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Flat-band engineering in tight-binding models: Beyond the nearest-neighbor hopping
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In typical flat-band models, defined as nearest-neighbor tight-binding models, flat bands are usually pinned to
the special energies, such as top or bottom of dispersive bands, or band-crossing points. In this paper, we propose
a simple method to tune the energy of flat bands without losing the exact flatness of the bands. The main idea is to
add farther-neighbor hoppings to the original nearest-neighbor models, in such a way that the transfer integrals
depend only on the Manhattan distance. We apply this method to several lattice models including the two-
dimensional kagome lattice and the three-dimensional pyrochlore lattice, as well as their breathing lattices and
non-line graphs. The proposed method will be useful for engineering flat bands to generate desirable properties,
such as enhancement of Tc of superconductors and nontrivial topological orders.
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I. INTRODUCTION

The diversity of materials may be attributed to the diversity
of band structures. The variety of band structures associated
with lattice structures and orbital characters is a source of rich
phenomena in condensed-matter systems, such as spin and
orbital magnetism [1–3], superconductivity [4–6], topological
insulators [7,8], and topological Dirac and Weyl semimet-
als [9,10].

Among characteristic band structures, a completely dis-
persionless band, in the entire Brillouin zone, is called a flat
band. One of the remarkable consequences of this “quench”
of kinetic energy is the emergence of a ferromagnetic ground
state when introducing the Hubbard interactions, and there
has been a long history of study in this context [11–19].
Topological physics in exact and nearly-flat-band systems
also attracts considerable interests [19–29]. To study such
intriguing physics associated with the flat-band systems, a
number of tight-binding Hamiltonians, which mostly consider
the nearest-neighbor (NN) hoppings, have been proposed.

Quite recently, the possibility of flat-band-assisted super-
conductivity has been revisited in correlated electron sys-
tems, where the interband scattering between dispersive and
flat bands plays an essential role [30–33]. In particular, this
mechanism is thought of as one of the possible origins of
enhancement of Tc in a twisted bilayer graphene with so-
called “magic angles” [34–40]. There, it has been pointed out
that the preferable band structure for such mechanism is (i)
the flat band is located slightly above or below the Fermi level,
and (ii) the dispersive band has a large density of states (DOS)
nearby the flat band. Therefore, for further development of
this mechanism for the high-Tc superconductivity, it is desir-
able to have an engineering method not only to realize flat
band but also to tune its energy.

In the present paper, we propose a simple guiding principle
to tune the energy of flat bands. It may sound surprising, since
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a flat band is extremely fragile; an infinitesimal amount of per-
turbation is enough to destroy its flatness [41]. Nevertheless,
we will show that it is possible to systematically control its
energy while keeping its exact flatness.

The main idea is to add farther-neighbor hoppings to the
usual NN models with flat band(s), in such a way that the
transfer integrals depend only on the Manhattan distance.
After this modulation, the resulting Hamiltonian is expressed
by the polynomial of the original NN Hamiltonian. As a result,
the eigenfunctions remain exactly the same as the original
ones and only the dispersion relations and the flat-band energy
are modulated. Our method, due to its simplicity, has two
prominent advantages: (i) the flat bands retain exact flatness
after the modulation of the Hamiltonian, and (ii) we only need
a few parameters to control a flat-band energy.

The rest of this paper is organized as follows: In Sec. II,
we explain the basic mechanism of our method. Then, in
Sec. III, we apply this method to the line graphs in two
and three dimensions, where the existence of flat band(s) in
the NN hopping models is guaranteed [12]. In Sec. IV we
apply this method with slight modifications to the breathing
lattices and a class of Lieb lattices, which have the site or
bond inhomogeneity. Section V is devoted to the application
of our method to an artificial material; namely, an electric
circuit. Finally, our conclusion is presented in Sec. VI. Some
analytical formulas for the dispersion relations are shown in
the Appendix.

II. FORMULATION

In this section, we outline our method to tune the flat-band
energy and clarify the condition for this method to work. We
consider a tight-binding Hamiltonian for spinless fermions
with NN hoppings:

H1 = t1
∑

〈i, j〉NN

c†
i c j + c†

j ci, (1)
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where t1 denotes the NN hopping integral. For future use, we
also write down this Hamiltonian by using the incident matrix
of the lattice:

H1 = t1
∑
i, j

c†
i [ĥ1]i, jc j, (2)

where the incident matrix ĥ1 satisfies [ĥ1]i, j = 1 if 〈i, j〉 ∈
NN, and otherwise [ĥ1]i, j = 0. We note that, throughout this
paper, h denotes dimensionless matrices in either real or
momentum spaces. Their eigenvalues are denoted by λ, while
energy eigenvalues of Hamiltonians are denoted by ε.

Suppose that the model is defined on a lattice with the num-
ber of sublattices Nsub, and that all sublattices have the same
coordination number z. We label sites as i = (n, α) where n
denotes a label of a unit cell and α labels the sublattice. By
performing the Fourier transformation, we obtain

H1 = t1
∑
k,α,β

c†
k,α

[h1(k)]αβck,β , (3)

where ck,α =∑n cn,αe−ik·(Rn+rα ); Rn is the position of the unit
cell and rα is the position of the sublattice α inside the unit
cell.

Let us assume that h1(k) has Nf (<Nsub) flat bands and
Nsub − Nf dispersive bands. We label wave functions of flat
(dispersive) bands at each k as ψ (f)

p (k) [ψ (d)
q (k)] and its eigen-

value λp [λq(k)] with p = 1, . . . , Nf [q = 1, . . . , N − Nf ].
The corresponding eigenvalue equations are written as

h1(k)ψ (f )
p (k) = λpψ

(f )
p (k), (4)

and

h1(k)ψ (d)
q (k) = λq(k)ψ (d)

q (k). (5)

Under this setup, we now introduce our main idea for
tuning the flat-band energy; that is, we utilize the fact that
if ψ (k) is an eigenfunction of h1(k), so it is of [h1(k)]m for
m being an arbitrary positive integer. More generally, ψ (k) is
an eigenfunction for any polynomial of h1(k). For instance,
if we consider a generic quadratic form of h1(k) with real
coefficients a, b, and c, we obtain the eigenvalue equations
as

{a[h1(k)]2 + bh1(k) + cÎNsub}ψ (f)
p (k)

= [a(λp)2 + bλp + c]ψ (f)
p (k), (6)

and

{a[h1(k)]2 + bh1(k) + cÎNsub}ψ (d)
q (k)

= {a[λq(k)]2 + b[λq(k)] + c}ψ (d)
q (k), (7)

where ÎNsub denotes the Nsub × Nsub identity matrix. Then,
the new eigenvalues a(λp)2 + bλp + c and a[λq(k)]2 +
b[λq(k)] + c can intersect on some lines or surfaces in the
Brillouin zone, even if the original eigenvalues, λp and λq(k),
do not.

How can we implement a polynomial of h1(k) in the tight-
binding model? To see this, let us come back to the real-space
representation, in which the square and higher powers of ĥ1

i

k j

(a) (c)(b)

i

k

i

FIG. 1. Three possibilities for two NN moves. Here we show an
example on a kagome lattice. (a) Starting from site i, one reaches site
j, which is two Manhattan distances away from i. (b) If one goes
through a NN bond and goes back exactly along the same bond in
the second move, it ends up coming back to the original site i. (c) It
is also possible that, as a result of two NN moves, one reaches a NN
site of i; namely, k.

have a simple interpretation. [ĥ2
1]i j =∑k[ĥ1]ik[ĥ1]k j is finite

only if there is a site k neighboring both site i and j, i.e.,
if site j can be reached from site i by two successive NN
hoppings. Generalizing it, the mth power of ĥ1, ĥm

1 , has a
finite matrix element [ĥm

1 ]i j only if sites i and j are m NN
hoppings away. To discuss the structure of ĥm

1 in a systematic
way, it is convenient to introduce Manhattan distance of the
graph.

The Manhattan distance between two sites, say i and j,
is defined as the minimum number of NN bonds one has to
go through when moving from i to j along the bonds. For
instance, if the Manhattan distance between i and j is two,
it means that there exists a site k such that both i and j are
connected to k and j is not the NN of i [Fig. 1(a)].

At first sight, the above argument implies that ĥ2
1 is pro-

portional to the incident matrix of the Manhattan distance
two, i.e., [ĥ2

1]i j is finite only if i and j are separated by
the Manhattan distance of two. Indeed, if i and j are two
Manhattan distances away, we have a finite matrix element
[ĥ2

1]i, j = x, where x is the number of sites neighboring both i
and j. However, we have to keep in mind that, if you move
twice along NN bonds, there are two other possibilities other
than reaching a site of two Manhattan distances away. The first
possibility is coming back to the original site, which occurs
when going through the same bond twice [Fig. 1(b)]. The
second possibility is reaching the NN site [Fig. 1(c)]. Let us
assume that, for every NN pair, say i and j, there are y distinct
paths going from i to j with passing two NN bonds. In other
words, there exist sites �1, . . . , �y �= i, j, such that 〈i, �n〉 ∈
NN and 〈 j, �n〉 ∈ NN for n = 1, . . . , y.

Under this assumption, we obtain the incident matrix for a
Manhattan distance two as

[(ĥ1)2]i, j = x[ĥ2]i, j + y[ĥ1]i, j + zδi, j, (8)

where δi, j is the Kronecker delta. Alternatively, in the
momentum-space representation, we obtain

[h1(k)]2 = xh2(k) + yĥ1(k) + zÎNsub , (9)
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where h2(k) is a (dimensionless) hopping matrix for “second-
neighbor” hoppings. Therefore, if we introduce the second-
neighbor hoppings with a transfer integral t2, we obtain the
quadratic form of h1(k) as

H =
∑
k,α,β

c†
k,α

[t1h1(k) + t2h2(k)]αβck,β

=
∑
k,α,β

c†
k,α

{
t2

1

x
[h1(k)]2+

(
t1 − t2

y

x

)
h1(k) − t2

z

x
ÎNsub

}
αβ

ck,β .

(10)

Consequently, the eigenenergies of this Hamiltonian are
f (λp/q) with f (λ) = t2

1
x λ2 + (t1 − t2

y
x )λ − t2

z
x .

In the next two sections, we demonstrate how this idea
works through the analyses of specific models. We first
show canonical examples in kagome and pyrochlore models
in Sec. III. In these lattices, the aforementioned lattice pa-
rameters, e.g., x, y, and z, are sublattice-independent; thus,
these lattices are “homogeneous.” In Sec. IV, we discuss the
applications to breathing lattices and a class of Lieb lattices
in which existence of inequivalent sites or bonds modifies the
simple polynomial expression mentioned above.

Before closing this section, we remark that higher-order
polynomials of h1(k) can be obtained by introducing the
“farther-neighbor” Manhattan-distance-dependent hoppings.
However, in light of material realization, short-ranged hop-
pings are favorable. Moreover, remarkable tunability of band
structure is available, even within the model with second
Manhattan distance, as we show below.

III. CANONICAL EXAMPLES: KAGOME AND
PYROCHLORE LATTICES

We apply the idea we discussed in the previous section to
the kagome and pyrochlore lattices, which are the textbook
examples of flat-band models. In a previous study, the authors
investigated the band structures on these models in the context
of magnetic mode analysis [42]. In this paper, we discuss
their band structures, focusing on the quantities relevant to
electronic systems, such as the DOS.

A. Kagome lattice

We first show the results for a kagome lattice. We take
the lattice vectors as a(K)

1 = (1, 0), a(K)
2 = ( 1

2 ,
√

3
2 ) and the

sublattice coordinates as r(K)
1 = (0, 0), r(K)

2 = ( 1
4 ,

√
3

4 ), r(K)
3 =

( 1
2 , 0). Then, the NN hopping matrix in the momentum space

is given by

h(K)
1 (k) =

⎛
⎜⎝

0 h(K,1)
12 (k) h(K,1)

13 (k)

h(K,1)
12 (k) 0 h(K,1)

23 (k)

h(K,1)
13 (k) h(K,1)

23 (k) 0

⎞
⎟⎠, (11)

with h(K,1)
12 (k) = 2 cos( kx+

√
3ky

4 ), h(K,1)
13 (k) = 2 cos( kx

2 ), and

h(K,1)
23 (k) = 2 cos( kx−

√
3ky

4 ). Due to the nature of a line graph,
h(K)

1 (k) has a k-independent eigenvalue λ(K,f) = −2. The other
two bands are dispersive and their dispersion relations are
given as

λ
(K,d)
1 (k) = 1 +

√√√√2

[
cos kx + cos

(
kx + √

3ky

2

)
+ cos

(
kx − √

3ky

2

)]
+ 3, (12)

λ
(K,d)
2 (k) = 1 −

√√√√2

[
cos kx + cos

(
kx + √

3ky

2

)
+ cos

(
kx − √

3ky

2

)]
+ 3. (13)

The corresponding eigenfunctions are given by

ψ (K,f)(k) = 1

N (K,f)(k)
{sin[ϕ2(k) − ϕ3(k)],

sin[ϕ3(k) − ϕ1(k)], sin[ϕ1(k) − ϕ2(k)]}T,

(14)

ψ
(K,d)
1 (k) = 1

N (K,d)
1 (k)

{cos[ϕ1(k) + θ (k)], cos[ϕ2(k) + θ (k)],

cos[ϕ3(k) + θ (k)]}T, (15)

and

ψ
(K,d)
2 (k) = 1

N (K,d)
2 (k)

{sin[ϕ1(k) + θ (k)], sin[ϕ2(k) + θ (k)],

sin[ϕ3(k) + θ (k)]}T, (16)

where N (K,f)(k), N (K,d)
1 (k), and N (K,d)

2 (k) are the normal-

ization factors, ϕ1(k) = kx
4 + ky

4
√

3
, ϕ2(k) = − ky

2
√

3
, ϕ3(k) =

− kx
4 + ky

4
√

3
, and θ (k) = 1

2 arg[ei
ky√

3 + 2 cos kx
2 e−i

ky
2
√

3 ] are the
phase factors arising from the geometry of the lattice. We
show the band structure of the NN Hamiltonian with t1 = −1
in Fig. 2(b).

Now, let us tune the flat-band energy. To this end, we
introduce the second-neighbor hoppings:

h(K)
2 (k) =

⎛
⎜⎝

h(K,2)
11 (k) h(K,2)

12 (k) h(K,2)
13 (k)

h(K,2)
12 (k) h(K,2)

22 (k) h(K,2)
23 (k)

h(K,2)
13 (k) h(K,2)

23 (k) h(K,2)
33 (k)

⎞
⎟⎠, (17)

where h(K,2)
11 (k) = 2(cos kx + cos kx+

√
3ky

2 ), h(K,2)
12 (k) =

2 cos( 3kx−
√

3ky

4 ), h(K,2)
13 (k) = 2 cos(cos

√
3ky

2 ), h(K,2)
22 (k) =

2(cos kx+
√

3ky

2 + cos kx−
√

3ky

2 ), h(K,2)
23 (k) = 2 cos( 3kx+

√
3ky

4 ), and

h(K,2)
33 (k) = 2(cos kx + cos kx−

√
3ky

2 ). Constructed as such,
h(K)

2 (k) is expressed by a quadratic form of h(K)
1 (k), as we

have seen in the previous section. Indeed, one can show that
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FIG. 2. (a) A kagome lattice. Orange (purple) dashed lines denote the hopping processes with the hopping integral t1 (t2). The sublattices
are denoted by 1, 2, and 3. The band structures for (b) (t1, t2) = (−1, 0), (c) (−1, −0.3), and (d) (−1, −0.7). The high-symmetry points in the
Brillouin zone are given by � = (0, 0), K = ( 4π

3 , 0) and M = (π, π√
3

). The DOS for (e) (−1, −0.3) and (f) (−1,−0.7).

h(K)
2 (k) can be written by using h(K)

1 (k) as

h(K)
2 (k) = [h(K,1)

1 (k)
]2 − h(K,1)

1 (k) − 4Î3, (18)

since (x, y, z) = (1, 1, 4) for a kagome lattice.
Then, let us consider the Hamiltonian

H(K) =
∑

k

ĉ†
k

[
t1h(K)

1 (k) + t2h(K)
2 (k)

]
. (19)

The band dispersion of H(K) is obtained by using Eq. (18) as

ε(K,f) = −2(t1 − t2), (20)

ε
(K,d)
1 (k) = f

(
λ

(K,d)
1 (k)

)
≡ t2

[
λ

(K,d)
1 (k)

]2 + (t1 − t2)λ(K,d)
1 (k) − 4t2, (21)

ε
(K,d)
2 (k) = f

(
λ

(K,d)
2 (k)

)
≡ t2

[
λ

(K,d)
2 (k)

]2 + (t1 − t2)λ(K,d)
2 (k) − 4t2. (22)

Notice that, although the flat and dispersive bands touch at
t2 = 0 [43,44], the intersection among these band does not
occur as soon as infinitesimal t2 is introduced. Indeed, in the
previous study, the authors have shown that this occurs when
t1 and t2 have the same sign and they satisfy |t2| > |t1|/5 [42].

The intersection of bands leads to the divergence of partial
DOS contributed from dispersive bands. As the introduction
of t2, the partial DOS, ρ0

q (ε), contributed from the original
dispersive bands, λ(K,d)

q (k), are deformed as

ρq(ε) = 1

| f ′(ε)|ρ
0
q ( f −1(ε)). (23)

As an example of the band intersection, we plot a band
structure for (t1, t2) = (−1,−0.3) in Fig. 2(c). We also show
the DOS ρ(ω) for the same parameter in Fig. 2(e). Here the
DOS is computed numerically as

ρ(ω) = 1

Nm

∑
k,n

�

(
εn(k) −

(
ω − �ω

2

))

×�

((
ω + �ω

2

)
− εn(k)

)
, (24)

where n is the label of bands, �ω is a unit of discretized
energy set as 0.08, Nm is a number of mesh in the momentum
space set as Nm = 200 × 200, and �(x) is a Heaviside step
function.

We see that, other than the contribution from the flat band,
there is large DOS at the band top. This is due to the fact
that the band maxima form a line in the two-dimensional
Brillouin zone, rather than discrete points, meaning that it has
a subextensive degeneracy [42]. This causes the divergence
of the DOS at the band top. In fact, from the relation be-
tween the original and modified dispersive bands, our method
generally leads to the (d − 1)-dimensional degenerate surface
at the band top, giving rise to the strongly divergent DOS
proportional to ε−1/2, irrespective of the system dimension
d . Since the flat band is relatively close to the band top, the
obtained band structure is potentially suitable for obtaining
high-Tc superconductivity due to the interband scattering.

For comparison, we also show the results for (t1, t2) =
(−1,−0.7) in Figs. 2(d) and 2(f). Although the penetration
of the flat band occurs as well, the DOS of the dispersive band
is more or less small near the flat band. This is due to the fact
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that the flat-band energy is far from the band top, where the
upper dispersive band has a large DOS.

B. Pyrochlore lattice

We can apply the same method to a pyrochlore lattice. The
lattice vectors are a(P)

1 = (0, 1/2, 1/2), a(P)
2 = (1/2, 0, 1/2),

and a(P)
3 = (1/2, 1/2, 0). The coordinates of sublattices are

r(P)
1 = (0, 0, 0), r(P)

2 = (0, 1/4, 1/4), r(P)
3 = (1/4, 0, 1/4), and

r(P)
4 = (1/4, 1/4, 0).

The NN Hamiltonian in the momentum space is then given
by

h(P)
1 (k) =

⎛
⎜⎜⎜⎜⎝

0 h(P,1)
12 (k) h(P,1)

13 (k) h(P,1)
14 (k)

h(P,1)
12 (k) 0 h(P,1)

23 (k) h(P,1)
24 (k)

h(P,1)
13 (k) h(P,1)

23 (k) 0 h(P,1)
34 (k)

h(P,1)
14 (k) h(P,1)

24 (k) h(P,1)
34 (k) 0

⎞
⎟⎟⎟⎟⎠,

(25)
with h(P)

12 (k) = 2 cos( ky+kz

4 ), h(P)
13 (k) = 2 cos( kx+kz

4 ), h(P)
14 (k) =

2 cos( kx+ky

4 ), h(P)
23 (k) = 2 cos( kx−ky

4 ), h(P)
24 (k) = 2 cos( kx−kz

4 ),

and h(P)
34 (k) = 2 cos( ky−kz

4 ). h(P)
1 (k) has two flat eigenvalues,

λ
(P)
1 = λ

(P)
2 = −2, and the other two eigenvalues are

λ
(P)
1 (k) = 2 +

√
4 + F (P)(k), (26)

λ
(P)
2 (k) = 2 −

√
4 + F (P)(k), (27)

with

F (P)(k) ≡ 2

[
cos

(
kx + ky

2

)
+ cos

(
ky + kz

2

)

+ cos

(
kz + kx

2

)
+ cos

(
kx − ky

2

)

+ cos

(
ky − kz

2

)
+ cos

(
kz − kx

2

)]
. (28)

As we did for kagome, we introduce the second-neighbor
hoppings as

h2(k) =

⎛
⎜⎜⎜⎜⎝

h(P,2)
11 (k) h(P,2)

12 (k) h(P,2)
13 (k) h(P,2)

14 (k)

h(P,2)
12 (k) h(P,2)

22 (k) h(P,2)
23 (k) h(P,2)

24 (k)

h(P,2)
13 (k) h(P,2)

23 (k) h(P,2)
33 (k) h(P,2)

34 (k)

h(P,2)
14 (k) h(P,2)

24 (k) h(P,2)
34 (k) h(P,2)

44 (k)

⎞
⎟⎟⎟⎟⎠,

(29)

with h(P,2)
11 (k) = 2[cos( kx+ky

2 ) + cos( kz+kx

2 ) + cos( ky+kz

2 )],

h(P,2)
12 (k) = 4 cos( kx

2 ) cos( ky−kz

4 ), h(P,2)
13 (k) = 4 cos( ky

2 )

cos( kx−kz

4 ), h(P,2)
14 (k) = 4 cos( kz

2 ) cos( kx−ky

4 ), h(P,2)
22 (k) =

2[cos( kx−ky

2 ) + cos( kz−kx

2 ) + cos( ky+kz

2 )], h(P,2)
23 (k) = 4 cos( kz

2 )

cos( kx+ky

4 ), h(P,2)
24 (k) = 4 cos( ky

2 ) cos( kx+kz

4 ), h(P,2)
33 (k) =

2[cos( kx−ky

2 ) + cos( kz+kx

2 ) + cos( ky−kz

2 )], h(P,2)
34 (k) = 4 cos( kx

2 )

cos( ky+kz

4 ), and h(P,2)
44 (k) = 2[cos( kx+ky

2 ) + cos( kz−kx

2 ) +
cos( ky−kz

2 )].
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FIG. 3. (a) A pyrochlore lattice. Orange (purple) dashed lines
denote the hopping processes with the hopping integral t1 (t2).
The sublattices are denoted by 1, 2, 3, and 4. The band structures
for (b) (t1, t2) = (−1, 0) and (c) (−1,−0.25). The high-symmetry
points in the Brillouin zone are given by � = (0, 0, 0), X =
(0, 0, 2π ), K = ( 3π

2 , 0, 3π

2 ), W = (π, 0, 2π ), and L = (π, π, π ).
(d) The DOS for (t1, t2) = (−1, −0.25). Purple line is from all four
bands. Green and magenta lines are from upper and lower dispersive
bands, respectively.

Since the lattice parameters are given as (x, y, z) =
(1, 2, 6), h2(k) satisfies

h(P)
2 (k) = [h(P,1)

1 (k)
]2 − 2h(P,1)

1 (k) − 6Î4. (30)

Now let us consider the Hamiltonian

H(P) =
∑

k

ĉ†
k

[
t1h(P)

1 (k) + t2h(P)
2 (k)

]
. (31)

Then, if t1 and t2 have the same sign and |t2|/|t1| > 1/6, the
flat bands penetrate the dispersive band [42].

We show the band structure and DOS for (t1, t2) =
(−1,−0.25) in Figs. 3(c) and 3(d), respectively. Here we use
32 × 32 × 32 meshes in the Brillouin zone for the summation
over k. Again, the upper dispersive band has relatively large
DOS near the band top, which is penetrated by the flat band.

IV. EXTENSIONS TO INHOMOGENEOUS MODELS

Our method is also applicable to the models with site or
bond inequivalency. We first consider “breathing” lattices of
kagome and pyrochlore, where the bond inhomogeneity is in-
troduced to the original kagome or pyrochlore lattices. These
lattices are recently of interest particularly in the context of
higher-order topological insulators [45–49], as well as frus-
trated magnetism [50–55]. We also consider non-line-graph
lattices, such as a Lieb lattice [11] and a dice lattice [56], as
examples of site-inhomogeneous lattices.

A. Breathing kagome and pyrochlore lattices

In the breathing kagome (pyrochlore) lattice, the transfer
integrals are modulated from the original models in such a
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FIG. 4. (a) Hoppings for a breathing kagome lattice. Orange, light-blue, and purple lines denote tU
1 , tD

1 , and t2, respectively. Band structures
for (tU

1 , tD
1 , t2) equal to (b) (−1,−0.7, −0.3), (c) (−1, −1.2, −0.3), (d) (−1, 1, −0.3), and (e) (−1, 1,−0.7).

way that the transfer integral on upward triangles (tetrahedra),
tU
1 , is not equal to that on downward ones, tD

1 . Our method
works even in breathing lattices despite the presence of bond
inequivalency, because the eigenfunctions for a flat band do
not change even if we introduce the breathing-type modula-
tion [45].

At the NN model, the “position” of flat band(s) is sensitive
to the relative sign between tU

1 and tD
1 [45,49,55]. If these two

have the same sign, the flat band resides in the band top or
bottom. If they are opposite, on the other hand, it is located in
the middle of two dispersive bands, keeping touching points
with either upper or lower bands.

When we introduce the second-neighbor hoppings, the flat-
band penetration occurs in both cases for sufficiently large |t2|,
but in a quite different manner.

First, let us see the case where both tU
1 and tD

1 have
a negative sign. In this case, the flat band penetrates the
upper band for both |tU

1 | > |tD
1 | and |tU

1 | < |tD
1 | [Figs. 4(b)

and 4(c) for a breathing kagome, and Figs. 5(b) and 5(c) for
a breathing pyrochlore], as in the case of the original kagome
and pyrochlore lattices.

Next, we consider the case of opposite sign; in particu-
lar, the case with tU

1 = −1 and tD
1 = 1. In the absence of

t2(< 0), the flat band intersects the line node of the dis-
persive band at the � point [55]. This line node reminds
us of a Dirac cone; however, the structure of the eigen-
function comprising this line node structure is rather close
to the bosonic magnon mode associated with antiferromag-
netic ordering; i.e., it is a fermionic realization of a Gold-
stone mode [55]. When we introduce a small but finite t2,
we first see that the line node is gapped out, and the flat
band stays touched with the upper dispersive band at the �

point [Fig. 4(d) for a breathing kagome, and Fig. 5(d) for
a breathing pyrochlore]. Upon increasing |t2|, we see that
the flat band penetrates the lower dispersive band, while
retaining a band-touching point with the upper dispersive band
[Fig. 4(e) for a breathing kagome, and Fig. 5(e) for a breathing
pyrochlore].

The evolution of the aforementioned band structures is
tracked by the analytical formulas of the dispersion relations
given in the Appendix.

B. Lieb lattice

In the following two subsections, we consider a class of
Lieb lattices as examples of site-inhomogeneous lattices. We
first study a (conventional) Lieb lattice [11]. We take the lat-
tice vectors as a(L)

1 = (1, 0), a(L)
2 = (0, 1), and the coordinates

of the sublattices are r(L)
1 = (1/2, 0), r(L)

2 = (0, 1/2), r(L)
3 =

(0, 0). The lattice has site-dependent coordination numbers
z1 = z2 = 2 and z3 = 4 (zα is the coordination number of the
sublattice α). Notice that x and y are not sublattice-dependent
and are equal to one and zero, respectively.

We explicitly show that we can tune the flat-band energy
even on this lattice. To begin with, we consider the NN
Hamiltonian given by

h(L)
1 (k) = t1

⎛
⎜⎝

0 0 h(L,1)
13 (k)

0 0 h(L,1)
23 (k)

h(L,1)
13 (k) h(L,1)

23 (k) 0

⎞
⎟⎠, (32)

with h13(k) = 2 cos kx
2 and h23(k) = 2 cos ky

2 . The Hamilto-
nian has a flat eigenvalue λ(L,f) = 0 and the corresponding
eigenfunction is

ψ (L,f )(k) =
(

− cos ky

2

N (L)(k)
,

cos kx
2

N (L)(k)
, 0

)T

, (33)

with N (L)(k) = (cos2 kx
2 + cos2 ky

2 )1/2.
The other two eigenvalues are given by

λ
(L,d)
1 (k) = +2

√
cos2

kx

2
+ cos2

ky

2
, (34)
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FIG. 5. (a) Hoppings for a breathing pyrochlore lattice. Orange, light-blue, and purple lines denote tU
1 , tD

1 , and t2, respectively. Band
structures for (tU

1 , tD
1 , t2) equal to (b) (−1, −0.7, −0.25), (c) (−1, −1.2, −0.25), (d) (−1, 1, −0.25), and (e) (−1, 1, −0.7).

and

λ
(L,d)
2 (k) = −2

√
cos2

kx

2
+ cos2

ky

2
, (35)

thus they form a Dirac cone at the M point, where they have a
point contact with the flat band.

Let us introduce the second-neighbor hopping as

h(L)
2 (k) =

⎛
⎜⎝

h(L,2)
11 (k) h(L,2)

12 (k) 0

h(L,2)
12 (k) h(L,2)

22 (k) 0

0 0 h(L,2)
33 (k)

⎞
⎟⎠, (36)

with h(L,2)
11 (k) = 2 cos kx, h(L,2)

12 (k) = 2[cos( kx
2 + ky

2 ) +
cos( kx

2 − ky

2 )], h(L,2)
22 (k) = 2 cos ky, and h(L,2)

33 (k) =
2(cos kx + cos ky). It is interesting to notice that the block
matrix for sublattices 1 and 2 is identical to the NN hopping
matrix on a checkerboard lattice, which is a line graph. This
indicates that there exists a flat mode of h(L)

2 (k) which is, as
we will see, identical to ψ (L,f)(k) in Eq. (33).

h(L)
2 (k) is not expressed by the quadratic form of h(L)

1 (k);
rather, it is expressed as

h(L)
2 (k) = [h(L)

1 (k)
]2 −

⎛
⎝2

2
4

⎞
⎠, (37)

which reflects the fact that sublattice 3 has a larger coordi-
nation number than the other two sublattices. Nevertheless,
the eigenvector of the flat mode of h(L)

1 (k), i.e., ψ (L,f)(k), is
also an eigenvector of h(L)

2 (k) with eigenvalue −2, since it
does not have a weight on sublattice 3. Note that ψ

(L,d)
1 (k)

and ψ
(L,d)
2 (k) are no longer eigenvectors after introducing the

second-neighbor hopping.
We show the band structures for several values of t1 and t2

in Fig. 6. The analytical formula of the dispersion relations is
presented in the Appendix. As is in the case of the kagome
and pyrochlore lattices, the band crossing does not occur for

arbitrary t2. Indeed, for |t2| � |t1|√
6
, the dispersive bands acquire

the gap but they do not intersect the flat band: Instead, the
lower dispersive band retains the touching point with the flat
band at the M point [Fig. 6(b)]. Meanwhile, for |t2| >

|t1|√
6
, the

upper dispersive band intersects the flat band [Fig. 6(e)].

C. Dice lattice

We next study a dice lattice [56–58], which has a trigonal
symmetry. The lattice is constructed such that we add sites at
the centers of hexagonal plaquettes on a honeycomb lattice;
each newly added site has a finite hopping integral between
only one of the two sublattices of an original honeycomb
lattice (say, 2). Due to this choice of NN hopping, the coor-
dination numbers differ from one sublattice to the other as
z1 = z3 = 3, and z2 = 6. Furthermore, x is also sublattice-
dependent, as x11 = x33 = x13 = 1, and x22 = 2 (xαβ is a num-
ber of the second-neighbor-hopping paths between sublattices
α and β).

We take the lattice vectors as a(D)
1 = ( 1

2 ,−
√

3
2 ), a(D)

2 =
( 1

2 ,
√

3
2 ), and the coordinates of the sublattices as r(D)

1 =
( 1

2 ,− 1
2
√

3
), r(D)

2 = ( 1
2 , 1

2
√

3
), r(D)

3 = (1, 0). Then, the NN hop-
ping matrix on this lattice is given as

h(D)
1 (k) =

⎛
⎜⎝ 0 h(D,1)

12 (k) 0
h∗(D,1)

12 (k) 0 h(D,1)
12 (k)

0 h∗(D,1)
12 (k) 0

⎞
⎟⎠, (38)

with h(D,1)
12 (k) = ei

ky√
3 + 2e−i

ky
2
√

3 cos kx
2 . h(D)

1 (k) has a flat eigen-
value λ(D,f) = 0, and the corresponding eigenfunction is

ψ (D,f )(k) =
(

h(D,1)
12 (k)√

2|h(D,1)
12 (k)| , 0,− h∗(D,1)

12 (k)√
2|h(D,1)

12 (k)|

)T

, (39)
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FIG. 6. (a) A Lieb lattice. Orange (purple) dashed lines denote the hopping processes with the hopping integral t1 (t2). The sublattices are
denotes by 1, 2, and 3. The band structures for (b) (t1, t2) = (−1, 0), (c) (t1, t2) = (−1, −0.2), (d) (t1, t2) = (−1,−1/

√
6), and (e) (t1, t2) =

(−1, −0.5). The high-symmetry points in the Brillouin zone are given by � = (0, 0), X = (π, 0), and M = (π, π ).

which does not have a weight on sublattice 2. The other two
bands are dispersive and given as

λ
(D,d)
1 (k) = 2

√
1 + 4 cos2

kx

2
+ 4 cos

kx

2
cos

√
3ky, (40)

λ
(D,d)
2 (k) = −2

√
1 + 4 cos2

kx

2
+ 4 cos

kx

2
cos

√
3ky. (41)

As is in the case of the Lieb lattice, they form a Dirac cone,
where they touch the flat band.

Now let us introduce the second-neighbor hoppings. On
this lattice, one needs a trick to obtain a desirable Hamil-
tonian; that is, the second-neighbor hopping between neigh-
boring sublattice 2 is twice as large as other second-neighbor
hoppings. This reflects the inhomogeneity of x. As a result,
the second-neighbor hopping matrix we consider is given by

h(D)
2 (k) =

⎛
⎜⎝

h(D,2)
11 (k) 0 h(D,2)

13 (k)

0 2h(D,2)
11 (k) 0

h∗(D,2)
13 (k) 0 h(D,2)

11 (k)

⎞
⎟⎠, (42)

where h(D,2)
11 (k) = 2[cos kx + cos kx+

√
3ky

2 + cos kx−
√

3ky

2 ], and

h(D,2)
13 (k) = ei

√
3kx+ky
2
√

3 + ei
−√

3kx+ky
2
√

3 + e−i
ky√

3 + ei
2ky√

3 + e−i
√

3kx+ky√
3 +

ei
√

3kx−ky√
3 . This satisfies the relation

h(D)
2 (k) = [h(D)

1 (k)
]2 −

⎛
⎝3

6
3

⎞
⎠. (43)

Again, since the eigenvector of the flat band does not have a
weight at sublattice 2, it is also an eigenvector of h(D)

2 (k) with
the eigenvalue −3.

We plot the band structures for several values of (t1, t2) in
Fig. 7. The analytical formula of the dispersion relations is
presented in the Appendix. As in the previous examples, there
is a critical value of |t2|/|t1| above which the band crossing
between flat and dispersive band occurs. To be specific, the
band crossing occurs for |t2|/|t1| > 1√

15
[see Fig. 7(e)].

V. APPLICATION TO AN ELECTRIC CIRCUIT

So far, we have shown that the Manhattan-distance-
dependent hopping is crucial to tune the flat-band energies.
In the solid-state systems, however, it is not always easy to
control the hopping parameters. Nevertheless, recent develop-
ments of artificial materials, such as photonic crystals [59],
phononic crystals [60], and electric circuits [49], indicate that
“engineering” of the hopping parameters is possible in these
systems, meaning that they will be an ideal platform to apply
our method. In this section, we discuss one of those examples;
namely, an electric circuit with a kagome network.

According to the modern theory of electric circuits [61,62],
the relation between current (I) and voltage (V ) in electric
circuits composed of periodic tiling of registers, capacitors,
and inductors is described by using the circuit Laplacian
matrix, which has a structure similar to that of tight-binding
Hamiltonians in quantum mechanics. We emphasize that,
since the hopping parameters of tight-binding Hamiltonians
exactly correspond to the resistance, capacitance, and induc-
tance of the circuit elements in the circuit Laplacian formal-
ism, the fine tuning of the parameters can be achieved in these
systems.

To be concrete, consider the LC circuit shown in Fig. 8.
The nodes form a kagome lattice and they are connected each
other by the capacitors. Note that all nodes are connected to
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FIG. 7. (a) A dice lattice. Orange and purple dashed lines, respectively, denote the hopping processes with the hopping integrals t1 and t2.
For a green dashed line, the hopping integral is 2t2 as a consequence of the site-inhomogeneity (see main text). The sublattices are denoted 1,
2, and 3. The band structures for (b) (t1, t2) = (−1, 0), (c) (t1, t2) = (−1, −0.2), (d) (t1, t2) = (−1, −1/

√
15), and (e) (t1, t2) = (−1,−0.5).

The high-symmetry points in the Brillouin zone are given by � = (0, 0), K = ( 4π

3 , 0), and M = (π, π√
3

).

the ground by the inductors with inductance L, although they
are omitted in the figure for simplicity. Suppose that the both
the current and the voltage oscillate in time with an angular
frequency ω. Then, the relation between Ii(ω) and Vj (ω) is
written as

Ii(ω) = Ji, j (ω)Vj (ω). (44)

Here Ji, j (ω) is the circuit Laplacian matrix, and its explicit
form can be obtained by following Ref. [62]:

Ji, j (ω) =
(

1

iωL
+
∑

�

iωCi,�

)
δi, j − iωCi, j, (45)

with Ci, j being the capacitance between the node i and j. In
the present setup, Ci, j = C1 if i and j are connected by a NN
bond, Ci, j = C2 if i and j are two Manhattan distances away,
and otherwise Ci, j = 0.

Furthermore, if the circuit satisfies the periodic boundary
condition, we can perform a Fourier transformation:

I(ω, k) = J (ω, k)V (ω, k), (46)

where I(ω, k) = [I1(ω, k), I2(ω, k), I3(ω, k)]T, V (ω, k) =
[V1(ω, k),V2(ω, k),V3(ω, k)]T, and

J (ω, k) =
[

4iω(C1 + 2C2) + 1

iωL

]
Î3

− iωC1h(K)
1 (k) − iωC2h(K)

2 (k), (47)

where the explicit forms of h(K)
1 (k) and h(K)

2 (k) are shown
in Sec. III A. Notice that J (ω, k) is a non-Hermitian matrix,
but −iJ (ω, k) is a Hermitian matrix, thus the eigenvalues of
J (ω, k) are pure imaginary. The eigenvalues and eigenvectors
of J (ω, k), jn(ω, k), and ψn(ω, k), play a crucial role in
determining the responses of the electric circuit. Namely,

two-point impedance of the circuit between the site (R, η) and
(R′, η′) can be written as [62]

Zη,η′
(R, R′)

=
′∑

k,n

|[ψn(ω, k)]ηeik·(R+rη ) − [ψn(ω, k)]η′eik·(R′+rη′ )|2
jn(ω, k)

,

(48)

where
∑′

k,n denotes summation over k and n satisfying
| jn(ω, k)| �= 0. This indicates that the eigenmodes with
| jn(ω, k)| ∼ 0 play an important role in determining the two-
point impedance.

In Fig. 8(b) we show the band structure, i.e., the mo-
mentum dependence of Im jn(ω, k). Since −iJ (ω, k) has ex-
actly the same structure as the tight-binding Hamiltonian of
Eq. (10) up the constant shift, our strategy to tune the flat-band
energy is applicable by tuning C2/C1. Indeed, we see that the
flat band intersects the upper dispersive band. Furthermore,
the flat-band energy can be tuned by inductance L and the
angular frequency ω. In the present case, we fine tune ωL
so that the flat band lies in the vicinity of zero. Therefore,
we expect an interesting I-V response which arises from the
mixture of the flat band and the dispersive band.

VI. CONCLUSION

We have introduced a simple idea to tune the flat-band
energy by using farther-neighbor hoppings whose amplitudes
are dependent on the Manhattan distance instead of on the
real distance. Mathematically, this idea is based on the fact
that, for a given matrix, polynomials of that matrix have the
same eigenvectors as the original one and its eigenvalues
are given by the polynomial of the original ones. The merit
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FIG. 8. (a) Schematic figure for the electric circuit considered
in Sec. V. Black filled circles denote the nodes of the circuit. Note
that all nodes are connected to the ground by the inductors with
inductance L. Black solid lines and purple dashed lines denote the
capacitors with capacitance C1 and C2, respectively. The dots denote
the periodic boundary condition. (b) The band structure of the circuit
Laplacian matrix for (ωC1, ωC2,

1
ωL ) = (1, 0.3, 7.79).

of this method is that we do not need to fine tune many
parameters to obtain the suitable band structure, and that flat
bands do not acquire a dispersion by the deformation of the
Hamiltonian. We have also demonstrated that the proposed
method is applicable to various lattices, including kagome and
pyrochlore lattices, their breathing lattices, and a class of Lieb
lattices.

We expect that this method has broad potential applications
to design suitable flat-band models. As we have shown in
Sec. V, artificial materials are promising candidates, due to
the tunability of the hopping parameters. For solid-state sys-
tems, recent studies of first-principles calculations imply that
carbon-based materials [63–66], and pyrochlore oxides [67]
will be promising candidates. Although the exact flatness will
be spoiled by the additional hoppings in the real solid-state
systems, our method will serve as a good starting point to
search the materials with nearly flat bands penetrating the
dispersive bands, which also show the intriguing physics.
Studying the properties of those models, such as correlation
effects, superconductivity, topological physics, and effects of
disorders [58,68–72], will be an interesting future problem.
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APPENDIX: ANALYTICAL FORMULAS FOR DISPERSION
RELATIONS

We summarize the dispersion relations for breathing
kagome and pyrochlore lattices, a Lieb lattice, and a dice
lattice in the presence of the second-neighbor hopping.

1. Breathing kagome lattice

In the NN hopping model, the eigenvalues and eigenvec-
tors of dispersive bands can be obtained by using either a
“molecular orbital” method [45] or a line-graph correspon-
dence [42,55]. Here we employ the latter, which is also
applicable to the case with t2.

We first introduce the incident matrix between the original
kagome lattice and the dual honeycomb lattice:

T̃ (k) =
(

eiϕ1(k) eiϕ2(k) eiϕ3(k)

e−iϕ1(k) e−iϕ2(k) e−iϕ3(k)

)
, (A1)

where ϕ1(k)–ϕ3(k) are defined in Sec. III A. Then, both the
NN term and the second-neighbor term are expressed by
T̃ (k) [42,55]

H =
∑

k

(c†
k,1, c†

k,2, c†
k,3)
[
T̃ †(k)D(k)T̃ (k) − (tU

1 + tD
1 − 2t2

)
Î3
]

×
⎛
⎝ck,1

ck,2

ck,3

⎞
⎠, (A2)

where

D(k) =
(

tU
1 − 2t2 t2F (H)(k)

t2F (H)∗(k) tD
1 − 2t2

)
. (A3)

F (H)(k) = ei
ky√

3 + 2 cos kx
2 e−i

ky
2
√

3 is the Fourier transformation
of the NN hoppings on the dual honeycomb lattice.

Now, an eigenvalue equation to solve is

T̃ †(k)D(k)T̃ (k)ψ (k) = (ε + tU
1 + tD

1 − 2t2
)
(k)ψ (k). (A4)

To solve this, we define a two-component vector φ(k) such
that

φ(k) = T̃ (k)ψ (k). (A5)

Then, by multiplying T̃ (k) from the left by Eq. (A4), we
obtain an eigenvalue equation for φ(k) as

T̃ (k)T̃ †(k)D(k)φ(k) = (ε + tU
1 + tD

1 − 2t2
)
φ(k). (A6)

Note that T̃ (k)T̃ †(k) is a 2 × 2 matrix which is given as

T̃ (k)T̃ †(k) =
(

3 F (H)(k)

F (H)∗(k) 3

)
. (A7)

To obtain Eq. (A7), we use the fact that e2iϕ1(k) + e2iϕ2(k) +
e2iϕ3(k) = F (H)(k).

From Eq. (A7), we see that the eigenvalue of the original
problem, ε(BK)(k), can be obtained by solving an eigenvalue
equation of the 2 × 2 matrix. By doing this, we finally obtain
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the dispersion relations as

ε
(BK)
± (k) =

(
tU
1 + tD

1

)±
√

9
(
tU
1 − tD

1

)2 + |F (H)(k)|2(tU
1 + t2

)(
tD
1 + t2

)
2

+ (|F (H)(k)|2 − 4)t2. (A8)

2. Breathing pyrochlore lattice

We can apply the same method to the breathing pyrochlore lattice with t2. Here we show the resulting eigenvalues of dispersive
bands:

ε
(BP)
± (k) = (tU

1 + tD
1

)±
√

4
(
tU
1 − tD

1

)2 + |F (D)(k)|2(tU
1 + 2t2

)(
tD
1 + 2t2

)+ (|F (D)(k)|2 − 6)t2, (A9)

with F (D)(k) = e−i
kx+ky+kz

8 + ei
−kx+ky+kz

8 + ei
kx−ky+kz

8 + ei
kx+ky−kz

8 being the Fourier transformation of the NN hoppings on the dual
diamond lattice.

3. Lieb lattice

In the following two cases, we obtain the eigenenergies by explicitly solving eigenvalue equations in two-dimensional space
spanned by two dispersive modes of the NN Hamiltonian, where we utilize that fact that the flat mode is unchanged when
introducing the second-neighbor term.

For the Lieb lattice, the dispersive bands have the following dispersion relations:

ε
(L)
1 (k) = t2

[
4

(
cos2 kx

2
+ cos2 ky

2

)
− 3

]
+
√

4t2
1

(
cos2

kx

2
+ cos2

ky

2

)
+ t2

2 , (A10)

and

ε
(L)
1 (k) = t2

[
4

(
cos2 kx

2
+ cos2 ky

2

)
− 3

]
−
√

4t2
1

(
cos2

kx

2
+ cos2

ky

2

)
+ t2

2 . (A11)

The upper dispersive band corresponds to ε
(L)
1 (k). The critical value for t2 at which the intersection between the flat and dispersive

bands occurs is determined by the condition

ε
(L)
1

(
k = 0; t1, t c

2

) = −2t c
2 , (A12)

which, as described in the main text, leads to |t c
2 | = |t1|√

6
.

4. Dice lattice

Next, we consider the dice lattice. The dispersive bands have following dispersion relations:

ε
(D)
1 (k) = t2

(
2
∣∣h(D,1)

12 (k)
∣∣2 − 9

2

)
+
√

2t2
1

∣∣h(D,1)
12 (k)

∣∣2 + 9

4
t2
2 , (A13)

and

ε
(D)
2 (k) = t2

(
2
∣∣h(D,1)

12 (k)
∣∣2 − 9

2

)
−
√

2t2
1

∣∣h(D,1)
12 (k)

∣∣2 + 9

4
t2
2 , (A14)

where h(D,1)
12 (k) is given in the main text. The upper dispersive band corresponds to ε

(D)
1 (k). The critical value for t2 at which the

intersection between flat and dispersive band occurs is determined by the condition

ε
(D)
1

(
k = 0; t1, t c

2

) = −3t c
2 , (A15)

which, as described in the main text, leads to |t c
2 | = |t1|√

15
.
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