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Motivated by recent experiments realizing correlated phenomena and superconductivity in two-dimensional
(2D) van der Waals devices, we consider the general problem of whether correlation effects may be enhanced by
modifying band structure while keeping a fixed weak interaction strength. Using determinantal quantum Monte
Carlo, we study the 2D Hubbard model for two different band structures: a regular nearest-neighbor tight-binding
model and a partially flat-band structure containing a nondispersing region, with identical total noninteracting
bandwidth Wtot . For both repulsive and attractive weak interactions (|U | � Wtot), correlated phenomena are
significantly stronger in the partially flat model. In the repulsive case, even with U being an order of magnitude
smaller than Wtot , we find the presence of a Mott insulating state near half filling of the flat region in momentum
space. In the attractive case, where generically the ground state is superconducting, the partially flat model
exhibits significantly enhanced superconducting transition temperatures. These results suggest the possibility of
engineering correlation effects in materials by tuning the noninteracting electronic dispersion.
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I. INTRODUCTION

The recent discovery of superconductivity in twisted bi-
layer graphene (TBG) [1,2] has spurred increasing interest in
two-dimensional (2D) van der Waals materials with structural
deformations [3–10] and has inspired new venues to search
for high-Tc superconductivity [11–18]. In TBG, the band
structure hosts tiny regions near the K and K ′ valleys with
nearly flat energy dispersions [19–24]. When these regions are
partially occupied, a phase diagram similar to that of high-
Tc cuprates has been reported [1,2]. Alongside and possibly
compounding other effects (e.g., [25]), it is widely believed
that due to the large density of states (DOS) at the two
tiny (nearly) flat regions, the system exhibits strong corre-
lation physics [2,26–37]. Besides the specific case of TBG,
a series of recent experiments has shown superconductivity
in a variety of twisted heterostructures [38–41], supporting
the generic possibility of achieving correlation effects by
modifying band structure. Inspired by these experiments on
moiré heterostructures and the broader quest of understanding
flat bands [42–44], we introduce “partially flat-band” (PFB)
models wherein the band structure is neither fully flat nor fully
dispersive (see Fig. 1). In PFBs, the bare kinetic (i.e., not inter-
action induced [45,46]) dispersion εk is nearly flat over a finite
fraction of the Brillouin zone (BZ) with a diverging DOS.

There are no reliable theoretical tools to obtain the effec-
tive low-energy action for the PFB. Perturbation theory fails
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due to the divergence of the DOS over a finite portion of
the BZ. Other conventional methods of strongly correlated
systems such as the Wolff-Schrieffer transformation become
inapplicable. These difficulties are tied to the existence of
three significantly different energy scales: (i) the bandwidth
associated with the flat region, (ii) the total bandwidth, and
(iii) the interaction energy scale, which is much greater than
(i) yet far smaller than (ii). Interactions can mix the smoothly
connected flat and dispersive regions. These two regions may
actively exchange particles and energy. Thus, if the nearly
flat region is partially filled, the dispersive region cannot be
disregarded. A projection of the interactions onto the flat
region is unjustified.

To better grasp the physics of PFB systems, we introduce
a toy model allowing numerical studies on general lattices.
Herein, a large fraction (of order 1) of the band structure
is (nearly) flat. We utilize the determinental quantum Monte
Carlo (DQMC) approach to obtain the phase diagram for both
repulsive and attractive weak Hubbard interactions. Due to the
existence of flat areas, correlation effects are pronounced, and
we expect to encounter evidence of strong-correlation physics
despite only weak interactions. In particular, we observe an
emergent Mott insulating state near half filling of the flat
region in momentum space. Our calculations show that the
momentum space electron occupation number becomes nearly
uniform and fractional all over the flat region. This is inconsis-
tent with the Luttinger theorem and constitutes another indica-
tion that we either have a gapless non-Fermi liquid or a Mott
insulating phase. Last, we find a considerable enhancement
of the superconducting transition temperature for attractive
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FIG. 1. A schematic band structure of partially flat-band sys-
tems. The band structure contains a (nearly) flat region with a
high DOS and a narrow bandwidth Wflat. In the PFB system, the
interaction energy scale may be much smaller (larger) than the total
(flat-region) bandwidth; thus, Wflat � |U | � Wtot . The blue region
denotes occupied energy states when the interaction is switched
off. However, using DQMC, we find that all single-particle states
inside the flat region are (almost) equally occupied upon considering
interaction effects (see the text). Due to the absence of any mass gap
between the flat and dispersive areas, the two regions are strongly
coupled through interactions.

interactions which can be generated via, e.g., retarded
phonon-mediated electron-electron coupling [31,47–49].

II. MODEL

The Hubbard model Hamiltonian is given by

H =
∑

kσ

εkc†
kσ

ckσ + U
∑

i

ni↑ni↓. (1)

Here, c†
kσ creates an electron of momentum k and spin σ ,

the (noninteracting) band dispersion is εk, and niσ = c†
iσ ciσ

is the number operator on site i. The local (on-site) interaction
is parameterized by U . Thanks to its possible relevance to
high-Tc cuprate superconductors, the repulsive (U > 0) Hub-
bard model on a square lattice has been the focus of many
numerical studies [50–52]. Due to the fermion sign problem
in quantum Monte Carlo (QMC) simulations of the repulsive
Hubbard model, unbiased numerical results are absent at
temperatures relevant to the putative superconducting phase
of the model (although a variety of techniques suggest the
presence of d-wave superconductivity and various competing
phases [53–57]). By contrast, the attractive Hubbard model
(U < 0) is amenable to sign-problem-free QMC simulations,
allowing for detailed characterization of the s-wave supercon-
ducting phase, including calculation of Tc. We will study both
the repulsive and attractive realizations of this model.

For simplicity and to ease comparison to existing studies
of Hubbard models, we performed the simulations on the
commonly studied periodic square-lattice geometries. Here,
the band structure

εk = [
1 + f sgn

(
ε0

k

)]
ε0

k, (2)

where the nearest-neighbor-hopping dispersion ε0
k = −2t

(cos kx + cos ky) and the parameter f controls the flatness of
the band. The nearest-neighbor hopping t is set to 1 as the
unit of energy and temperature in this work. For f = 1, the
dispersion εk = 0 when ε0

k � 0 (half the BZ), and εk = 2ε0
k

otherwise. We refer to the f = 0 model as the “regular-band”

Hubbard model and to the f = 1 system as the “PFB Hubbard
model.”

Importantly, the total bandwidth is fixed to Wtot = 8 in ei-
ther case. Hence, our data showcase the effects of introducing
a flat region in the noninteracting dispersion while keeping the
total bandwidth constant. We focus on the hole-doped models
(average occupancy 〈n〉 = 〈n↑ + n↓〉 < 1), such that if f = 1,
the noninteracting Fermi level lies inside the flat region.

III. REPULSIVE INTERACTION

We first consider the repulsive model with a partially
flat band and weak interactions U � 2. The presence of
the fermion sign problem restricts accessible temperatures
to T �U/15 for moderate system sizes (∼100 sites), with
certain fillings amenable to somewhat lower temperatures.
Interestingly, the average sign in the DQMC simulation is en-
hanced near a density of 〈n〉 ∼ 0.6 per unit cell and decreases
rapidly away from this value [Fig. 2(a)]. This behavior is rem-
iniscent of that in the repulsive Hubbard model with a regular
band, where the sign is protected by particle-hole symmetry
at exactly half filling (〈n〉 = 1); doping away from half filling

FIG. 2. Doping dependence of (a) average fermion sign,
(b) charge compressibility χ = ∂〈n〉

∂μ
, and (c) double-occupancy ratio

in the partially flat-band model with a repulsive interaction U > 0. In
the inset of (c), we plot the double-occupancy ratio for the regular-
band Hubbard model with strong interactions. Simulations here are
on a 16 × 8 periodic cluster at temperature T = U/15. Error bars are
±1 standard error of the mean, determined by jackknife resampling.
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FIG. 3. (a) Momentum-resolved electron filling 〈nk〉 = 〈c†
kck〉

for the partially flat-band model with repulsive interaction U = 2 at
temperature T = 0.133 and average filling 〈n〉 = 0.62 on a periodic
16 × 16 cluster. (b) Single-particle spectral function A(k, ω) along
high-symmetry cuts obtained for the same simulation using max-
imum entropy analytic continuation. (c) Single-particle density of
states N (ω) for the same parameters at inverse temperatures β = 1/T
as given in the legend. Inset: Charge compressibility as a function of
temperature.

(such that 〈n〉 	= 1) leads to a severe sign problem [58,59].
While no such symmetry is exactly manifest in the partially
flat model, the similar behavior of the 〈n〉 ∼ 0.6 PFB system
to the regular Hubbard model at half filling hints at similar
(Mott insulating) underlying physics.

To confirm this, we examine the charge compressibility
χ = ∂〈n〉

∂μ
in Fig. 2(b). As a function of filling, χ has a pro-

nounced dip around 〈n〉 ∼ 0.6. The compressibility at 〈n〉 =
0.62 decreases with lowering temperature [Fig. 3(c), inset],

indicating insulating behavior and suggesting an incompress-
ible gapped ground state. To relate this behavior to Mott
physics and quantitatively assess correlation effects, we com-
pare the number of doubly occupied sites 〈n↑n↓〉 to the un-
correlated case (in which 〈n↑n↓〉 = 〈n↑〉〈n↓〉 = 〈n〉2/4). The
ensuing ratio is plotted in Fig. 2(c). For a regular Hubbard
model [inset of Fig. 2(c)], at half filling, this ratio is sup-
pressed when there are strong interactions. This ratio remains
suppressed upon hole doping but rises for electron doping
where double occupancy becomes unavoidable. In the PFB
model, we observe the same behavior relative to a filling
of 〈n〉 ∼ 0.6, at which a crossover occurs. The suppression,
even for U ∼ 1, of double occupancy in the PFB system is
comparable in magnitude to that of the regular-band Hubbard
model with U ∼ 8. Taken together, the analogies between the
weakly interacting PFB model and the regular-band strongly
interacting Hubbard model demonstrate that even weak in-
teractions can enable correlated phenomena given the correct
band structure.

Having established a Mott insulating state in the PFB
model when 〈n〉 ∼ 0.6, we now explore in greater depth
the momentum and energy dependence of the single-particle
properties. In Fig. 3(a), we plot the electron occupancy 〈nk〉 =
〈c†

kck〉. As is evident from Eq. (2), the nondispersive flat
region is delineated by |kx| + |ky| � π . In this region, the
electron occupancy varies from 0.52 to 0.55, while the total
filling [Fig. 3(a)] is 〈n〉 = 0.62. Thus, the crossover seen in
Fig. 2 at 〈n〉 ∼ 0.6 corresponds to a half filling of the flat
portion of the PFB. Inconsistency with Luttinger’s theorem
implies a gapless non-Fermi-liquid-type behavior or a fea-
tureless gapped (Mott insulating) state, and considering other
evidence we presented earlier, we believe it should be a Mott
insulator. This special behavior of the occupancy suggests a
modified mean-field approach to the PFB for the effective
low-energy action from which the emergence of the Mott
insulator becomes obvious (see the Appendix).

To corroborate these statements, we computed the single-
particle spectral function A(k, ω) by an analytical continua-
tion of the imaginary-time Green’s function using the maxi-
mum entropy method [60]. Figure 3(b) shows A(k, ω) along
high-symmetry cuts of the BZ. The most pertinent feature
is the presence of a Mott gap throughout the flat region. In
Fig. 3(b), for U = 2 and a temperature T = 0.133, the gap
is largest (∼0.8) at k = (0, 0) and gradually drops near the
boundaries of the flat region. Figure 3(c) provides the single-
particle density of states N (ω) = 1

L2

∑
k A(k, ω) for different

temperatures; the gap opening temperature is estimated to be
between T = 0.22 and 0.33 concomitant with the onset of
insulating behavior in the charge compressibility (inset).

IV. ATTRACTIVE INTERACTION

While we have found strong indications of Mott insu-
lating physics in the repulsive partially filled model with
only weak interactions, the sign problem prevents a detailed
study of phases that emerge by doping away from 〈n〉 ∼ 0.6.
By contrast, we can establish concrete results on the ef-
fect of the modified band structure on superconductiv-
ity in the attractive Hubbard model via DQMC [61]. In
2D simulations, accurate estimates of superconducting Tc
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FIG. 4. Estimates of the superconducting transition temperature
Tc for (a)–(c) the regular attractive and (d) and (e) PFB Hubbard
models. Here, U = −2, and 〈n〉 = 0.8. We plot the superfluid stiff-
ness ρs in (a), the s-wave pair-field susceptibility multiplied by L−7/4

in (b) and (d), and the static spin susceptibility in (c) and (e). The
dashed line in (a) is 2T/π . The shaded regions indicate estimates
of Tc.

may be obtained using the Nelson-Kosterlitz criterion for
superfluid stiffness: ρs(Tc) = 2Tc/π . For finite-cluster simu-
lations, the temperature where ρs(T ) intersects with 2T/π

estimates Tc in the thermodynamic limit. In DQMC, ρs

may be calculated as [62] ρs = 1
4 [
xx(qx → 0, qy = 0) −


xx(qx = 0, qy → 0)], where the static current-current sus-
ceptibility 
xx(q) = ∑

i

∫ β

0 dτ e−iq·ri〈 jx(i, τ ) jx(0, 0)〉. Here,
the current density operator j(i) = ∑

lσ itil (ri − rl )c
†
iσ clσ ,

where til is the hopping (related to the dispersion through
til = − 1

L2

∑
k eik·(ri−rl )εk.)

We show the results of this analysis in Fig. 4(a) for the
attractive regular-band Hubbard model for U = −2 and 〈n〉 =
0.8. Comparing simulations on different cluster sizes allows
us to estimate Tc ≈ 0.056(5) for these parameters. Here,
the minimal cluster size for a reasonable estimate of Tc is
∼20 × 20. (In a previous DQMC simulation of the attractive
Hubbard model [62] for U = −4, a lattice of size ∼10 × 10
was sufficient for estimating Tc. For low |U |, the longer
superconducting coherence length requires larger clusters to
mitigate finite-size effects.)

A PFB requires many real-space hopping amplitudes to
be nonzero. Consequently, the computation of the current
correlator becomes expensive. As an alternative, we infer
Tc from the behavior of the pair field susceptibility and
of the static spin susceptibility. The equal-time s-wave pair

FIG. 5. Parameter dependence of static spin susceptibility (a) and
(b) in the regular attractive Hubbard model and (c) and (d) in the par-
tially flat band model. The downturn in the static spin susceptibility
signals formation of singlet pairs and provides a rough indication
of Tc.

field susceptibility is given by Ps = 〈{�,�†}〉, where �† =
1
L

∑
i c†

i↑c†
i↓ = 1

L

∑
k c†

k↑c†
−k↓ is the s-wave pair field cre-

ation operator at zero net momentum. The spin susceptibil-
ity is given by χzz(q, τ ) = 〈Tτ Sz(q, τ )S†

z (q)〉, where Sz(q) =
1
L

∑
i e−iq·ri (c†

i↑ci↑ − c†
i↓ci↓). We focus on the static spin sus-

ceptibility at q = 0: χzz(q, ω = 0) = ∫ β

0 dτ χzz(q, τ ). (We
consider only the z component of spin; χxx, χyy, and χzz are
identical within statistical errors).

Upon cooling below Tc, one expects that the formation of
singlet pairs suppresses the static spin susceptibility. In the
absence of a pseudogap, the onset temperature of this sup-
pression provides an estimate of Tc. A corresponding rise of
the pair field susceptibility would confirm that the suppression
of spin susceptibility is due to the onset of superconductivity.

Figures 4(a)–4(e) display the results of DQMC calculations
for the temperature dependence of the pair field susceptibility
and the static spin susceptibility. For the regular band, we
observe the expected downturn in spin susceptibility and
rise in pair field susceptibility near Tc ≈ 0.056(5). Similar
behavior occurs in the PFB model at Tc ≈ 0.11(1) (in the
PFB model, the system size dependence is weak, but it is
computationally infeasible to simulate even larger clusters to
eliminate the possibility of a gradual shift). Together these
data indicate that the attractive Hubbard model with a PFB
has doubled the superconducting transition temperature of the
model with a regular dispersion. This increase is partially
anticipated by the larger density of states in the PFB. We
emphasize that this is while keeping the interaction strength
and the total noninteracting bandwidth fixed.

An enhancement of superconductivity in the attractive
PFB appears for different interaction strengths and dopings.
In Figs. 5(a) and 5(b), we vary the interaction strength for
both the regular band and the PFB models. As before, the
downturn in the static spin susceptibility roughly indicates
Tc. When |U | = 3, the Hubbard model Tc rises to 0.12(2) for
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the regular band model and 0.18(2) for the PFB model. For
a smaller interaction strength of |U | = 1, the PFB model has
Tc ≈ 0.06(5), while the Tc of the regular band model was too
low to be readily accessible. In Figs. 5(c) and 5(d), we contrast
the effects of additional hole doping within the two models.
As the number density varies from 〈n〉 = 0.8 to 〈n〉 = 0.6, the
regular-band Hubbard model Tc decreases from 0.056(5) to
0.035(5), while the PFB model shows little variation in its Tc.

V. CONCLUSIONS

We introduced and studied PFB systems. PFBs may be
realized in diverse experimental arenas, e.g., TBG or heavy-
fermion systems. Our DQMC analysis illustrated that the ex-
istence of flat subregions enhances the correlation effects even
for interactions significantly weaker than the total bandwidth.
We found a Mott insulating state for weak local repulsion and
an s-wave superconductor with a considerably enhanced Tc

for weak local attraction. Our PFB model may aid the under-
standing of TBG and other Moiré heterostructures whose band
structure hosts extremely tiny (nearly) flat areas due to the
very large spatial extent of the moiré superlattices. Studying
systems with such supercells is not computationally feasible.
As we discussed earlier, the dispersive nonflat regions that
are connected to small, flat domains of the TBG may not be
ignored. Thus, a projection of the Hamiltonian onto the flat
region is not possible. One needs to keep single-particle (hole)
excitations with energies of the order of the interaction scale
|U | above (below) the flat region. Our PFB model captures
these essential features and provides a simple toy model to
study TBG which is computationally feasible as well (albeit
by imposing triangular-lattice symmetry).

The ideal PFB (i.e., the model exhibiting exactly flat subre-
gions of the band) requires the existence of finite hopping am-
plitudes between distant sites. Nonetheless, we may truncate
these amplitudes beyond a cutoff distance without impacting
the low-energy physics. In doing so, we may still achieve
nearly flat regions with enhanced correlation. Remarkably,
augmenting a nearest-neighbor-hopping tight-binding ampli-
tude (t = 1) by an additional next-nearest-neighbor-hopping
amplitude t2 ≈ −0.54 suffices to achieve a high DOS in the
lower half of the band structure on the square lattice. Such
a simple model might be realizable in 2D van der Waals
devices with square-lattice symmetry or in cold-atom systems
via photoinduced coupling experiments or through applying
pressure and is expected to have an amplified superconducting
transition temperature.
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APPENDIX: A MODIFIED MEAN-FIELD APPROACH
TO THE PARTIALLY FLAT-BAND SYSTEMS

In this Appendix, we discuss a modified mean-field theory
that can successfully explain quintessential features of PFB
systems, e.g., the emergence of the Mott insulator near the
half filling of the flat region. The essential ingredient is the
fact that the occupation number of the single-particle energy
eigenstates does not follow the Fermi-Dirac distribution since
we have a Fermi volume rather than a Fermi surface. Instead,
the k-space occupancy is uniform over the flat region (where
the chemical potential crosses). Thus, all associated flat-band
states are partially occupied.

Motivated by the physics of the square-lattice regular
Hubbard model near half filling, we focus on the anti-
ferromagnetic order. We assume that 〈 ni,↑−ni,↓

2 〉 = (−1)im,
where m denotes the staggered magnetization. We invoke
the standard mean-field approximation ni,↑ni,↓ ≈ 〈ni,↑〉ni,↓ +
ni,↑〈ni,↓〉 − 〈ni,↑〉〈ni,↓〉. Plugging this approximation into the
model Hamiltonian, Eq. (1) of the main text, and performing
a Fourier transformation, we obtain

HMF =
∑

k,σ

[(εk − μ)c†
k,σ

ck,σ − mUσc†
k+Q,σ

ck,σ + H.c.],

(A1)

where Q = (π, π ). The above mean-field Hamiltonian can be
readily diagonalized. We then have

HMF =
∑

|kx |+|ky|�π,σ

(E+,kγ
†
+,kγ+,k + E−,kγ

†
−,k,σ

γ−,k,σ ), (A2)

where Eτ,k = τ
√

ε2
k + (Um)2 − μ denotes the energy eigen-

value associated with band τ = ± at momentum k and γτ,k

is the corresponding annihilation operator, which is a linear
combination of ck,σ and ck+Q,σ . The self-consistency of our
assumption about the staggered magnetization implies the
following identity:

m =
∑

i

(−1)i

2Ns
〈ni,↑ − ni,↓〉HMF = −mU

∑

k,τ

f (Eτ,k )

Eτ,k
. (A3)

Here, f (Eτ,k ) denotes the occupation number of energy band τ

at momentum k, and Ns = L2 is the number of sites. Normally,
f is replaced by the Fermi-Dirac distribution, so that all
negative-energy states (those below the chemical potential)
are fully occupied at T = 0, and excited states (those above
the chemical potential) are empty. In PFBs, the chemical
potential crosses many zero-energy states (more than the total
electron density), and thus, it is not, a priori, clear which
states are occupied or empty. This feature can generally lead
to exotic behaviors in flat-band systems such as the fractional
quantum Hall systems. However, our DQMC study of the PFB
system shows that the occupation number is nearly uniform all
over the flat subregion where the chemical potential is tuned.
We have verified that this remains the case even for nearly
flat subregions (as long as the interaction scale is larger than
the bandwidth Wflat of the subregion with a high DOS; see
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Fig. 1 of the main text). Implementing this observation into the
f (Eτ,k ) functional, we observe that, different from the regular-
band Hubbard model, the mean-field antiferromagnetic order
parameter remains finite even away from half filling (with the
filling fraction being relative to that of the total band).

In the conventional-band Hubbard model, the Fermi-Dirac
distribution can rationalize the appearance of antiferromag-
netic order at half filling. However, at the mean-field level, any
doping away from half filling (relative to the entire band struc-
ture), even if infinitesimal, will eradicate the antiferromag-
netic order. Using the modified mean-field approximation, we
find that although the flat subregion is partially occupied,
the staggered magnetization is nonzero. Consequently, the
antiferromagnetic spin-density wave (SDW) will open up
a mass gap separating the (nearly) flat subregion from the
dispersive subregions. In other words, an interaction-induced
SDW mass gap will appear at the |kx| + |ky| � π surface
corresponding to half filling. Thanks to the existence of a
finite gap separating the modified (nearly) flat region from
the remaining band structure, we can focus on the lower flat

subband and employ the standard techniques of the strongly
correlated system on a modified (nearly) flat subband. One
consequence of this simple analysis is that the system will
exhibit a Mott insulating phase at half filling of the lower
(nearly) flat emergent subband (i.e., at a quarter filling of the
original band).

To summarize, the interaction generates an SDW order and
doubles the unit cell, and the relevant flat subband around
the chemical potential becomes separated from other bands
(which were otherwise smoothly connected to the flat subband
in the absence of interaction). Note that the bandwidth and
structure factors of the emergent (nearly) flat subband differ
from those of the original flat subregion. The emergent well-
separated (nearly) flat subband is not fully occupied, and the
interaction-projected emergent flat subband will dictate its
fate. Mott physics, as well as other related strong-correlation
phenomena, is possible. This picture can easily be general-
ized to more complicated situations where the (nearly) flat
subregion is smaller by considering smaller nesting vectors
(different and shorter Q vectors) that lead to larger unit cells.
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