called the factor system of the
projective representation, and must satisfies the properties

ω(g1, g2)ω(g1g2, g3) = ω(g1, g2g3)ω(g2, g3),

ω(1, g1) = ω(g1, 1) = 1 (11)

for all g1, g2, g3 ∈ G. A different choice of U(1) prefactors,
V ′(g) = α(g)V (g) leads to the factor system

ω′(g1, g2) = α(g1g2)

α(g1)α(g2)
ω(g1, g2) (12)

for V ′(g). Two factor systems related in such a way are said to
be equivalent, and belong to the same equivalence class ω.

Suppose we have a factor system ω1(g1, g2) of equiv-
alence class ω1, and a factor system ω2(g1, g2) of class
ω2. A new factor system can be obtained as ω(g1, g2) =
ω1(g1, g2)ω2(g1, g2), which is of class ω ≡ ω1ω2. This gives
them a group structure: equivalence classes are in one-to-
one correspondence with elements of the second cohomology
group H2[G, U(1)], and exhibit the group structure under
multiplication.

In the case of finite Abelian groups, a much simpler picture
may be obtained in terms of the quantities

�(g1, g2) ≡ ω(g1, g2)

ω(g2, g1)
(13)

which is explicitly invariant under the transformations of
Eq. (12). They have a nice interpretation of being the com-
mutative phases of the projective representation

V (g1)V (g2) = �(g1, g2)V (g2)V (g1). (14)

�(g1, g2) has the properties of bilinearity and skew-symmetry
in the sense that

�(g1g2, g3) = �(g1, g3)�(g2, g3), (15)

�(g1, g2g3) = �(g1, g2)�(g1, g3), (16)

�(g1, g2) = �(g2, g1)−1. (17)

These properties mean that �(g1, g2) is completely deter-
mined by its value on all pairs of generators of G. Sup-
pose a1, a2 ∈ G are two independent generators with orders
n1, n2, respectively. Then, one can show that �(a1, a2)n1 =
�(a1, a2)n2 = 1, and so �(a1, a2) = e2π iw/ gcd(a1,a2 ) for integer
w. The value of w for every pair of generators provides
a complete description of the projective representation, and
each of them may be chosen independently.

By the fundamental theorem of finite Abelian groups, G
may be written as a direct product

G = Zn1 ⊗ Zn2 ⊗ · · · ⊗ ZnN , (18)

where each ni are prime powers. Let ai be the generator
of the ith direct product of G with order ni, and define
mi j through �(ai, a j ) = e2π imi j/ gcd(ni,n j ). Each choice of 0 �
mi j < gcd(ni, n j ) for i < j corresponds to a distinct projective
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representation. Indeed, applying the Kunneth formula, one
can compute the second cohomology group

H2[G,U (1)] =
∏
i< j

Zgcd(ni,n j ). (19)

There is therefore a one-to-one correspondence between
choices of {mi j} and elements of H2[G, U(1)].

Hence, we may simply refer to the commutative phases
�(g1, g2) of the generators, {mi j}, as a proxy for the whole
projective representation.

D. 1D SPTs and twist phases

Let us now connect our discussion of projective representa-
tions to the classification of 1D SPT phases. There are various
ways this connection can be made, for instance, by looking at
edges or matrix product state representations [3,32]. Here, we
will be using symmetry twists [2,32–38], which turn out to be
a natural probe in the case of 2D fractal symmetries [59].

Suppose we have a 1D SPT described by the unique ground
state of the local Hamiltonian H and global on-site symmetry
group G. Let us take the chain to be of length Lx (taken to be
large) with periodic boundary conditions. The symmetry acts
on the system as

S(g) =
Lx−1∏
i=0

ui(g) (20)

for g ∈ G, where ui(g) is the on-site unitary linear representa-
tion of the symmetry element g on site i, and [H, S(g)] = 0. A
local Hamiltonian may always be written as

H =
Lx−1∑
i=0

Hi (21)

where the sum is over local terms Hi with support only within
some O(1) distance of i.

The twisting procedure begins by constructing a new
Hamiltonian Htwist (g) for a given g ∈ G. We pick a cut across
which to apply the twist xcut, which can be arbitrary. Then,
define the truncated symmetry operator

S�(g) =
xcut+R∏
i=xcut

ui(g) (22)

for some 1 � R � Lx. The twisted Hamiltonian is given by

Htwist (g) =
Lx−1∑
i=0

{
S�(g)HiS�(g)† if Hi crosses xcut

Hi else
, (23)

thus, the Hamiltonian is modified for Hi near xcut, but remains
the same elsewhere.

We can now define the twist phase

T (g1, g2) = 〈S(g1)〉Htwist (g2 )

〈S(g1)〉H
, (24)

which is a pure phase representing the charge of the sym-
metry g1 in the ground state of the g2 twisted Hamiltonian,
relative to in the untwisted Hamiltonian. Here, 〈O〉H means
that expectation value of the operator O in the ground state
of the Hamiltonian H . It is straightforward to show that

T (g1, g2) does not depend on where we place the cut xcut

(this fact will be used to our advantage when twisting fractal
symmetries). The set of twist phases T (g1, g2) is a complete
characterization of the state. Indeed, the correspondence of the
twist phases to the projective representation characterizing a
phase can be made by simply

�(g1, g2) = T (g1, g2), (25)

as such, we refer to �(g1, g2) itself as the twist phases.
An alternate, but equivalent, view is to examine the action

of S�(g2) on the ground state |ψ〉. The action of S�(g2) on |ψ〉
must act as identity on the majority of the system, except near
xcut and xcut + R, where it may act as some unitary operation,

S�(g2) |ψ〉 = Ug2Ũg2 |ψ〉. (26)

where Ug2 acts near xcut, and Ũg2 acts near xcut + M. Then, the
twisted Hamiltonian acting on the ground state can be thought
of as

Htwist (g2) |ψ〉 = Ug2 HU †
g2

|ψ〉 (27)

such that the ground state of Htwist (g2) is given by Ug2 |ψ〉.
The twist phase is then given by

�(g1, g2) = 〈ψ |U †
g2

S(g1)Ug2 |ψ〉
〈ψ | S(g1) |ψ〉

= 〈ψ | S(g1)†U †
g2

S(g1)Ug2 |ψ〉, (28)

which measures the charge of the excitation created by Ug2

under the symmetry S(g1). Thus all information regarding the
phase is contained within this local unitary matrix Ug2 that
appears due to a truncated symmetry operator.

III. FRACTAL SYMMETRIES

We can now discuss fractal symmetries. The fractal sym-
metries we consider may be thought of as a combination of an
on-site symmetry group imbued with some spatial structure.

Let us first consider a system with one fractal symmetry,
described by the cellular automaton polynomial f (x) over Fp,
which we will denote by

G = Z( f ,y)
p , (29)

which means that the on-site symmetry group is Zp, while
the superscript ( f , y) denotes the associated spatial structure:
f denotes a cellular automaton described by the polynomial
f (x), and y denotes the positive “time” direction of this
cellular automaton (in this case, the positive y direction).

Our systems have degrees of freedom placed on the sites of
an Lx × Ly square lattice with periodic boundary conditions.
Each site is labeled by its index along the x and y direc-
tion, (i, j), and transforms as an on-site linear representation
ui j (g) under g ∈ G. For simplicity, we will only consider
the cases where Lx = pN is a power of p, and Ly chosen
such that f (x)Ly = 1. The latter is not difficult to accomplish,
as f (x)Lx = f (xLx ) = f (1), so we may simply choose Ly =
kLx > 0 such that f (1)k = 1. Note that reversibility of f (x)
implies f (1) �= 0.

The symmetries of the system are in one-to-one correspon-
dence with valid space-time histories of the cellular automa-
ton. The choices of Lx and Ly made earlier means that any
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state a(0) (on a ring of circumference Lx) is cyclic in time
with period dividing Ly: a(Ly ) = a(0). Given a valid trajectory

a( j), the operator
∏

i j ui j (ga( j)
i ) for g ∈ G represents a valid

symmetry operator. The entire space-time trajectory a( j) is
determined solely by its state at a particular time j0, a( j0 ),
which can be in any of pLx states. The total symmetry group
will therefore be given by Gtot = (Zp)Lx .

Let us identify a particular element g as a generator for Zp.
Then, let a set of Lx generators for Gtot = ZLx

p , defined with

respect to j0, be {g( j0 )
i }0�i<Lx . We may then define a vectorial

representation of group elements via the one-to-one mapping
from vectors v ∈ FLx

p to group elements,

g( j0 )[v] =
Lx−1∏
i=0

(
g( j0 )

i

)vi ∈ Gtot. (30)

The action of each of these symmetry elements on the system
is defined as

S(g( j0 )[v]) =
Lx−1∏
j=0

u j[g; F j− j0 v], (31)

where we have introduced the vectorial representation for
ui j (g) on a row j,

u j[g; v] ≡
Lx−1∏
i=0

ui j (g
vi ). (32)

Thus S(g( j0 )[v]) is the unique symmetry operator that acts as
u j (g)[v] on the row j0. It can be viewed as the symmetry
operation corresponding to the space-time trajectory of a CA
which is in the state v at time j0. Because f (x)Ly = 1 due
to our choice of Lx and Ly, any initial state is guaranteed to
come back to itself after time Ly, representing a valid cyclic
space-time trajectory.

We may choose as a generating set the operators defined
with respect to row j0,

S(g( j0 )[ei]) = S
(
g( j0 )

i

)
, (33)

where ei is the unit vector (ei )i′ = δii′ . These act on only a
single site on the row j0, and an example of which is shown
in Fig. 1 (top). However, notice that this choice of basis is
only “most natural” when viewed on the row j0. Suppose
we wanted to change the row which we have defined our
generators with respect to from j0 to j1. How are the new
operators related to our old ones? Well, one can readily show
that

S(g( j1 )[v]) =
∏

j

u j[g; F j− j1 v] (34)

=
∏

j

u j[g; F j− j0 F j0− j1 v] (35)

= S(g( j0 )[F j0− j1 v]) (36)

is simply related via multiplication of v by powers of F. Thus

g( j1 )[v] = g( j0 )[F j0− j1 v]. (37)

In general, we can have systems with multiple sets of
fractal symmetries. The other main situation we consider is

j0

j0

i

S(g(a, j0)
i

)

S(g(b, j0)
i

)

FIG. 1. Example of a symmetry generator (top) S(g(a, j0 )
i ) or

(bottom) S(g(b, j0 )
i ) for the fractal generated by f (x) = x̄ + 1 + x with

p = 2. Sites with blue or red squares are acted on by ui j (g(a) ) or
ui j (g(b) ), respectively, and form a valid space-time trajectory of a
cellular automaton.

the case of two fractal symmetries of the form

G = Z( f ,y)
p × Z( f̄ ,ȳ)

p , (38)

where x̄ ≡ x−1 and f̄ (x) ≡ f (x̄). This is the form of fractal
symmetry known to protect nontrivial fractal SPTs [59,60].
The first fractal represents a CA evolving in the positive
y direction with the rule f (x), and the second represents a
CA evolving in the opposite y direction with the rule f̄ (x)
(they are spatial inversions of one another). In this case, we
have one generator from each Zp, g(a), and g(b), and we can
define two sets of fractal symmetry generators as above with
respect to a row j0. Let us call the two sets of generators
{g(a, j0 )

i }i and {g(b, j0 )
i }i, and define their corresponding vectorial

representation. A general a or b type symmetry acts as

S(g(a, j0 )[v]) =
Lx−1∏
j=0

u j[g
(a); F j− j0 v],

S(g(b, j0 )[v]) =
Lx−1∏
j=0

u j[g
(b); (FT ) j0− jv],

(39)

where we have used the fact that the matrix form of f̄ (x) is
given by FT . A generator for an a and a b type symmetry are
shown in Fig. 1. The generalization of Eq. (37) for moving to
a new choice of basis j1 for an a or b type symmetry is

g(a, j1 )[v] = g(a, j0 )[F j0− j1 v],

g(b, j1 )[v] = g(b, j0 )[(FT ) j1− j0 v]. (40)
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FIG. 2. Measurement of the twist phases for (left) �(g
(a, j0−ly )
i′ , g(a, j0 )

i ) and (right) �(g
(b, j0+ly )
i′ , g(a, j0 )

i ). Due to locality, the twist phase may

only be nontrivial if the support of (left) S(g
(a, j0−ly )
i′ or (right) S(g

(b, j0+ly )
i′ ) has some overlap with the yellow box of size (2lx + 1) × (2ly + 1)

about (i, j0). This implies that the twist phase must be trivial for i′ outside of a small region around i, a property which we call locality.
However, this must be true for all choices of j0, which greatly constrains the allowed twist phases. In the case of twist phases between the same
type of symmetry (left), only the trivial set of twist phases, all �(g

(a, j0−ly )
i′ , g(a, j0 )

i ) = 1 is allowed. Between an a and a b type symmetry (right),
we show that only a finite number of solutions exist.

IV. LOCAL PHASES

Consider performing the symmetry twisting experiment on
a system with fractal symmetries. We can view the system as
a cylinder with circumference Lx and consider twisting the
symmetry as discussed in Sec. II D. We separately discuss
the cases of one or two fractal symmetries of a specific form
first, and then go on to more general combinations. Our main
findings in this section are summarized as follows. (1) For the
case of one fractal symmetry, G = Z( f ,y)

p , no nontrivial SPT
phases may exist. (2) For the case of two fractal symmetries,
G = Z( f ,y)

p × Z( f̄ ,ȳ)
p , if we only allow for locality up to some

length scale 	, then there are a only a finite number of possible
SPT phases (scaling exponentially in 	2). (3) For the case of
more fractal symmetries, it is sufficient to identify pairs of
symmetries of the form Z( f ,y)

p × Z( f̄ ,ȳ)
p , and apply the same

results from above.

A. One fractal symmetry

Let us take G = Z( f ,y)
p and consider twisting by a particular

element g( j0 )
i ∈ Gtot. Since the twist phase doesn’t depend on

the position of the cut, we can choose to make the cut on
the row jcut = j0. The twisted Hamiltonian Htwist (g

( j0 )
i ) is then

obtained by conjugating terms in the Hamiltonian which cross
jcut by the truncated symmetry operator S�(g( j0 )

i ).
Let the Hamiltonian be written as a sum

H =
∑
i, j

Hi j, (41)

where each Hi j is a local term with support near site (i, j).
Now, consider twisting the Hamiltonian by g( j0 )

i across the cut
which also goes along the row j0. As can be seen in Fig. 2
(left), S�(g( j0 )

i ) acts on a single site on row j0, and extends into
the fractal structure on the rows above. The important point is
that S�(g( j0 )

i ) only acts differently from an actual symmetry

operator at the point (i, j0) (and on some row j0 + R far
away). Thus the twisted Hamiltonian may be written as

Htwist
(
g( j0 )

i

) |ψ〉 = U
g

( j0 )
i

HU †

g
( j0 )
i

|ψ〉 (42)

when acting on the ground state |ψ〉, for some unitary U
g

( j0 )
i

with support near the site (i, j0). Note that there is always
some freedom in choosing this unitary.

Then, consider measuring the charge of a symmetry g
( j0−ly )
i′

in response to this twist, as in Eq. (28). Clearly, only those
symmetry operators whose support overlaps with the support
of U

g
( j0 )
i

may have picked up a charge. Suppose the support of
every U

g
( j0 )
i

is bounded within some (2lx + 1) × (2ly + 1) box

centered about (i, j0), such that only sites (i′, j′) with |i′ −
i| � lx and | j′ − j0| � ly lie in the support. As can be seen in

Fig. 2 (left), S(g( j0−ly )
i′ ) only overlaps with this box for i′ in the

range

−lx − 2lykb � i′ − i � lx − 2lyka (43)

and, therefore, �(g( j0−ly )
i′ , g( j0 )

i ) may only be nontrivial if i′ − i
is within some small range. This places a constraint on the
allowed twist phases. In addition, this must be true for all
choices of j0. It turns out this is a very strong constraint, and
eliminates all but the trivial phase in the case of G = Z( f ,y)

p ,
and only allows a finite number of specific solutions for the
case G = Z( f ,y)

p × Z( f̄ ,ȳ)
p , as we will show.

We also do not strictly require that the support of U
g

( j0 )
i

be
bounded in a box. This will generally not be the case, as the
operator may have an exponentially decaying tail. Consider a
unitary U , which has some nontrivial charge eiφ �= 1 under S,
meaning

SUS† = eiφU (44)

when acting on the ground state. Clearly, if the support of
U and S are disjoint, this cannot be true. Next, consider any

235131-6



CLASSIFYING LOCAL FRACTAL SUBSYSTEM … PHYSICAL REVIEW B 99, 235131 (2019)

decomposition of U into a sum of matrices Uk , U = ∑
k Uk ,

and suppose that some of the Uk had disjoint support with S.
Then, we may write

U =
∑
k∈D

Uk +
∑
k∈D

Uk, (45)

where k ∈ D are all the k for which Uk and S have disjoint
support, and k ∈ D are all the k for which they do not.
However, then

SUS† =
∑
k∈D

SUkS† +
∑
k∈D

Uk (46)

�= eiφU (47)

as the disjoint component has not picked up a phase eiφ , and
SUkS† for k ∈ D cannot have disjoint support with S (since
only identity maps to identity under unitary transformations)
and so cannot affect the disjoint component of U . Thus let us
define a subset of sites, A(U ), defined as

A(U ) =
⋂

decomps
U = ∑

k Uk

⋂
k

Supp(Uk ), (48)

where the first intersection is over all possible decompositions
U = ∑

k Uk , and Supp(Uk ) is the support of Uk (the subset of
sites for which it acts as nonidentity). U can only have nontriv-
ial charge under S if A(U ) overlaps with the support of S. In
our case, lx and ly should actually be chosen such that A(U

g
( j0 )
i

)
may always be contained within the (2lx + 1, 2ly + 1)
box. An exponentially decaying tail of U is therefore com-
pletely irrelevant, as A(U ) only cares about the smallest part,
before the decay begins. The exact value of lx or ly is not too
important—what is important is that it is finite and small.

We also note that the twist phases obtained when twisting
along a cut in the y direction will be different, but are not
independent of our twist phases for a cut along the x direction.
To see why this is, consider a truncated symmetry operator
which has been truncated by a cut in the y direction. This may
alternatively be viewed as an untruncated symmetry operator,
multiplied by S�(g( j)

i at various (i, j)s located near the cut.
The action of twisting this symmetry for a cut along the y
direction is then also fully determined by the same set of
Ug( j)

i
from before, and is therefore not independent of the twist

phases for a cut along the x direction. Thus it is sufficient to
examine only the set of twist phases for a cut parallel to x,
as we have been discussing. As we chose y to be the “time”
direction of our CA, twisting along the x direction is far more
natural.

Let us make some definitions which will simplify this
discussion. Notice that �(g( j0 )[v], g(k0 )[w]) may be described
by the bilinear form FLx

p × FLx
p → Fp represented by the skew-

symmetric matrix W ( j0,k0 ) ∈ FLx×Lx
p defined according to

�(g( j0 )[v], g(k0 )[w]) = e
2π i

p vT W ( j0 ,k0 )w (49)

and that W ( j0,k0 ) for any ( j0, k0) contains full information of
the twist phases. Furthermore, since g( j1 )[v] = g( j0 )[F j0− j1 v],
we can deduce that W transforms under this change of

basis as

W ( j1,k1 ) = (F j0− j1 )T W ( j0,k0 )Fk0−k1 (50)

We say that a matrix W ( j0−ly, j0 ), for a particular choice of
j0, is local if its only nonzero elements W

( j0−ly, j0 )
i′i �= 0 are

within a small diagonal band given by Eq. (43). A stronger
statement, which we will call consistent locality, is that this is
true for all j0. The matrix W ( j0−ly, j0 ) for a physical state must
be consistently local.

Let us adopt a polynomial notation which will be useful to
perform computations. We may represent the matrix W ( j0,k0 )

by a polynomial W ( j0,k0 )(u, v) over Fp as

W ( j0,k0 )(u, v) =
∑

ii′
W ( j0,k0 )

i′i ui′vi′−i (51)

with periodic boundary conditions uLx = vLx = 1. Locality is
simply the statement that the powers of v in this polynomial
must be bounded by Eq. (43) (modulo Lx). Now, consider
what happens to this polynomial as we transform our basis
choice from j0 → j0 − n,

W ( j0−n−ly, j0−n)(u, v) = f (v)n f (ūv̄)nW ( j0−ly, j0 )(u, v), (52)

which must be local for all n if W ( j0−ly, j0 )(u, v) is to be
consistently local.

Let us start with j0 = 0, and suppose that we have
some W (−ly,0)(u, v) that is nonzero and local. By locality,
W (−ly,0)(u, v) may always be brought to a form where the
powers of v are all within the range given by Eq. (43). Let va

and vb be the smallest and largest powers of v in W (ly,0)(u, v)
once brought to this form, which must satisfy

−lx − 2lykb � a � b � lx − 2lyka. (53)

Now, consider W (−ly−n,−n)(u, v) for small n,

W (−ly−n,−n)(u, v) = f (v)n f (ūv̄)nW (ly,0)(u, v), (54)

which (by adding degrees) will have va−nδ f and vb+nδ f as the
smallest and largest powers of v, where δ f = deg(x−ka f (x)) >

0. The smallest and largest powers will therefore keep get-
ting smaller and larger, respectively, as we increase n. Thus
there will always be some finite n beyond which locality
is violated, and so W (−ly,0)(u, v) can never be consistently
local. The only consistently local solution is therefore given
by W (−ly,0)(u, v) = 0, which corresponds to the trivial phase.
We have therefore shown that no nontrivial local SPT phase
can exist protected by only G = Z( f ,y)

p symmetry.

B. Two fractal symmetries

Let us now consider the more interesting case, G =
Z( f ,y)

p × Z( f̄ ,ȳ)
p , for which we know nontrivial SPT phases can

exist. In this case, we have the symmetry generators g(α, j0 )
i

for α ∈ {a, b}, and 0 � i < Lx. As we showed in the previous
section, the twist phase between two a or two b symmetries
must be trivial. The new ingredient comes in the form of
nontrivial twist phases between a and b symmetries.

As can be seen in Fig. 2, by the same arguments as before,
the twist phase

�
(
g

(b, j0+ly )
i′ , g(a, j0 )

i

)
(55)
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may only be nontrivial if i′ − i lies within some finite range,

−lx + 2lyka � i′ − i � lx + 2lykb. (56)

Let us again define the matrix W (k0, j0 ), but this time only
between the a and b symmetries via

T (g(b,k0 )[w], g(a, j0 )[v]) = e
2π i

p wT W (k0 , j0 )v
, (57)

note that W (k0, j0 ) need not be skew-symmetric like before.
From Eq. (40), the changing of basis is given by

W (k1, j1 ) = Fk1−k0W ( j0, j1 )F j0− j1 . (58)

We are looking for matrices W
( j0+ly, j0 )

i′i which are local [only
nonzero within the diagonal band Eq. (56)] and also consis-
tently local, meaning that this is true for all j0. Starting with
j0 = 0, then, we are searching for a local matrix W (ly,0), for
which

W (ly+n,n) = FnW (ly,0)F−n (59)

is also itself local for all n.
Let us again go to a polynomial representation

W (ly,0)(u, v) =
∑

i′i

W
(ly,0)

i′i ui′vi′−i, (60)

which leads to the relation

W (ly+n,n)(u, v) = f (v)−n f (uv)nW (ly,0)(u, v), (61)

which must have only small (in magnitude) powers of v for
all n. However, f (v)−1 ≡ f (v)Ly−1 contains arbitrarily high
powers of v, and therefore simply adding degrees as before
does not work and we may expect that a generic W (ly,0)(u, v)
will become highly nonlocal immediately. Instead, what must
be happening is that, at each step, f (uv)W ( j0+ly, j0 )(u, v) must
contain some factor of f (v) (when viewed as a polyno-
mial without periodic boundary conditions) such that the
f (v)−1 can divide out this factor cleanly, producing a local
W ( j0+1+ly, j0+1)(u, v).

How does this work in the case of the known fractal
SPT [59]? In that case, W (0,0) is already local and is given
by the identity matrix. Then, clearly W (n,n) = W (0,0) as it
is invariant under Eq. (59), and remains local for all n. In
the polynomial language, the identity matrix corresponds to
the polynomial W (0,0)(u, v) = ∑

i ui, which has the property
of translation invariance: W (0,0)(u, v) = uW (0,0)(u, v). In this
case, f (uv)W (0,0)(u, v) = f (v)W (0,0)(u, v), and so can be
safely multiplied by f (v)−1. In fact, any translation invariant
solution, W (0,0)(u, v) = g(v)

∑
i ui for any g(v), is invariant

under multiplying by f (v)−1 f (uv).
We now state the main result of this paper: a special choice

of basis functions vkKm(u, v) with the property that W (u, v)
is consistently local if and only if in the unique decomposition

W (u, v) =
Lx−1∑
k=0

Lx−1∑
m=0

Ck,mvkKm(u, v), (62)

where Ck,m ∈ Fp are constants, each Ck,mvkKm(u, v) is itself
individually local. Km(u, v) is given by

Km(u, v) = (u − 1)Lx−1−mVm(v), (63)

Vm(v) =
Nf −1∏
i=0

fi(v)mi , (64)

where fi(x) are the Nf unique irreducible factors of the
polynomial f̃ (x) ≡ x−ka f (x) appearing ri times, f̃ (x) =∏

i fi(x)ri , and mi = �m/pαi�pαi where αi is the power of p
in the prime decomposition of ri. The proof of this is rather
technical and is delegated to Sec. IX. Thus any phase can
simply be constructed by finding all vkKm(u, v) that are local,
and choosing their coefficients Ck,m freely.

Let us go back to the matrix representation, and define
the corresponding matrices K (k,m) ↔ vkKm(u, v), following
the same mapping as Eq. (60). The elements of the matrix
K (k,m)

i′i are nonzero if and only if k � i′ − i � k + Dm, where
Dm is the degree of Vm(v). Dm increases monotonically with
m, and is bounded by Dm � mδ f . This bound is saturated
when v−ka f (x) is a product of irreducible polynomials, each
of which appear only once. Our main result (Theorem IX.1)
states that any consistently local W (ly,0) can be written as
a linear sum of local K (k,m). Thus it is straightforward to
enumerate all possible W (ly,0), which is simply all matrices
in the subspace of FLx×Lx

p spanned by the set of local K (k,m)

(note that the full set of {K (k,m)}km for all 0 � k, m < Lx forms
a complete basis for this space). Figure 3 shows K (0,m) for
m = 0, 1, 2, 3 for a specific example, and how they evolve
from one row to the next while maintaining locality.

A property of the matrices K (k,m) is that they are periodic
with period pNm , meaning K (k,m)

i+pNm ,i′+pNm = K (k,m)
ii′ , where Nm ≡

�logp(m + 1)�. They also have cycles of period pNm , meaning

K (k,m) = F pNm
K (k,m)F−pNm

. Since Dm increases monotonically
with m, only m up to some maximum value, M, are local
and may be included in W (ly,0). We therefore see that W (ly,0)

must be periodic with period pNM . Thus locality enforces that
the projective representation characterizing the phase, W (ly,0),
be pNM -translation invariant! This is a novel phenomenon
that does not appear in, say, subsystem SPTs with linelike
symmetries where the projective representation does not have
to be periodic (and as a result there are an infinite number of
distinct phases in the thermodynamic limit, even with a local
model).

How many possible phases may exist for a given (lx, ly)?
This is given by the number of K (k,m) that can fit within a di-
agonal band of width 	 ≡ 1 + 2lx + 4lyδ f . For each m, K (k,m)

is local if 0 � k < 	 − Dm. Thus there are Cm ≡ max{	 −
mDm, 0} possible k values for each m. The total number of
local K (k,m) is then

∑
m Cm.

Consider the case where f (x) = xka f1(x) f2(x) . . . where
each unique irreducible factor fi(x) only appears once. Then,
Dm = mδ f . The total number of local K (k,m) is then

Nloc =
∞∑

m=0

max{	 − mδ f , 0} (65)

= δ f

2
�C�(2C − �C� + 1), (66)
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K(0,0) K(0,1)

K(0,2)

K(0,3)

FIG. 3. Visualization of the matrices K (k,m) for the example of f (x) = 1 + x + x2 and p = 2, for k = 0 and m = 0, 1, 2, 3 (other k can
be obtain by shifting every element k steps to the left). Each blue cell (i′, i), counting from the top left, represents a nonzero matrix element
K (0,m)

i′i = 1. The arrows indicate evolution by K → FKF−1, under which they exhibit cycles of period 2�log2(m+1)�, as can be seen. Each of them
are only nonzero about a small diagonal band (nongray squares) of width given by Dm = 1 + 2m. A K (k,m) is local if this white band fits inside
some diagonal band [Eq. (56)]. If a K (k,m) is local, then it can be seen that under evolution it retains locality (the white band never gets larger),
a property which we call consistent locality. The main result of this paper is that any consistently local matrix can be written as a linear sum
of local K (k,m). Since there are only a finite number of local K (k,m), there are only a finite number of consistently local matrices that can be
written, and therefore a finite number of distinct phases in the thermodynamic limit. The number will depend on the choice of (lx, ly ), i.e., how
local the model is. Notice that consistent locality is nongeneric: if we just pick a local matrix by filling in elements along the diagonal band at
random, it will generically quickly become highly nonlocal after a few steps of evolution.

where we have just summed m to infinity since 	 � Lx/δ f ,
and C ≡ 	/δ f . Notice that Nloc only depends only on the com-
bination 	, and not specifically what lx and ly are. The W (ly,0)

describing each phase is therefore a linear sum of these Nloc

matrices K (k,m), and so the total number of possible phases
is pNloc . These phases are in one-to-one correspondence with
elements of the group ZNloc

p , and exhibit the group structure
under stacking. Note that this number is an upper bound on
the number of possible phases with a given (lx, ly).

Consider the example in Fig. 3, which has f (x) = 1 + x +
x2 and p = 2. Suppose we were interested in phases that have
locality (lx, ly) = (1, 0), then the matrix W

(ly,0)
i′i may only be

nonzero if −1 � i′ − i � 1. The only local K (k,m) matrices
are then K (−1,0), K (0,0), K (1,0), and K (−1,1). Then, our result
(Theorem IX.1) states that all consistently local W (ly,0) are
a linear sum (with binary coefficients) of these four K (k,m)

matrices. There are therefore only 24 possible phases, and they

all have twist phases that are periodic with a period of 2 sites
(or 1 if the coefficient of K (−1,1) is zero).

C. More fractal symmetries

Beyond these two cases, we may imagine more general
combinations of fractal symmetries of the form

G =
N−1∏
i=0

Z( fi,yηi )
p , (67)

where we have N different fractals fi(x), which each have
positive time direction yηi given by ηi = ±1. We again assume
none of fi(x) are monomials. In this language, the previous
case of two fractal symmetries is given by N = 2 with f0(x) =
f1(x̄) = f (x), and η0 = −η1 = 1. Note that we could have
allowed p to vary among the fractals—the reason we do not
consider this case is that the twist phases between generators
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of Zp and Zq are gcd(p, q)th roots of unity, but since p and q
are both prime, this phase must be trivial.

By an argument similar to that given in Sec. IV A, we
may show that any twist phase between the two generators

of Z( fi,yηi )
p and Z

( f j ,y
η j )

p for which ηi = η j must be trivial.
What about when ηi �= η j? In that case, we can show that
there may only exist nontrivial twist phases between them if
fi(x) = f j (x̄).

Suppose we have some matrix W (ly,0) describing twist

phases between symmetry generators of Z( fi,yηi )
p and Z

( f j ,y
η j )

p .
Going to a polynomial representation W (ly,0)(u, v) [as in
Eq. (60)], the change of basis to a different row is

W (ly+n,n)(u, v) = fi(uv)n f j (v̄)−nW (ly,0)(u, v), (68)

which must be local for all n. Suppose that W (ly,0)(u, v) is pk-
periodic, such that upk

W (ly,0)(u, v) = W (ly,0)(u, v). Then,

W (ly+npk ,npk )(u, v) = ( fi(v)pk
f j (v̄)−pk

)nW (ly,0)(u, v) (69)

should also be local for all n (recall that locality in the
polynomial language is a statement about the powers of v

present). This implies that fi(v)pk
f j (v̄)−pk = 1, or fi(vpk

) =
f j (v̄pk

). If pk � Lx, then this means that we must have fi(x) =
f j (x̄). In the case where pk �� Lx, we may simply consider
larger system sizes Lx, Ly → pmLx, pmLy, but with the same
periodicity pk , and come to the same conclusion. Hence, there
can only exist nontrivial twist phases between symmetries
with fi(x) = f j (x̄) and ηi = −η j .

For the more general group G in Eq. (67), to find all
the possible phases with a fixed locality (lx, ly), we should
simply find all pairs (i, j) where ηi = −η j and fi(x) = f j (x̄),
and construct a local W (ly,0) matrix for each such (i, j) pair.
Thus the case with two fractal symmetries G = Z( f ,y)

p × Z( f̄ ,ȳ)
p

already contains all the essential physics.

V. CONSTRUCTING COMMUTING MODELS FOR
ARBITRARY PHASES

In this section, we show that it is indeed possible to realize
all the phases derived in the previous section for systems with
two fractal symmetries, G = Z( f ,y)

p × Z( f̄ ,ȳ)
p , in local Hamil-

tonians. We show how to construct a Hamiltonian, composed
of mutually commuting local terms, for an arbitrary phase
characterized by the matrix W (ly,0). These Hamiltonians are
certainly not the most local models that realize each phase,
but they are quite conceptually simple and the construction
works for any given W (ly,0).

Let us define Zp generalizations of the Pauli matrices X
and Z satisfying the following algebra:

X N = ZN = 1, (70)

XZ = e
2π i

p ZX, (71)

and may be represented by a p × p diagonal matrix Z whose
diagonals are p-th roots of unity, and X as a cyclic raising
operator in this basis.

The local Hilbert space on each site (i, j) of the square
lattice is taken to be two such p-state degrees of freedom,
labeled a and b, which are operated on by the operators

Z (α)
i j and X (α)

i j , for α ∈ {a, b}. Each Z (α)
i j only has nontrivial

commutations with X (α)
i j on the same site and α.

Let us also define a vectorial representation of such oper-
ators: functions of vectors v ∈ FLx

p to operators on the row j
as

Z (α)
j [v] =

Lx−1∏
i=0

(
Z (α)

i j

)vi
, (72)

X (α)
j [v] =

Lx−1∏
i=0

(
X (α)

i j

)vi
. (73)

One can verify that the commutation relations in this repre-
sentation are

X (α)
j [v]Z (α)

j [w] = e
2π i

p vT wZ (α)
j [w]X (α)

j [v] (74)

for two operators on the same row j with the same α ∈ {a, b},
and trivial otherwise.

The on-site symmetry group is G = Z( f ,y)
p × Z( f̄ ,ȳ)

p . Let us
label the first Zp factor as a, and the second as b, and let g(a)

and g(b) be generators for the two. Then, we take the on-site
representation

ui j (g
(α) ) = X (α)

i j . (75)

As always, we take Lx to be a power of p, and Ly such that
f (x)Ly = 1. The total symmetry group is Gtot = ZLx

p × ZLx
p .

An arbitrary element of the first ZLx
p factor, with basis defined

with respect to row j0, is given by

S(g(a, j0 )[v]) =
Ly−1∏
j=0

X (a)
j [F j− j0 v] (76)

and of the second by

S(g(b, j0 )[v]) =
Ly−1∏
j=0

X (b)
j [(FT ) j0− jv]. (77)

Suppose we are given a consistently local matrix W (ly,0)

representing the twist phase. For convenience, let us denote
W j ≡ W (ly+ j, j). Recall that consistent locality implies (W j )i′i
is only nonzero if i′ − i is within some small range, for all j.
Then, let us define the operators

Ai j = X (a)
j [ei]Z

(b)
j+ly

[−W jei]Z
(b)
j+ly+1[FW jei],

Bi j = X (b)
j+ly

[ei]Z
(a)
j [−W T

j ei]Z
(a)
j−1

[
FT W T

j ei
]
. (78)

Notice that these are local operators, as W j is consistently
local. Consider the Hamiltonian

H = −
∑

i j

Ai j −
∑

i j

Bi j, (79)

which we will now show is symmetric, composed of mutu-
ally commuting terms, and has a unique ground state which
realizes the desired twist phase W j .

First, let us show that Ai j and Bi j commute with all
S(g(a, j0 )[v]) and S(g(b, j0 )[v]). Note that Ai j commutes with all
a type symmetries, and Bi j commutes with all b type symme-
tries trivially. To see that Ai j commutes with S(g(b, j0 )[v]), note
that the phase factor obtained by commuting the symmetry
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through the Z (b)
j+ly

term exactly canceled out by the phase from

the Z (b)
j+ly+1 term. In the same way, it can be shown the Bi j

commutes with all S(g(a, j0 )[v]). Thus H is symmetric.
Next, we verify that all terms are mutually commuting. One

can verify that Ai j and Bi′ j with the same j commutes, as the
phases from commuting each component individually cancels.
For Ai j and Bi′, j+1, one finds that Ai jBi′, j+1 = αBi′, j+1Ai j ,

where α = e
2π i

p (eT
i FT W T

j+1ei′−eT
i W T

j FT ei′ ) = 1 using the fact that
W T

j+1 = (F−1)T W T
j FT . All other terms commute trivially.

Therefore this Hamiltonian is composed of mutually commut-
ing terms. The set {Ai j} ∪ {Bi j} may therefore be thought of
as generators of a stabilizer group, and the ground state is
given by the unique state |ψ〉 that is a simultaneous eigenstate
of all operators, Ai j |ψ〉 = Bi j |ψ〉 = |ψ〉. Uniqueness of the
ground state follows from the fact that all Ai j and Bi j are all
independent operators, which can be seen simply from the fact
that Ai j is the only operator which contains X (a)

i j , and Bi, j−ly is

the only operator which contains X (b)
i j (all other operators act

as Z (α)
i j or identity on the site i j).

Let show that the ground state is uncharged under all
symmetries: S(g(α, j0 )[v]) |ψ〉 = |ψ〉. We do this by showing
that every symmetry operation can be written as a product of
terms Ai j and Bi j in the Hamiltonian. Let us define a vectorial
representation for Ai j and Bi j ,

Aj[v] =
∏

i

Avi
i j = X (a)

j [v]Z (b)
j+ly

[−W jv]Z (b)
j+ly+1[FW jv],

Bj[v] =
∏

i

Bvi
i j = X (b)

j+ly
[v]Z (a)

j [−W T
j v]Z (a)

j−1

[
FT W T

j v
]
,

(80)

and note that∏
j

A j[F j− j0 v]

= S(g(a, j0 )[v])
∏

j

Z (b)
j+ly

[−W jF j− j0 v]Z (b)
j+ly+1[FW jF j− j0 v]

= S(g(a, j0 )[v])

×
⎡⎣∏

j

Z (b)
j+ly

[−W jF j− j0 v]

⎤⎦⎡⎣∏
j

Z (b)
j+ly

[W jF j− j0 v]

⎤⎦
= S(g(a, j0 )[v]) (81)

where we have again used the evolution equation W j =
FW j−1F−1. Similarly, we may show that∏

j

B j[(FT ) j−ly− j0 v] = S(g(b, j0 )[v]). (82)

Thus all symmetries may be written as a product of Ai j and
Bi j , so therefore the ground state |ψ〉 has eigenvalue +1 under
all symmetries.

Next, let us measure the twist phases to verify that this
model indeed describes the desired phase. Consider twisting
by the symmetry g(a,0)[ei]. Let us conjugate every term in the
Hamiltonian crossing the j = 0 cut by the truncated symmetry
operator S�(g(a,0)[ei]). The only terms which are affected by

this conjugation are Bi′,0 for which eT
i W T

0 ei′ = W
(ly,0)

i′i �= 0,
which are transformed as

Bi′,0 → B′
i′,0 = e− 2π i

p W
(ly ,0)

i′ i Bi′,0 (83)

on the zeroth row, and B′
i′, j = Bi′, j on all other j �= 0, in the

twisted Hamiltonian. Now, we are curious about the charge
of a symmetry g(b,ly )[ei′ ] in the ground state of this twisted
Hamiltonian, which acts as

S(g(b,ly )[ei′ ]) =
∏

j

B j[(FT ) jei′ ]

= e
2π i

p W
(ly ,0)

i′ i
∏

j

B′
j[(F

T ) jei′ ] (84)

since the symmetry only includes a single Bi′,0 on the zeroth
row. Thus the ground state of the twisted Hamiltonian (which
has eigenvalue 1 under B′

i j), has picked up a nontrivial charge
under the symmetry S(g(b,ly )[ei′ ]), relative to in the untwisted
Hamiltonian. Indeed, this phase is

�
(
g

(b,ly )
i′ , g(a,0)

i

) = e
2π i

p W
(ly ,0)

i′ i , (85)

which is exactly as desired. Thus this model indeed realizes
the correct projective representation and describes the desired
phase of matter.

Note that these models bear resemblance to the cluster
state, and can be understood as a Zp version of the cluster
state on a particular bipartite graph. Suppose we have a
graph defined by the symmetric Zp-valued adjacency matrix
Adj(r, r′) ∈ Zp, where r, r′ label two particular sites. Then,
the Hamiltonian of a generalized cluster state on this graph is
given by

Hclus =
∑

r

UXrU
†, (86)

where U = ∏
rr′ (CZrr′ )Adj(r,r′ ), and CZrr′ is a generalized

controlled-Z (CZ) operator on the bond connecting sites r
and r′. We define the Zp generalization of the CZ operator by

CZrr′ |zrzr′ 〉 = e
2π i

p zr zr′ |zrzr′ 〉, where |zrzr′ 〉 is the eigenstate of

Zr and Zr′ with eigenvalues e
2π izr

p and e
2π izr′

p , respectively, such
that CZrr′XrCZ†

rr′ = XrZr′ . Let us label a site by r = (i, j, α),
its xy coordinate and its sublattice index α ∈ {a, b}. Then, the
graph relevant to this model is given by the adjacency matrix

Adj((i, j, a), (i′, j′, b)) =
⎧⎨⎩(−W j )i′i if j′ = j + ly

(FW j )i′i if j′ = j + ly + 1
0 else

= Adj((i′, j′, b), (i, j, a)). (87)

Hence, one can think of each site (i, j, a) as being connected
to sites (i′, j + ly, b) by the adjacency matrix given by −W j ,
and also sites (i′, j + ly + 1, b) via FW j . Generically, this
graph will be complicated and nonplanar.

VI. IRREVERSIBILITY AND PSEUDOSYMMETRIES

In this section, we discuss fractal symmetries described by
a nonreversible linear cellular automaton (for which fractal
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SPTs do still exist [59,60]), or even originally reversible cel-
lular automata that become irreversible when put on different
system sizes (e.g., Lx or Ly that are not powers of p).

Fractal symmetries are drastically affected by the total
system size. For example, consider the Sierpinski fractal
SPT [59], which is generated by a nonreversible f (x) = 1 + x
with p = 2, on a lattice of size Lx = Ly = 2N . In this scenario,
there are no nontrivial symmetries at all! The total symmetry
group Gtot = Z1 is simply the trivial group. Yet, we can still
define large operators that in the bulk look like symmetries
(i.e., they obey the local cellular automaton rules), but vio-
late the rules only within some boundary region. The total
symmetry group being trivial may be thought of as simply an
incommensurability effect, whereby the space-time trajectory
of the CA cannot form any closed cycles. Thus there is still
a sense in which this model obeys a symmetry locally. This
effect is exemplified when one notices that, upon opening
boundary conditions, there are no obstacles in defining fractal
symmetries and nontrivial SPTs. In this way, it should still be
possible to extract what the SPT phase “would have been” if
the CA rules had been reversible or if the total system sizes
had been chosen more appropriately such the total symmetry
group had been nontrivial. To generalize away from the fixed
point and to an actual phase, we must formulate what it
means for a perturbation to be “symmetric” in a system with
a potentially trivial total symmetry group. We will say that
such a model is symmetric under a pseudosymmetry, as a
symmetry of the full system may not even exist. Thus a
system may respect a pseudosymmetry, and be in a nontrivial
pseudosymmetry-protected topological phase (pseudo-SPT),
despite not having any actual symmetries!

Let us define what we mean when we say that a system
is symmetric under a fractal pseudosymmetry. Let us work in
the case of two fractal symmetries, so G = Z( f ,y)

p × Z( f̄ ,ȳ)
p . As

always, we may decompose the Hamiltonian into a sum of
local terms

H =
∑

i j

Hi j, (88)

where each Hi j has support within some bounded box. Sup-
pose Hi j has support only on sites with (x, y) coordinates i0 �
x � i1 and j0 � y � j1, where 	x ≡ i1 − i0 and 	y ≡ j1 − j0
are of order 1. Then, we say that Hi j is symmetric under the
fractal pseudosymmetry if it commutes with every

S̃(a, j0, j1 )
i =

j1∏
j= j0

u j[g
(a); F j− j0 ei] ; i0 − kb	y � i � i1 − ka	y,

S̃(b, j1, j0 )
i =

j1∏
j= j0

u j[g
(b); (FT ) j1− jei] ; i0 + ka	y � i � i1 + kb	y,

(89)

which is enough to replicate how any fractal symmetry would
act on this lx × ly square, if they existed for the total system.
Notice that these only involve positive powers of F, as we do
not assume an inverse exists. Thus, even in the extreme case
where Gtot is trivial, a Hamiltonian may still be symmetric
under the fractal pseudosymmetry G in this way. In the
opposite extreme case where f (x) is reversible and Gtot = GLx

(as was the topic of the rest of this paper), Hi j commuting with
all pseudosymmetries is equivalent to it commuting with all
the fractal symmetries in Gtot . Thus it is natural to expect that
pseudosymmetries may also protect nontrivial SPT phases.

Indeed, notice that one can perform a twist of a pseudosym-
metry. Given a cut, j0, we may use the operator S̃(a, j0, j0+M )

i ,
for some 1 � M � Lx, in place of the truncated symmetry
operator S�(g(a, j0 )

i ) from Sec. IV. This can be used to obtain a
twisted Hamiltonian as before by conjugating each term

Hi j → S̃(a, j0, j0+R)
i Hi j (S̃

(a, j0, j0+R)
i )† (90)

for some 1 � R � Lx if Hi j crosses j0. Each Hi j commuting
with all their respective pseudosymmetries [Eq. (89)] means
that the only terms which may no commute with S̃(a, j0, j0+R)

i
are those near (i, j0) and those at the far-away row j0 + R
which are not affected by the twisting process.

Measuring the charge of a pseudosymmetry is a trickier
process, since there is no “symmetry operator” which we can
measure the charge of in the ground state. Hence, the charge of
a pseudosymmetry is not so well defined. However, we may
still measure the charge relative to what it would be in the
ground state on the untwisted Hamiltonian, |ψ〉, which turns
out to be well defined. One approach is to again express the
twisted process as the action of some local unitary near (i, j0),
Htwist |ψ〉 = UHU † |ψ〉, where as before A(U ) is contained
within some (2lx + 1) × (2ly + 1) box (A(U ) is defined in
Eq. (48). If the support of U were entirely in this box, then we
could measure the change in the charge of a b type symmetry
by

�
( j0+ly, j0 )
i′i = 〈ψ | S†U †SU |ψ〉, (91)

where S = S̃
(b, j0+ly, j0 )
i′ , and |ψ〉 is the ground state of H (for

convenience we have suppressed the dependence of U and S
on i, i′, etc.). However, if the support of U is not confined to
this box, this expectation value may not yield a pure phase.
One solution is to use a family of larger pseudosymmetry
operators which act the same way within A(U ), and take the
limit of the sizes going to infinity. For example, using S(n)
instead of S in the above, defined as

S(n) ≡ S̃
(b, j0+ly+pn, j0−pn )
i′+ka pn (92)

which is shown in Fig. 4. For large n and i′ within

−lx + kaly � i′ − i � lx + kbly, (93)

this operator acts in the same way as S within A(U ), but is also
a valid pseudosymmetry operator elsewhere as well, except on
rows j0 + ly + pn and j0 − pn which are far away, as shown
in Fig. 4. Then, we may define

�
( j0+ly, j0 )
i′i ≡ lim

n→∞ 〈ψ | S(n)†U †S(n)U |ψ〉, (94)

which, in the large n limit (while keeping pn � Lx), is a pure
phase. In the case where Gtot = GLx , this will coincide with
the twist phases

�
( j0+ly, j0 )
i′i = �

(
g

(b, j0+ly )
i′ , g(a, j0 )

i

)
(95)

discussed earlier.
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FIG. 4. A visualization of the process to defining a twist phase
for pseudosymmetries S̃. Twisting with respect to S̃(a, j0, j0+R)

i can be
thought of as acting via a unitary U , which has some region A(U )
shown as the yellow square. To measure the change in charge of
another symmetry, we take the expectation value of the commutator
[Eq. (94)] of U with S̃

(b, j0+ly+pn, j0−pn )
i′+ka pn , as shown, for large n. This

may be nontrivial for small |i′ − i| when they overlap, and is the sign
of a nontrivial pseudo-SPT.

However, the key ingredient to showing that this pseudo-
SPT phase is truly stable to local pseudosymmetric pertur-
bations is to show that �

( j1+ly, j1 )
i′i for all j1 is completely

determined by its value at j0. Define (like before) the matrix
W ( j1, j0 ) ∈ FLx×Lx

p by

�
( j1, j0 )
i′i = e

2π i
p W

( j1 , j0 )

i′ i (96)

Starting with j0 = 0, the matrix W (ly,0) would normally be
evolved to W (ly+1,1) using Eq. (59). However, in this case,
there is no inverse F−1 which we can use. Instead, we have
the relation

W (ly+1,0) = W (ly+1,1)F (97)

which does not uniquely determine W (ly+1,1), as we may add
vT to any row of W (ly+1,1), for v ∈ ker(FT ). However, it is
easy to show that any v ∈ ker(FT )\{0} is highly nonlocal,
by which we mean that there are no integers a and b for
which vi is only nonzero for a � i � b, and 0 � b − a � Lx

(essentially, any nonzero vector v for which FT v = 0 needs to
be exploiting the periodic boundary conditions). Thus adding
any nonzero vector v ∈ ker(F T ) to a row of a local W (ly+1,1)

will necessarily make it nonlocal. Thus if there exist a local
matrix W (ly+1,1) satisfying Eq. (97), then it is the only local
one. The matrices K (k,m) can be defined even for irreversible
f (x). Therefore, for a matrix W (ly,0) composed of a sum of
local K (k,m), a local W (ly+1,1) does exist and is unique. This can
be reiterated to uniquely determine the set of local W ( j0+ly, j0 )

for all j0, assuming it is commensurate with the system size.
Thus we have shown that �

( j0+ly, j0 )
i′i is indeed a global

invariant (knowing it for one j0 determines it for all j0).
It therefore cannot be changed via a local pseudosymmetry
respecting perturbation (or equivalently a pseudosymmetry
respecting local unitary circuit), and such a phase can indeed
be thought of as a nontrivial pseudo-SPT.

To define K (k,m) for cases where f (x) may not be re-
versible, we may simply note that each solution is pNm -
periodic in both directions. Thus it is straightforward to
generalize K (k,m) for m where pNm divides Lx and Ly. In
the coming proof, we are careful to show that f (x) is only
ever divided out of polynomials of finite degree in x which
contained f (x) as a factor anyway, so polynomial division
by f (x) is remainder-less and results in another polynomial.
Thus the results apply equally well for nonreversible f (x),
as long as Lx and Ly are commensurate with the periodicity.
This commensurability requirement may greatly reduce the
number of possible pseudo-SPT phases, for example, if Lx or
Ly are coprime to p, then only m = 0 is allowed. Note that on
such system sizes is also possible to have periodicity that is
not a power of p in nongeneric cases, for example, the special
case where f (x) = g(xν ) is a function of only xν and ν is not
a power of p.

VII. IDENTIFYING THE PHASE

Suppose we are given an unknown system with G =
Z( f ,y)

p × Z( f̄ ,ȳ)
p , how do we determine what phase it belongs

to and how do we convey compactly what phase it is in?
Recall that for the case with linelike subsystem symmetries
(the topic of Ref. [59]), to describe a specific phase required
information growing with system size, and so a modified
phase equivalence relation was introduced to deal with this.
Such a modified phase equivalence was not needed in this
case, and we will show that indeed a specific local phase may
be described with a finite amount of information. Suppose
we are given an unknown Hamiltonian H . It is possible to
compute the full set of twist phases and construct the Lx × Lx

matrix W (0,0). If the only nonzero matrix elements of W (0,0)

are within some diagonal band, then we are set. Otherwise,
find the smallest integer ly � 0 for which W (ly,0) = F lyW (0,0)

is only nonzero within a diagonal band of width 	 ∼ O(1).
This is guaranteed to be the case for some ly (also of O(1))
due to locality. Note that 	 and ly are independent of which
row we call the zeroth row. From the fact that W ( j0+ly, j0 ) must
also be nonzero only within this diagonal band for all j0, our
main result (Theorem IX.1) states that W (ly,0) must be a sum

W (ly,0) =
∑

(k,m)∈loc

CkmK (k,m), (98)

where Ckm ∈ Fp, and “loc” is the finite set of all pairs (k, m)
where K (k,m) is also only nonzero within the same band of
width 	. Thus this phase is specified fully by our choice of
origin, ly, and the finite set of nonzero Ckm. Furthermore,
this description does not depend on Lx and Ly, and so it
makes sense to say whether two systems of different sizes
belong to the same phase. However, note that unlike with
ordinary phases, the choice of origin is important here. This
procedure may also be done in cases where the symmetry is
irreversible, the matrix W (ly,0) will instead be defined from the
pseudosymmetry twist phases �

(ly,0)
i′,i .
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VIII. DISCUSSION

We have therefore asked and answered the question of
what SPT phases can exist protected by fractal symmetries
for the type G = Z( f ,y)

p , G = Z( f ,y)
p × Z( f̄ ,ȳ)

p , or combinations
thereof. If we completely ignore locality along the x direction,
effectively compactifying our system into a quasi-1D cylinder
with global symmetry group Gtot = GLx , we would have found
that the possible phases are classified by H2[GLx , U(1)],
which is infinitely large as Lx → ∞. What we have shown,
however, is that the vast majority of these phases require
highly nonlocal correlations that cannot arise from a local
Hamiltonian. In the case of G = Z( f ,y)

p , locality disqualifies

all but the trivial phase. In the G = Z( f ,y)
p × Z( f̄ ,ȳ)

p case, there
exists multiple nontrivial phases that are allowed. If we restrict
the twist phases to be local up to some degree, (lx, ly), then
there are only a finite number of possible phases, independent
of total system size Lx and Ly. The number of phases depends
only on the combination 	 ≡ 1 + 2lx + 4lyδ f , which is linear
in both lx and ly (thus demonstrating a kind of holographic
principle). For more general combinations of such fractal
symmetries, we have shown that the classification of phases
simply amounts to finding pairs of fractal symmetries of the
form (Z( f ,y)

p ,Z( f̄ ,ȳ)
p ) and repeating the analysis above.

Where do other previously discovered 2D systems with
fractal symmetries fall into our picture? The quantum
Newman-Moore paramagnet [56] is described by the Hamil-
tonian

HNM = −
∑

i j

Zi jZi, j+1Zi−1, j−1 − h
∑

i j

Xi j . (99)

Here, Xi j and Zi j , are Pauli matrices acting on the qubit degree
of freedom on site (i, j). The symmetry in our notation is
given by G = Z( f ,y)

2 with f (x) = 1 + x (which is irreversible).
HNM has a phase transition from a spontaneously symmetry-
broken phase at |h| < 1 to a trivial symmetric paramagnet
at |h| > 1. Our results would imply that there can be no
nontrivial SPT phase in this system. Thus all the possibilities
in this model are different patterns of broken symmetry.
Next, we have the explicit example of the 2D Sierpinski
fractal SPT [59,61] (which appeared at a gapped boundary
in Ref. [60]). This model is isomorphic to the cluster model
on the honeycomb lattice, and is described by symmetries
G = Z( f ,y)

2 × Z( f̄ ,ȳ)
2 with f (x) = 1 + x. With proper choice of

unit cell, the Hamiltonian is given by

Hclus = −
∑

i j

X (b)
i j Z (a)

i j Z (a)
i, j−1Z (a)

i−1, j−1

−
∑

i j

X (a)
i j Z (b)

i j Z (b)
i, j+1Z (b)

i+1, j+1. (100)

Notice that f (x) = 1 + x with p = 2 is irreversible for all sys-
tem sizes, thus these phases should be viewed as pseudo-SPT
phases (and indeed every term commutes with all the pseu-
dosymmetries). Computing the pseudo-SPT twist phases for
Hclus gives �

( j, j)
i′i = (−1)δi′ i . Thus we have simply W (0,0) =

1 = K (0,0). A translation invariant model must simply be a
sum of K (k,0) and this is indeed the case here. The family
of 2D fractal SPT models described in Ref. [59] all realize

W (0,0) = 1. Our results here imply the existence of a number
of new local phases for which the Hamiltonian and twist
phases are not strictly translation invariant with period 1.
Section V gave a construction of such models, which works
even when f (x) is not reversible. The twist phases for these
models may be translation invariant with a minimal period of
2n sites along either x or y, but in exchange will also require
interactions of range O(2n). We show explicitly in Fig. 5 a few
of these additional phases that were previously undiscovered,
which are represented as cluster models on various graphs.
Recall that the usual Z2 cluster model for on an arbitrary
graph is simply given by the Hamiltonian

Hclus = −
∑

v

Xv

∏
v′∈adj(v)

Zv′ , (101)

where the sum is over vertices v, and adj(v) is the set of
vertices connected to v by an edge.

A signature of subsystem SPT phases is an extensive pro-
tected ground-state degeneracy along the edge. That is, for an
edge of length Ledge, there is a ground-state degeneracy scaling
as ln GSD ∼ Ledge which cannot be lifted without breaking the
subsystem symmetries. The dimension of the protected sub-
space may be thought of as the minimum dimension needed to
realize the projective representation characterizing the phase
on the boundary. For the case of the honeycomb lattice cluster
model [Fig. 5(a)], we have exactly GSD = 2Ledge . For the more
complicated models, some of this degeneracy may be lifted,
leaving only a fraction GSD = 2αLedge remaining. Moreover,
the degeneracy along the left or right edges will also generally
be different.

IX. PROOF OF RESULT

In this section, we will focus on proving the claim in
Sec IV B that any consistently local matrix W must be a linear
sum of K (k,m), each of which are local. We will say that the
set of matrices satisfying this property, {K (k,m)}, serve as an
optimal basis (this term will be precisely defined soon). Recall
that we are dealing with the case where Lx = pN is a power of
p and Ly is chosen such that f (x)Ly = 1. We will simply use L
to refer to Lx in this section for convenience.

A. Definition and statement

We will be using the polynomial representation exclu-
sively. Let W (u, v) be a Laurent polynomial over Fp in u
and v representing the twist phases, defined according to
Eq. (60). Formally, periodic boundary conditions uL = vL =
1 means that we only care about the equivalence class of
W (u, v) in Fp[u, v]/〈uL − 1, vL − 1〉, where 〈uL − 1, vL − 1〉
is the ideal generated by these two polynomials. Rather than
dealing with equivalence classes, we will instead deal with
canonical form polynomials: a polynomial q(u, v) is in canon-
ical form if degu q(u, v) < L and degv q(u, v) < L. Obviously,
canonical form polynomials are in one-to-one correspondence
with equivalence classes from Fp[u, v]/〈uL − 1, vL − 1〉. Any
polynomial with u or v degree larger than L can be brought
into canonical form via simply taking ua = ua mod L and
va = va mod L. From now on, we will implicitly assume all
polynomials have been brought to their canonical form.
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(a) K(0,0) (b) K(−1,1)

(c) K(−1,2) (d) K(−2,3)

FIG. 5. Explicit examples of some possible phases for the case of G = Z( f ,y)
2 × Z( f̄ ,ȳ)

2 with f (x) = 1 + x: the Sierpinski triangle symmetry.
The models are constructed following the procedure of Sec V, and are simply cluster models defined on some underlying graph. The models
all have ly = 0 and W 0 = W (0,0) given by (a) K (0,0), (b) K (−1,1), (c) K (−1,2), and (d ) K (−2,3). Each site [gray circle in (a)] consists of an a and
a b qubit, which are represented by blue and red vertices. Example of fractal subsystems on which the symmetries act are also shown in (a):
green highlighted vertices for the a type subsystems, and orange for the b. The reader may verify that

∏
X on these subsystems is indeed a

symmetry of the cluster model defined on all these graphs. The case (a) is simply the previously studied honeycomb lattice cluster model,
which is translation invariant. The other three are previously undiscovered phases, and are only translation invariant with a period of (b) 2 or
[(c) and (d)] 4 along the x and y directions. The graphs for phases with K (k,m) for k other than the ones chosen here may be obtained simply
by shifting each blue a vertex left/right by a number of sites, while maintaining connectivity of the graph. For each case, we also show one
cycle of the matrices W j = F jW 0F− j , the matrix characterizing the twist phases for symmetries defined with respect to row j, presented in
the same manner as in Fig. 3. The lower-leftmost a and b vertices of each graph are defined to be at coordinate (x, y) = (0, 0). Although we
have only shown examples on an 8 × 8 torus, these may be tiled onto any commensurate system size.

Let us now define what it means for a polynomial to be
local.

Definition IX.1. A Laurent polynomial g(u, v) is (a, b)-
local, for integers a � b, if

degv v−ag(u, v) � b − a. (102)

A Laurent polynomial g(u, v) being (a, b)-local roughly
means that the only nonzero powers of v are va, va+1, ...,
vb (powers mod L). As a shorthand, we will more often say
that a polynomial is 	-local to mean (0, 	)-local, which can
be thought of as simply an upper bound on its v degree.
Whenever something is said to be 	-local, we are usually
talking about 	 � L being some finite value of order 1. Some
nice properties are that if g(u, v) is (a, b)-local, then

(1) vkg(u, v) is (a + k, b + k)-local;
(2) g(u, v)g′(u, v) is (a + a′, b + b′)-local, if g′(u, v) is

(a′, b′)-local;
(3) g(u, v)N is (Na, Nb)-local.

Next, let us define the “evolution operator” th with respect
to an (invertible) Laurent polynomial h(x) which operates on
a polynomial W (u, v) as

th : W (u, v) → th(u, v)W (u, v); (103)

th(u, v) = h(v)−1h(uv). (104)

By invertible, we mean that there exists an inverse h(v)−1

with periodic boundary conditions, such that h(v)h(v)−1 =
1. In the case of h(x) = f (x), t f evolves the polynomial
W (ly,0)(u, v) → W (ly+1,1)(u, v). Notice that an overall shift,
h(x) → xah(x), results in th(u, v) → uath(u, v), which does
not affect the locality properties (which only depends on
powers of v). For the purposes of this proof we will therefore
simply work with (non-Laurent) polynomials h(x). We can
now define consistent locality.
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Definition IX.2. A Laurent polynomial g(u, v) is consis-
tently (a, b)-local under th if t n

h g(u, v) is (a, b)-local for
all n.

Physically, the twist phases W (ly,0)(u, v) must be consis-
tently (−lx + 2lyka, lx + 2lykb)-local [from Eq. (56)] under t f

in order to correspond to a physical phase obtained from a
local Hamiltonian.

Let us define

Um(u) = (u − 1)L−1−m (105)

for m = 0 . . . L − 1, which serves as a complete basis for
all polynomials g(u) ∈ Fp[u] with degree degu g(u) � L. Any
polynomial W (u, v) may therefore be uniquely expanded as

W (u, v) =
L−1∑
m=0

Um(u)Wm(v), (106)

which we take to be our definition of Wm(v). Since Um(u) are
all independent, if W (u, v) is 	-local, each Wm(v) must also
be 	-local.

Definition IX.3. A set of polynomials {Vm(v)} indexed by
m = 0, . . . , L − 1 is said to generate an optimal basis for th
if for every 	-local W (u, v), W (u, v) is consistently 	-local if
and only if Vm(v) | Wm(v) for all m.

The basis set {vkUm(u)Vm(v)} is then called an optimal
basis.

When we say Vm(v) | Wm(v), we mean that Vm(v) divides
Wm(v) as polynomials in Fp[v] without periodic boundary
conditions, i.e., there exists a polynomial q(v) such that
Wm(v) = q(v)Vm(v) and

degv q(v) = degv Wm(v) − degv Vm(v) � 	 − degv Vm(v),

(107)

which follows by addition of degrees, and since Wm(v) is 	-
local.

Suppose {Vm(v)} generates an optimal basis for th. Assum-
ing Vm(v) is invertible, {vkUm(u)Vm(v)}k,m for 0 � k, m < L
generates a complete basis for canonical form polynomials.
This basis is optimal with respect to th in the sense that all
consistently 	-local polynomials under th may be written as a
linear sum of 	-local basis elements. If there are only a finite
number Nloc of 	-local basis elements (as will be the case),
then there are also only a finite number pNloc of consistently
	-local W (u, v).

We can now restate our main theorem, the proof of which
will be the remainder of this section.

Theorem IX.1. The polynomials Vm(u, v), defined in
Eq. (64), generate an optimal basis for t f .

B. Proof

Let us first list some relevant properties of Um(u).
(1) (u − 1)nUm(u) = Um−n(u) for n � m, or 0 for n > m.
(2) Um(u) is pNm -periodic, meaning

upNm
Um(u) = Um(u), (108)

where Nm ≡ �logp(m + 1)�. This follows from the fact that

(upNm − 1)Um(u) = (u − 1)pNm
Um(u) = 0 (109)

since pNm > m, due to property 1.

(3) Um(u) is also cyclic under evolution by th with period
dividing pNm , t pNm

h U0(u) = U0(u). This follows from the fact
that upNm U0(u) = U0(u), and so

t pNm

h U0(u) = h(v)−pNm
h(uv)pNm

U0(u)

= h(v)−pNm
h(v)pNm

U0(u) = U0(u). (110)

(4) thUm(u) = Um(u) + ∑
m′<m qm′ (v)Um′ (u). Under evo-

lution by th, thUm(u) is given by simply Um(u), plus a linear
combination of Um′ (u) for m′ < m.

Using property 1, It is therefore easy to extract each
component Wm(v) in the expansion of Eq. (106) directly
from W (u, v) in a straightforward way. Suppose the largest
m for which Wm(v) �= 0 is m = M. Then, (u − 1)MW (u, v) =
WM (v)U0(u) gives only the m = Mth component multi-
plying U0(u). Then, we may take W ′(u, v) ≡ W (u, v) −
UM (u)VM (v), which has largest m given by M ′ < M. This
process can be repeated on W ′(u, v) to fully obtain Wm(v) for
all m. From property 2, we also find that W (u, v) is actually
pNm -periodic.

Property 4 is the most important property (and what makes
Um(u) a special basis for this problem). It follows from
property 3 for m = 0, thU0(u) = U0(u), and the fact that the
mth component of thUm(u) is obtained by

(u − 1)mth(u, v)Um(u) = th(u, v)U0(u) = U0(u), (111)

which remains unchanged under evolution by th. Thus sup-
posing the expansion of W (u, v) has some largest m value
m = M, then defining 
hW (u, v) according to

thW (u, v) = W (u, v) + 
hW (u, v), (112)

we must have that 
hW (u, v) has a largest m value m < M.
Alternatively, (u − 1)M
hW (u, v) = 0. This fact will be used
numerous times as it allows for a proof by recursion in M in
many cases.

Let us first prove two minor lemmas.
Lemma IX.2. Suppose {Vm(v)} generates an optimal basis

for some th. Then, Vm(v) | Vm′ (v) for all m′ � m and V0(v) =
1.

Proof. First, any 	-local W (u, v) that contains only an
m = 0 component, W (u, v) = U0(u)W0(v), is trivially also
consistently 	-local under any th, since thU0(u) = U0(u). Thus
it must be that V0(v) = 1. Next, if W (u, v) is consistently
	-local, then

(u − 1)nW (u, v) =
L−1∑
m=n

Um−n(u)Wm(v), (113)

must also be consistently 	-local for any n � 0. However,
this implies that Vm(v) | Wm+n(v). However„ all we know is
that Vm+n | Wm+n(v). For this to always be satisfied, we must
therefore have that Vm(v) | Vm′ (v) for all m′ � m. �

Lemma IX.3. Let W (u, v) be 	-local. Then, W (u, v) is
consistently 	-local under th if and only if 
hW (u, v) is also
consistently 	-local.

Proof. Consider evolving W (u, v),

thW (u, v) = W + 
hW, (114)

t2
hW (u, v) = W + 
hW + th
W, (115)

t3
hW (u, v) = W + 
hW + th
hW + t2

h 
hW, (116)
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and so on. By definition, if W (u, v) is consistently 	-local,
then t n

hW (u, v) must all be 	-local. However, this means that
each term added in increasing n, t n−1

h 
hW (u, v), must also
be 	-local, meaning that 
hW (u, v) is therefore consistently
	-local. If W (u, v) is not consistently 	-local, then that means
that there must be some n such that t n

h 
W (u, v) is not 	-
local, which therefore implies that 
hW (u, v) is also not
consistently 	-local. �

The next Lemma gives a family of a consistently 	-local
polynomials.

Lemma IX.4. Let Kh
m(u, v) = Um(u)h(v)m for some 0 �

m < L. Then, degv t n
hW (u, v) = mδh for all n. It is therefore

consistently mδh-local under th.
Proof. Let us prove by recursion in m. The base case,

m = 0, is true since U0(u) is indeed consistently 0-local. Now,
assume m > 0 and we have proved this Lemma for all m′ < m.

Let us compute 
hKh
m(u, v),


hKh
m(u, v) = Um(u)h(v)m−1(h(uv) − h(v)) (117)

= Um(u)h(v)m−1
δh∑

k=0

hkv
k (uk − 1), (118)

where h(x) = ∑δh
x=0 hkxk , and we have used property 2 of

Um(u) to replace uk → uk , where k ≡ (k mod pNm ) is posi-
tive. Then, we may use the identity

uk − 1 =
k∑

n=0

(
k

n

)
(u − 1)n (119)

to expand


hKh
m(u, v) = Um(u)h(v)m−1

δh∑
k=0

k∑
n=0

(
k

n

)
hkv

k (u − 1)n

(120)

=
δh∑

k=0

k∑
n=0

hkv
kh(v)n−1Kh

m−n(v) (121)

and note that by our recursion assumption, vkh(v)n−1Kh
m−n is

consistently (k, (m − 1)δh + k)-local. Since 0 � k � δh, each
term is therefore consistently mδh-local. Thus 
hKh

m(u, v) is
consistently mδh-local. By Lemma IX.3, Kh

m(u, v) is therefore
also mδh-local. Finally, the v degree of Kh

m(u, v) saturates mδh

since the mth component of t n
h Kh

m(u, v) has v-degree mδh for
all n. The proof follows for all m by recursion. �

Thus a family of consistently 	-local W (u, v) may be
created by a linear sum over of 	-local vkKh

m(u, v), over k and
m. However, this may not be exhaustive: there may be some
consistently 	-local W (u, v) that are not in this family. To
show exhaustiveness, we need to show that {Vm(v) = h(v)m}
generates an optimal basis for th. This is not true generally,
but is true in the case that h(x) is irreducible, which our next
lemma addresses. Notice that Vm(v) = h(v)m are consistent
with the properties of being generators of an optimal basis
from Lemma IX.2, V0(v) = 1 and Vm(v) | Vm′ (v) for all m′ �
m.

Lemma IX.5. Suppose h(x) is an irreducible polynomial.
Then, {Vm(v) = h(v)m} generates an optimal basis for th.

Proof. To prove that {h(v)m} generates an optimal basis
for th, we need to show that for any 	-local W (u, v), it is
consistently 	-local if and only if h(v)m | Wm(v) must hold
for all m.

First, the reverse implication follows from Lemma IX.4:
if W (u, v) is 	-local and each h(v)m | Wm(v), then W (u, v)
is also consistently 	-local. We must now prove the forward
implication.

Let W (u, v) by consistently 	-local under th, with the
expansion

W (u, v) =
M∑

m=0

Um(u)Wm(v), (122)

where M is the largest m value in the expansion, and WM (v) �=
0. We need to prove that this implies that h(v)m | Wm(v) for
all m. We now prove by recursion, and assume that this has
been proven for all M ′ < M. Note that for the base case M =
0, {h(v)m} indeed generates an optimal basis for all M = 0
polynomials W (u, v). If h(v) = cvk is a monomial, then this
proof is also trivial, so we will assume this is not the case in
the following.

Consider 
hW (u, v), which by Lemma IX.3, also has
maximum m < M and is consistently 	-local. Take the
m = M − 1th component of 
hW (u, v), obtained by (u −
1)M−1
hW (u, v), which by a straightforward calculation is
given by

(u − 1)M−1
hW (u, v) = g(v)h(v)−1WM (v)U0(u), (123)

where

g(v) =
δh∑

k=0

khkv
k (124)

δh ≡ degv h(v), hk is defined through h(v) = ∑
k hkv

k , and
k ≡ (k mod pNM ). Note that since W (u, v) is 	-local, despite
Eq. (123) containing h(v)−1, is of v-degree bounded by 	. By
our recursion assumption, h(v)M−1 must divide Eq. (123).

Let us prove that h(v) � g(v) and g(v) �= 0. First, since
degv h(v) = degv g(v) and h(v) is irreducible, if h(v) is to
possible divide g(v), it must be that g(v) = const · h(v). This
can only be the case if (k mod pNM ) ≡ k0 is the same for all
k. However then,

h(v) = k0

imax−1∑
i=0

hk0+ipNM vk0+ipNM (125)

= k0v
k0

(
imax−1∑

i=0

hk0+ipNM vi

)pNM

, (126)

which contradicts with the fact that h(v) is irreducible, as
imax > 1 and pNM > 1 (which is the case here). The g(v) = 0
is the k0 = 0 case of this. Thus g(v) �= 0 and h(v) � g(v).

Going back, we have that

h(v)M−1 | g(v)h(v)−1WM (v) (127)

⇒ h(v)M | g(v)WM (v), (128)

but since h(v) � g(v), it must be the case that h(v)M | WM (v).
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Now, consider W ′(u, v) = W (u, v) − UM (u)WM (v), which
is a sum of two consistently 	-local polynomials (using
Lemma IX.4), and so is also consistently 	-local. By our
recursion assumption, it then follows that h(v)m | Wm(v) for
m < M. Thus h(v)m | Wm(v) holds for all m in W (u, v).

By recursion in M, we have therefore proved that for all
W (u, v), h(v)m | Wm(v) must be true for all m. Thus {h(v)m}
generates an optimal basis for th. �

If f̃ (x) = x−ka f (x) is irreducible, then Lemma IX.5 is
sufficient to obtain all consistently (a, b)-local W (u, v). To do
so, we simply have to find all (k, m) where the basis element

vkK f̃
m (u, v) is (a, b)-local, and take a linear combination of

them. If there are Nloc(a, b) such basis elements, then the
pNloc (a,b) possible linear combinations are exhaustive.

In the case that f̃ (x) is not irreducible, there may be
consistently (a, b)-local polynomials that do not fall within
this family. However, note that it is always possible to expand
f̃ (x) in terms of its unique irreducible factors

f̃ (x) = f0(x)r0 f1(x)r1 . . . (129)

The next two lemmas allows us to use this result construct an
optimal basis for f̃ (x), based on this factorization.

Lemma IX..6. Let h(x) be an irreducible polynomial, and
r > 0 an integer. Then, {Vm(v) = h(v)m} generates an optimal
basis for thr , where m = �m/pα�pα and α is the power of p in
the prime factorization of r.

Proof. First, note that if p � r, p is coprime to r, then
being consistently 	-local under th is equivalent to being
consistently 	-local under thr . This follows from the fact that,
if W (u, v) has maximum m value m = M, then t pNM

h W (u, v) =
W (u, v). If W (u, v) is consistently 	-local under th, then
t n
hW (u, v) = t n mod pNm

h W (u, v) is, by definition, 	-local for all
n. If W (u, v) is instead consistently 	-local under thr = t r

h , then

t rn
h W (u, v) = t rn mod pNm

h W (u, v) is 	-local for all n. However,
rn takes on all value mod pNm , and so these two conditions are
equivalent. Thus Lemma IX.5 states that {h(v)m} generates an
optimal basis for th, which therefore also generates an optimal
basis for thr . Indeed, if p � r, h(v)m = h(v)m and the proof is
complete.

Next, consider the case where r = pα is a power of p.
Notice that t r

h (u, v) = th(ur, vr ) in this case is a function of
only ur and vr . Let W (u, v) be 	-local and decompose it as

W (u, v) =
r−1∑
i=0

r−1∑
j=0

(u − 1)r−1−iv jWi j (u
r, vr ) (130)

such that each of the i j“block” does not mix under evolution
by t r

h . Thus each i j may be treated as an independent system
in terms of variables ũ ≡ ur and ṽ ≡ vr , with L̃ ≡ L/r. Thus,
by Lemma IX.5, each i j component [and therefore W (u, v)]
is only consistently 	-local if and only if in the decomposition

Wi j (u
r, vr ) =

L/r−1∑
m̃=0

(ur − 1)L/r−1−m̃Wi j,m̃(vr ) (131)

h(vr )m̃ | Wi j,m̃(vr ) for all i, j, m̃. Defining m ≡ i + m̃r,
W (u, v) may be written as

W (u, v) =
L−1∑
m=0

Um(u)
r−1∑
j=0

v jWi j,m̃(ur, vr ) (132)

=
L−1∑
m=0

Um(u)Wm(v), (133)

where Wm(v) = ∑r−1
j=0 v jWi j,m̃(ur, vr ), so W (u, v) is consis-

tently 	-local if and only if h(vr )m̃ | Wm(v). To eliminate
reference to m̃, we may use the fact that m̃ = �m/r�, such that
m = rm̃. Therefore W (u, v) is consistently 	-local if and only
if h(v)m | Wm(v) for all m, and {h(v)m} generates an optimal
basis for thr when r = pα as well.

Finally, consider the general case r = r̃ pα , where p � r̃. We
have just shown that {h(v)m} generates an optimal basis for
thpα . Since r̃ is coprime to p, by our first argument, this also
generates an optimal basis for thr �

Lemma IX.7. Suppose {V1,m(v)} and V2,m(v) generate opti-
mal bases for th1 and th2 respectively, and V1,m(v) and V2,m′ (v)
share no common factors for all m, m′. Then, {Vm(v) =
V1,m(v)V2,m(v)} generates an optimal basis for th1h2 .

Proof. Let W (u, v) be 	-local which we expand as

W (u, v) =
M∑

m=0

Um(u)Wm(v), (134)

where M is the largest m for which Wm(v) �= 0. If
V1,m(v)V2,m(v) | Wm(v), then W (u, v) is consistently 	-local
under th1 and th2 , and therefore also under th1h2 . We then
need to prove the reverse implication, that W (u, v) being
consistently 	-local under th1h2 implies V1,m(v)V2,m(v) | Wm(v)
for all m. We will prove this by recursion in M. The base
case, M = 0, is trivial since V0(v) = V1,0(v)V2,0(v) = 1 is a
requirement from Lemma IX.2. Now, suppose this has been
proven for all M ′ < M.

First, assume that W (u, v) is consistently 	-local under th1

but not th2 . Then, consider 
h1h2W (u, v), which has largest
m < M and is consistently 	-local under th1h2 by Lemma IX.3.
Our recursion assumption, then, implies that 
h1h2W (u, v) is
also consistently 	-local under th1 and th2 individually. Then,

tm
h1h2

W (u, v) = W (u, v) +
m−1∑
i=0

t i
h1h2


12W (u, v) (135)

and so

t n
h1

tm
h1h2

W (u, v) = t n
h1

W (u, v) +
m−1∑
i=0

t n
h1

t i
h1h2


12W (u, v),

(136)

which is 	-local. However, if we choose n = (k − m
mod pNM ), then we get that t k

h2
W (u, v) is always 	-local.

Thus W (u, v) is consistently 	-local under th2 as well, which
contradicts our initial assumption. Therefore W (u, v) cannot
be consistently 	-local under th1 but not th2 . The same is also
true with h1 ↔ h2.

Next, assume W (u, v) is neither consistently 	-local under
th1 nor th2 . Then, consider

W ′(u, v) ≡ V1,M (v)W (u, v) (137)

235131-18



CLASSIFYING LOCAL FRACTAL SUBSYSTEM … PHYSICAL REVIEW B 99, 235131 (2019)

which is consistently 	 + degv V1,M (v) ≡ 	′-local under th1h2

(notice that if 	 � L, then 	′ � L as well). W ′(u, v) is also
	′-local under th1 , since V1,m(v) | V1,M (v) for all m � M by
Lemma IX.2. However, since V1,M (v) shares no common
factors with any V2,m(v), W (u, v) is still not consistently 	′-
local under th2 . But, we just showed previously that we cannot
have a situation in which W (u, v) is 	′-local under th1h2 and
th1 but not th2 , thus leading to a contradiction. W (u, v) must
therefore be consistently 	-local under both th1 and th2 .

This means that V1,m(v) | Wm(u, v) and V2,m(v) | Wm(u, v)
for all m. Since V1,m(v) and V2,m(v) share no common
factors, this means that V1,m(v)V2,m(v) | Wm(u, v). Thus
{V1,m(v)V2,m(v)} generates an optimal basis for th1h2 . �

We may now prove Theorem IX.1. Let us factorize f̃ (x)
into its Nf unique irreducible polynomials,

f̃ (x) =
Nf∏
i=0

fi(x)ri (138)

Using Lemma IX.6, an optimal basis for t f
ri
i

, is generated by

{ fi(v)mi}, where mi = �m/pαi�pαi , and αi is the power of p in
the prime factorization of ri. Since fi(v)mi for different i share
no common factors (as fi(v) are irreducible), Lemma IX.7
then says that { f0(v)m0 f1(v)m1} generates an optimal basis
for t f

r0
0 f

r1
1

. This may be iterated to construct an optimal basis

for t f
r0
0 f

r1
1 f

r2
2

and so on. Finally, one gets that {∏i fi(v)mi}
generates an optimal basis for t f̃ , which is therefore also an
optimal basis for t f . This is exactly {Vm(v)}, and the proof is
complete.
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