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Classifications of symmetry-protected topological (SPT) phases provide a framework to systematically
understand the physical properties and potential applications of topological systems. While such classifications
have been widely explored in the context of Hermitian systems, a complete understanding of the roles of more
general non-Hermitian symmetries and their associated classification is still lacking. Here, we derive a periodic
table for noninteracting SPTs with general non-Hermitian symmetries. Our analysis reveals additional non-
Hermitian topological classes, while also naturally incorporating the entire classification of Hermitian systems
as a special case of our scheme. Building on top of these results, we derive two independent generalizations of
Kramers theorem to the non-Hermitian setting, which constrain the spectra of the system and lead to different
topological invariants. To elucidate the physics behind the periodic table, we provide explicit constructions
of non-Hermitian topological invariants, focusing on the symmetry classes in zero, one, and two dimensions
with non-Hermitian topological classifications beyond those previously discussed (e.g., Z in zero dimensions,
Z2 in one and two dimensions). These results thus provide a framework for the design and engineering of
non-Hermitian symmetry-protected topological systems.
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I. INTRODUCTION

Symmetry and topology lie at the heart of modern physics,
and systematically understanding their roles in various physi-
cal systems has led to numerous interesting phenomena and
potential applications [1–11]. Systematic classifications of
symmetry-protected topological (SPT) phases, as exemplified
by the tenfold way [12–14] for free fermions, have been
particularly important in providing a framework to analyze
the topological behavior of systems with different symme-
tries and expediting the identification of new phases. Indeed,
extensions of such approaches have also been proven to be
extremely useful beyond the tenfold way, in the classification
of topological crystalline insulators and gapless topological
materials [15–20]. However, the majority of these works focus
on the case of a closed Hermitian system.

In contrast, many physical systems, particularly in the con-
text of atomic, molecular, and optical physics [21–27], may
display richer non-Hermitian properties [28,29] associated
with gain or loss in the system, leading to counterintuitive
phenomena such as unconventional transmission and reflec-
tion [30,31], parity-time symmetry [32–38], as well as laser
and sensor applications [39–48]. Moreover, it has recently
been shown that even in solid-state systems conventionally
described by a Hermitian Hamiltonian, an effective non-
Hermitian description based on quasiparticle lifetimes can
also yield new physical insights [49–52]. The topological
properties of such non-Hermitian systems are also of great
importance, due to both the fundamental interest of expand-
ing the classes of available topological states [53–84] and
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clarifying the roles of bulk-boundary correspondence in such
systems [85–90], as well as their potential applications in, e.g.,
topological lasers [47,48,91].

However, systematic classifications of such non-Hermitian
SPTs are still in progress. In a significant step toward this
direction, Gong et al. [63] proposed an approach to extend
the Hermitian classification techniques based on K theory to
non-Hermitian systems. However, only a limited set of sym-
metries that are directly realized in usual Hermitian systems
were considered, and the classification was considered as an
independent extension of Hermitian classes, where the usual
Altland-Zirnbauer (AZ) classes were not directly included in
the formalism. This calls for a systematic effort to analyze
all possible symmetries in the non-Hermitian setting, and
determine the allowed topological invariants.

Here, we systematically classify non-Hermitian topologi-
cal bands in arbitrary spatial dimension, taking into account
types of symmetries that are unique to non-Hermitian sys-
tems. To this end, we make use of the Bernard-LeClair sym-
metry classes [65,92–94], based on four types of fundamental
symmetries, which naturally generalize AZ classes into the
case of non-Hermitian random matrix ensembles, resulting in
a total of 38 symmetry classes. We find that in addition to
expanding the classes of available symmetries, this approach
also leads to two independent generalizations of Kramers
relations, which constrain the spectra and lead to degeneracies
for certain symmetry classes, playing an important role in the
identification of topological invariants. We then employ the
technique of doubling the Hamiltonian (also known as Her-
mitian reduction) [63,92,95,96] to reduce the non-Hermitian
classification problem into a Hermitian classification problem,
and apply K-theory techniques to obtain the classifying space
and resultant topological invariants [97]. Our classification
scheme naturally includes previous results on non-Hermitian
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systems, and also contains Hermitian classifications as a
special case, where Hermiticity is viewed as a special
case of the more general pseudo-Hermiticity symmetry. To
illustrate the periodic table, we analyze several nontrivial ex-
amples of the classification beyond what has been discussed in
existing literature, providing detailed analysis of topological
invariants in zero, one, and two dimensions that did not appear
in the limited symmetry classes of previous discussions of
non-Hermitian topological phases. Our results thus provide a
framework to analyze topological phases protected by general
non-Hermitian symmetries, and could serve as an important
guide for the experimental design of topologically nontriv-
ial non-Hermitian systems based on the invariants we have
proposed.

This paper is organized as follows: In Sec. II, we briefly
review the Hermitian classification approaches based on K
theory and Clifford algebra extension problems. In Sec. III,
we describe the Bernard-LeClair symmetry classes in detail,
which form a natural generalization of the Altland-Zirnbauer
classes to the non-Hermitian setting. Analyzing these sym-
metry classes in Sec. IV, we find two distinct non-Hermitian
generalizations of Kramers degeneracy, one of which makes
use of the biorthogonal properties of the system, and the other
leading to spectra that form complex-conjugate pairs. We then
proceed to present our classification scheme and results in
Sec. V, which are based on a natural generalization of Her-
mitian gapped topological phases to non-Hermitian systems,
culminating in the periodic table, Table II. We find that in
addition to reproducing known results, this classification with
more general non-Hermitian symmetries also provides classes
of topological invariants in non-Hermitian systems that have
not been extensively studied before, and we elucidate their
physical nature through explicit examples and calculations
of topological invariants in Sec. VI, making use of symme-
try transformations to Hermitian Hamiltonians, as well as
correspondences between non-Hermitian Hamiltonians and
block off-diagonal projectors of Hermitian Hamiltonians with
chiral symmetry. We also examine the implications of wind-
ing number topological invariants on the non-Hermitian skin
effect. We conclude by some remarks on different extensions
to the classification scheme in Sec. VII. Details of some
calculations as well as additional examples are presented in
the Appendices.

II. REVIEW OF HERMITIAN CLASSIFICATIONS

Before presenting our approach to the classification of
SPTs protected by non-Hermitian symmetries, we first re-
view methods to classify SPTs in Hermitian systems,
based on K theory and Clifford algebra extension problems
[4,12–14,98–100]. For simplicity, we shall be focusing on the
case of internal symmetries only, although spatial symmetries
can also be readily incorporated.

A. Hermitian symmetries

The symmetry classes considered in the Hermitian setting
(so-called AZ classes) are combinations of time-reversal sym-
metry T , particle-hole symmetry C, and chiral symmetry P ,

defined as

[H, T ] = {H, C} = {H,P} = 0, (1)

where H is the Hamiltonian, square brackets denote commu-
tation, and curly brackets denote anticommutation. Each of
these symmetries are involutions, meaning that acting with
them twice gives rise to the same Hamiltonian. T and C
are antiunitary symmetries, while P is unitary. We assume
that we are already operating in the symmetry sectors of
any possible unitary, commuting symmetries such as spin-
rotation symmetry, and can thus ignore their effects. Since the
presence of two symmetries of the same kind will give rise to a
unitary, commuting symmetry, we also assume that only one
symmetry operator of each kind is present in this symmetry
sector.

Since P is a unitary symmetry, we can multiply a phase
such that it satisfies P2 = I. For antiunitary symmetries, we
can show that T 2, C2 = ±I (see, for example, Appendix A).
Moreover, the combination of two of these symmetries will
give rise to a symmetry of the other type.

This allows us to enumerate the AZ symmetry classes for
Hermitian systems. When H possesses antiunitary symme-
tries, T and C can be either present (with square ±1) or not,
giving rise to 32 − 1 = 8 classes, where we do not count the
case where both antiunitary symmetries are not present. When
H does not possess any antiunitary symmetries, there are 2
classes, depending on whether the chiral symmetry is present.
Thus, there are a total of 10 possible symmetry classes.

B. Clifford algebra

For classifications of Hermitian topological phases, Clif-
ford algebras play an important role. These are algebras in
which the generators anticommute with each other. When
there are antiunitary symmetries present, the complex con-
jugation involved in the antiunitary symmetry requires us
to consider real Clifford algebras; otherwise, we consider
complex Clifford algebras.

The complex Clifford algebra Cln, with n generators
e1, e2, . . . , en, is formed by taking all linear combinations
of products of generators ep1

1 ep2
2 , . . . , epn

n (pi = 0, 1) over the
complex number field. In addition, the Clifford algebra gener-
ators satisfy the anticommutation relation

{ei, e j} = 2δi j, (2)

where we have used the fact that complex numbers can be
multiplied to make each generator square to 1.

The real Clifford algebra Clp,q has n = p + q generators,
and is formed by taking all linear combinations of products
of generators ep1

1 ep2
2 , . . . , epn

n (pi = 0, 1) over the real number
field. Since the underlying number field is real, we can no
longer multiply arbitrary complex numbers to make the gen-
erators square to 1. Therefore, the generators are chosen to
satisfy the following relations:

{ei, e j} = 0, j �= i (3)

e2
i =

{−1, 1 � i � p
+1, p + 1 � i � p + q.

(4)
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TABLE I. Periodic table for Hermitian topological phases,
adapted from Refs. [13,14,99]. The columns specify the symmetry
class, the square of each symmetry [time-reversal symmetry (TRS),
particle-hole symmetry (PHS), and chiral symmetry], where 0 de-
notes that this symmetry is not present, the classifying space for
the zero-dimensional Clifford algebra extension problem, and the
topological classification in dimensions 0 to 3.

Class TRS PHS Chiral Classifying space 0D 1D 2D 3D

A 0 0 0 C0 Z 0 Z 0
AIII 0 0 1 C1 0 Z 0 Z
AI 1 0 0 R0 Z 0 0 0
BDI 1 1 1 R1 Z2 Z 0 0
D 0 1 0 R2 Z2 Z2 Z 0
DIII −1 1 1 R3 0 Z2 Z2 Z
AII −1 0 0 R4 Z 0 Z2 Z2

CII −1 −1 1 R5 0 Z 0 Z2

C 0 −1 0 R6 0 0 Z 0
CI 1 −1 1 R7 0 0 0 Z

C. Topological classification for Hermitian systems

Having introduced the symmetries and mathematical lan-
guage that will be employed in the classification, we can now
proceed to discuss the topological classification of Hermitian
systems, following Kitaev’s approach [13]. The results are
summarized in Table I.

First, we consider a zero-dimensional (0D) system. For a
generic, gapped Hamiltonian, one first “flattens” the spectra,
keeping the gap open and thus preserving the topological
properties, such that all eigenvalues above the gap are con-
tinuously deformed to lie at +1, and all eigenvalues below the
gap lie at −1. The symmetry generators are then written in
the form of matrix representations of Clifford algebra gener-
ators. For the classification to be generic and robust against
the insertion of additional bands, as per Kitaev’s original
approach, the matrix representations should be chosen to be
of sufficiently large dimension.

With the symmetry generators written as elements of a
Clifford algebra {ei}, the classification then corresponds to
determining all possible inequivalent ways to insert the gener-
ator e0, representing the mass term of the Hamiltonian, into
the existing Clifford algebra. As an example with complex
classes, when there are n existing generators, this would
correspond to the Clifford algebra extension problem Cln →
Cln+1. The set of such representations forms the so-called
“classifying space,” denoted Cq or Rq for the complex or real
Clifford algebras.

According to K theory, the classifying spaces for the
complex and real Clifford algebra extension problems are

Cln → Cln+1 ⇔ Cn, (5)

Clp,q → Clp,q+1 ⇔ Rq−p, (6)

Clp,q → Clp+1,q ⇔ Rp+2−q. (7)

The distinct components are characterized by the zeroth ho-
motopy group π0(Cq) or π0(Rq), which are well known from
the explicit forms of the classifying spaces based on the theory

of symmetric spaces. Thus, one can determine the topological
classification for any zero-dimensional system with the above
symmetries.

A physical interpretation of this mathematical approach
based on Clifford algebra extension problems is that we are
seeking all inequivalent ways to insert a mass term and gap
out a system, subject to some symmetry constraints. This
interpretation also makes clear the classification approach in
a general dimension d: we can generically consider a massive
Dirac Hamiltonian

H (�k) =
∑

i

kiγi + m, (8)

where ki is the momentum in the ith direction and m is a
mass term that gaps out the system. Similar to the zero-
dimensional case, the mass term m should satisfy the commu-
tation relations specified in Eq. (1). However, since antiunitary
operations flip the direction of momenta, the commutation
relations with the γi matrices become

{T , γi} = [C, γi] = {P, γi} = 0. (9)

If we take the mass term m to be flattened as in the 0D case,
operators in Eq. (8) should satisfy the commutation relations

{γi, γ j} = 2δi j, {m, γi} = 0, m2 = I. (10)

The topological classification then proceeds in a similar fash-
ion as before. We classify the topologically inequivalent ways
of adding the mass generator e0 = m to the Clifford algebra
formed by the symmetry generators and the matrices γi. Thus,
with each increase of dimension, the Clifford algebra exten-
sion problem and correspondingly the classifying space is
shifted. This gives rise to the diagonal structure in the periodic
table. Due to Bott periodicity in K theory, the topological
indices have period 2 for complex classes and period 8 for real
classes. The classification results for Hermitian topological
phases are summarized in Table I.

III. NON-HERMITIAN SYMMETRY CLASSES

We now generalize the symmetry classes to the non-
Hermitian case, making use of the ideas of Bernard-LeClair
symmetry classes [65,92–94,101]. The key difference is that
in the case of non-Hermitian systems, the scope of symmetries
is significantly expanded; in particular, Hermiticity can now
be viewed as a special type of non-Hermitian symmetry
(type Q). Time-reversal symmetry and particle-hole symme-
try become equivalent under an imaginary rotation [102],
but can have two independent types (type C and type K)
of generalizations to the non-Hermitian setting. Combined
with chiral symmetries (denoted type P), this gives rise to
four different types of symmetries, with certain equivalence
relations between different combinations of them.

A. Basic building blocks: Bernard-LeClair symmetry classes

We first explain the form of the basic symmetries. For
unitary, commuting symmetries, the Hamiltonian can be block
diagonalized into different symmetry sectors and considered
separately. Therefore, we focus on the remaining possible
symmetries, restricted on physical grounds to be involutions,
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that act on each symmetry sector. From a physics viewpoint,
we would like them to be natural, but complete, generaliza-
tions of the Hermitian time-reversal, particle-hole, and chiral
symmetries. Moreover, we would like to directly incorporate
Hermitian classifications into this formalism. This motivates
the following forms of symmetries that we consider.

Generically, we may write

h = εOuO(h)u−1, (11)

where u is a unitary matrix implementing the symmetry, the
operation O can be identity, Hermitian conjugation, trans-
position or complex conjugation, labeled as type P, Q,C, K
symmetries, and εO is a sign factor ±1, as required for an
involution. Since we are already in a fixed symmetry sector,
we assume no unitary, commuting symmetries, and therefore
must have εp = −1, in analogy to the Hermitian chiral sym-
metry. Type P and Q symmetries are straightforward general-
izations of chiral symmetry and Hermiticity, while type C and
K are two different generalizations of time-reversal/particle-
hole symmetry that coincide in the Hermitian case but can
generically be different in the non-Hermitian setting.

We note that the presence of some symmetries may im-
ply others. For example, since each of the symmetries are
restricted to be involutions, a combination of two symme-
tries (specified by u1, u2) of the same type will result in
a unitary commuting symmetry u1u2, and thus within each
symmetry sector, we only need to consider at most a single
instance of each symmetry. Moreover, the combination of a
type Q and type C symmetry automatically implies a type
K symmetry k = qc; therefore, to enumerate all classes that
involve any two or three of type Q, C, K symmetry, we only
need to consider the inclusion of a type Q and a type C
symmetry.

For the two symmetry types Q and K that involve complex
conjugation, we may redefine h → ih to flip the sign of εO,
and thus without loss of generality we may choose εq = εk =
1. Meanwhile, εc = ±1 can take on either sign. Note that care
must be taken when both type Q and type K symmetries are
present since the above redefinitions to make εq = εk = 1 may
be inconsistent. However, as discussed above, any two of type
Q, C, K symmetries will imply the remaining one; therefore,
we can always consider only the corresponding type Q and
type C symmetries in this scenario, and use the consistent sign
for the type K symmetry that is automatically implied. The
choice of sign will impact the spectrum, but will not modify
the topological properties that we are interested in.

The condition that the symmetries are involutions also
imposes restrictions on the unitary symmetry implementation
u. As is shown in Appendix A, the unitary implementations
p, q, c, k of type P, Q, C, K symmetries are required to sat-
isfy p2 = q2 = cc∗ = kk∗ = λI. Moreover, by an appropriate
phase choice of p and q, and by further analysis of c and k, we
find that we can choose p2 = q2 = I and cc∗ = kk∗ = ±I.

Combining all of the preceding considerations, we arrive
at the canonical forms for the four types of symmetries:

h = −php−1, p2 = I (P sym.), (12)

h = qh†q−1, q2 = I (Q sym.), (13)

h = εcchT c−1, cc∗ = ηcI (C sym.), (14)

h = kh∗k−1, kk∗ = ηkI (K sym.). (15)

For physical dimensions greater than 0, we also need to spec-
ify how the symmetries operate on the momentum. Since type
P and Q symmetries are more analogous to Hermiticity and
chiral symmetry, we expect them to preserve the momentum
k → k, while for type C and K symmetries, since they are
more analogous to time-reversal symmetry and particle-hole
symmetry, we expect them to behave similar to antilinear and
antiunitary symmetries, and should thus bring k → −k. This
is further justified in Sec. V B, where we discuss the use of
doubled Hamiltonians to perform topological classifications;
type P, Q symmetries are mapped to unitary symmetries at
the doubled level, while type C, K symmetries are mapped to
antiunitary symmetries, consistent with the above choice of
action on the momentum. This is consistent with the AZ sym-
metry classes, but for other physical situations, e.g., parity-
time PT symmetry, it may be desirable to adopt different
momentum transformation rules.

B. Commutation relations

To consider the combination of several symmetries, we
require that the different symmetry transformations specified
in Eqs. (12)–(15) commute.1 Taking type P and Q symmetries
as an example, this implies

−pqh†q† p† = −qph† p†q† (16)

for generic h, which implies that p†q† pq = λI, or in other
words λp = q† pq. Taking the square, and using the fact that
we can choose p2 = I, we find that λ2 = 1. Thus, we find that

p = εpqq† pq, εpq = ±1. (17)

Similarly, we find that

c = εpc pcpT , k = εpk pkpT , c = εqcqcqT , (18)

where εμν = ±1 for μ, ν = p, q, c, k.
The types of symmetries considered, combined with the

signs of the commutation relation εμν , the sign of the commu-
tation between the type C symmetry and the Hamiltonian εc,
and the sign of the symmetry operator involution identity ηc,
ηk , completely specify a symmetry class. However, some of
these symmetry classes can be shown to be equivalent to each
other, as we now discuss.

C. Equivalence relations

Similar to how a type Q and a type C symmetry may
combine to imply a type K symmetry, combinations of a type
P symmetry and another symmetry may also imply a new
symmetry of the second kind that satisfies a different com-
mutation relation from the original. This leads to equivalence
relations between different possible commutation relations

1Note that this is slightly different from requiring the unitaries im-
plementing the symmetry to commute, since the symmetry operation
involves a conjugation.
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and operator identities. Here, we provide a detailed derivation
of such relations.

First, consider a type P and type C symmetry. This implies
that there exists an additional type C symmetry implemented
as c̃ = pc. Suppose that the original symmetries have param-
eters for the square and commutation relations as specified
above, then the corresponding properties for the new type C
symmetry implemented by c̃ can be found to be

h = −php−1 = −εcc̃hT c̃−1 ⇒ εc̃ = −εc, (19)

c̃c̃∗ = pcp∗c∗ = pcpT cT = εcpcc∗ = εcpηc

⇒ ηc̃ = εcpηc, (20)

pc̃pT = cpT = εcp pc = εcpc̃ ⇒ εc̃p = εcp, (21)

c̃†q†c̃ = c† p†q† pc = εpqc†q†c = εpqq†

⇒ εqc̃ = εqpεqc. (22)

Similarly, for a type P and type K symmetry, we shall find that
an additional type K symmetry k̃ = pk is implied, and that
this symmetry satisfies the condition ηk̃ = εpkηk , εpk̃ = εpk .
Note that in this calculation we have already used the fact, as
discussed previously, that for the type K symmetry, we may
redefine the Hamiltonian as h → ih to get rid of any signs in
front of the symmetry definition.

Finally, we note that combining a type P and type Q
symmetry also leads to an additional type Q symmetry imple-
mented as q̃ = qp. In order to satisfy the square condition for
a type Q symmetry q̃2 = I, we should multiply an additional
phase factor

q̃ = √
εpqqp (23)

since qpqp = εpq. The only commutation relation that can be
modified by this redefinition is between the type Q symmetry
and a type C symmetry. In particular, using the identities in
Eq. (18), we find that

cq̃∗ = (
√

εpq)∗cq∗ p∗

= (
√

εpq)∗εqcεpcqpc = εqcεpcεpqq̃c, (24)

so that εq̃c = εqcεpcεpq.
By enumerating all possible symmetries, signs of the sym-

metry relations, and their equivalence relations, we obtain a
total of 38 symmetry classes. Note that this is slightly different
from the number of classes noted in Refs. [92,94] since in
those works inequivalent representations of the same symme-
try were separated into different classes, and in Ref. [92] sev-
eral symmetry classes were accidentally dropped. However,
since we are here interested in the topological classification
resulting from the symmetry classes, we are agnostic to the
specific unitary implementation of the symmetry, and regard
different representations of the symmetry as belonging to
the same class. Note, however, that even though inequivalent
representations of the same symmetry will be shown to have
an identical topological classification, the precise nature of the
invariant may still be slightly different, as will be discussed in
Sec. VI.

IV. NON-HERMITIAN KRAMERS DEGENERACY

Before providing the full periodic table for SPTs based on
these non-Hermitian symmetry classes, we first comment on
the spectral consequences of the non-Hermitian symmetries,
which will also play an important role in understanding the na-
ture of topological invariants for certain models. In particular,
we prove the non-Hermitian counterpart of Kramers relations
for type C and type K symmetries, when the symmetries
square to −1. In the Hermitian limit, both of these cases
reduce to the Hermitian time-reversal symmetry. However, in
the non-Hermitian case, the form of the Kramers relation will
be considerably different between the two types of symme-
tries, and the spectral consequences of the type C symmetry
are more similar to the Hermitian time-reversal symmetry.
Note that our proof does not rely on pseudo-Hermiticity, in
contrast with previous studies of generalized Kramers degen-
eracies in non-Hermitian systems [101], where the system
has both type K and Q symmetries; in those cases, under the
presence of a type Q symmetry, the problem can be directly
transformed to the usual Kramers degeneracy via the method
described in Sec. V F.

A. Generalized Kramers relation for type K symmetry

We first prove a generalized Kramers relation for type
K symmetries with ηk = kk∗ = −1. We will show that as
a consequence of the type K symmetry, for εk = 1, each
eigenstate has an associated pair with a complex-conjugated
eigenvalue. Thus, in this case, the symmetry does not impose
a full degeneracy of the eigenvalue, but only guarantees that
the real part of the eigenvalues is degenerate.

Using the right eigenvalue equation, we find that

kh∗
−�kk†v�k = h�kv�k = λ�kv�k,

⇒ h−�k (kT v∗
�k ) = λ∗

�k (kT v∗
�k ), (25)

where v�k , λ�k are a pair of right eigenvector and eigenvalue.
Thus, we find that kT v∗

�k and λ∗
�k are also a pair of right eigen-

vector and eigenvalue of h−�k . This implies that the spectra

form complex-conjugate pairs between �k and −�k.
At the time-reversal-invariant points �k = −�k, we need

to show that the resulting eigenvectors from this symmetry
operation v�k and kT v∗

�k are independent of each other. Suppose
they are linearly dependent, then

v�k = eiφkT v∗
�k = eiφkT e−iφk†v�k = kT k†v�k, (26)

which contradicts the fact that ηk = kk∗ = kT k† = −1.
Therefore, the generalized Kramers relation holds, and each
eigenstate has an associated pair with a complex-conjugated
eigenvalue. In the case where ηk = kk∗ = +1, this relation
will only hold for complex eigenvalues, and will not hold
anymore for real eigenvalues at the time-reversal-invariant
points, in analogy to the fact that Kramers degeneracy holds
for fermionic systems, but not bosonic systems. This result is
consistent with the 2Z invariant found in Ref. [63] for their
non-Hermitian class AII/C (see also class 35 in Table II).

In the above derivation, we have assumed that the sym-
metry satisfies h = εkkh∗k−1 with εk = +1. Multiplying the
Hamiltonian by i, we shall also find that if εk = −1, we can
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TABLE II. Periodic table with non-Hermitian symmetries, commutation relations, Clifford algebra generators (a subscript indicates a
commuting unitary symmetry, while a bracket indicates a unitary symmetry that squares to −1 and thus acts as an imaginary unit), classifying
space, topological classification in zero to three dimensions (the rest can be deduced from the standard Bott periodicity, see the structure in
Table I), as well as corresponding known classes (we use an overline to denote known non-Hermitian classes introduced in Ref. [63]).

Sym. Gen. Rel. Clifford generators Cl. Sp. 0D 1D 2D 3D Class

1 {γ , m, 
} C1 0 Z 0 Z A in [63]

2, P {γ , m, 
}
P C×2
1 0 Z×2 0 Z×2 AIII in [63]

3, Q {γ , m}Q C0 Z 0 Z 0 A

4, PQ εpq = 1 {γ , m, P}Q C1 0 Z 0 Z AIII

5, PQ εpq = −1 {γ , m}Q,
P C×2
0 Z×2 0 Z×2 0

6, C εc = 1, ηc = 1 {γ , Jm, 
,C, JC} R7 0 0 0 Z

7, C εc = 1, ηc = −1 {γ , Jm, 
,C, JC} R3 0 Z2 Z2 Z

8, C εc = −1, ηc = 1 {Jγ , m, 
,C, JC} R3 0 Z2 Z2 Z

9, C εc = −1, ηc = −1 {Jγ , m, 
,C, JC} R7 0 0 0 Z

10, PC
εc = 1, ηc = 1, εpc = 1

εc = −1, ηc = 1, εpc = 1
{γ , Jm, 
,C, JC}, [J
P]
{Jγ , m, 
,C, JC}, [J
P]

C1 0 Z 0 Z

11, PC
εc = 1, ηc = −1, εpc = 1

εc = −1, ηc = −1, εpc = 1
{γ , Jm, 
,C, JC}, [J
P]
{Jγ , m, 
,C, JC}, [J
P]

C1 0 Z 0 Z

12, PC
εc = 1, ηc = 1, εpc = −1

εc = −1, ηc = −1, εpc = −1
{γ , Jm, 
,C, JC}
P

{Jγ , m, 
,C, JC}
P
R×2

7 0 0 0 Z×2

13, PC
εc = 1, ηc = −1, εpc = −1
εc = −1, ηc = 1, εpc = −1

{γ , Jm, 
,C, JC}
P

{Jγ , m, 
,C, JC}
P
R×2

3 0 Z×2
2 Z×2

2 Z×2

14, QC εc = 1, ηc = 1, εqc = 1 {γ , Jm,C, JC}Q R0 Z 0 0 0 AI

15, QC εc = 1, ηc = −1, εqc = 1 {γ , Jm,C, JC}Q R4 Z 0 Z2 Z2 AII

16, QC εc = −1, ηc = 1, εqc = 1 {Jγ , m,C, JC}Q R2 Z2 Z2 Z 0 D

17, QC εc = −1, ηc = −1, εqc = 1 {Jγ , m,C, JC}Q R6 0 0 Z 0 C

18, QC εc = 1, ηc = 1, εqc = −1 {Jγ , m, 
C, J
C}Q R6 0 0 Z 0

19, QC εc = 1, ηc = −1, εqc = −1 {Jγ , m, 
C, J
C}Q R2 Z2 Z2 Z 0

20, QC εc = −1, ηc = 1, εqc = −1 {γ , Jm, 
C, J
C}Q R4 Z 0 Z2 Z2

21, QC εc = −1, ηc = −1, εqc = −1 {γ , Jm, 
C, J
C}Q R0 Z 0 0 0

22, PQC
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc = 1

εc = −1, ηc = 1, εpq = 1, εpc = 1, εqc = 1
{γ , Jm, JP,C, JC}Q

{Jγ , m, JP,C, JC}Q
R1 Z2 Z 0 0 BDI

23, PQC
εc = 1, ηc = −1, εpq = 1, εpc = 1, εqc = 1

εc = −1, ηc = −1, εpq = 1, εpc = 1, εqc = 1
{γ , Jm, JP,C, JC}Q

{Jγ , m, JP,C, JC}Q
R5 0 Z 0 Z2 CII

24, PQC

εc = 1, ηc = 1, εpq = −1, εpc = 1, εqc = 1
εc = −1, ηc = 1, εpq = −1, εpc = 1, εqc = −1
εc = 1, ηc = 1, εpq = −1, εpc = 1, εqc = −1
εc = −1, ηc = 1, εpq = −1, εpc = 1, εqc = 1

{γ , Jm,C, JC}Q, [J
P]
{γ , Jm, 
C, J
C}Q, [J
P]
{Jγ , m, 
C, J
C}Q, [J
P]

{Jγ , m,C, JC}Q, [J
P]

C0 Z 0 Z 0

25, PQC

εc = 1, ηc = −1, εpq = −1, εpc = 1, εqc = 1
εc = −1, ηc = −1, εpq = −1, εpc = 1, εqc = −1
εc = 1, ηc = −1, εpq = −1, εpc = 1, εqc = −1
εc = −1, ηc = −1, εpq = −1, εpc = 1, εqc = 1

{γ , Jm,C, JC}Q, [J
P]
{γ , Jm, 
C, J
C}Q, [J
P]
{Jγ , m, 
C, J
C}Q, [J
P]

{Jγ , m,C, JC}Q, [J
P]

C0 Z 0 Z 0

26, PQC

εc = 1, ηc = 1, εpq = 1, εpc = −1, εqc = 1
εc = −1, ηc = −1, εpq = 1, εpc = −1, εqc = 1
εc = 1, ηc = 1, εpq = 1, εpc = −1, εqc = −1

εc = −1, ηc = −1, εpq = 1, εpc = −1, εqc = −1

{γ , Jm, P,C, JC}Q

{Jγ , m, P,C, JC}Q

{Jγ , m, P, 
C, J
C}Q

{γ , Jm, P, 
C, J
C}Q

R7 0 0 0 Z CI
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TABLE II. (Continued.)

Sym. Gen. Rel. Clifford generators Cl. Sp. 0D 1D 2D 3D Class

27, PQC

εc = 1, ηc = −1, εpq = 1, εpc = −1, εqc = 1
εc = −1, ηc = 1, εpq = 1, εpc = −1, εqc = 1

εc = 1, ηc = −1, εpq = 1, εpc = −1, εqc = −1
εc = −1, ηc = 1, εpq = 1, εpc = −1, εqc = −1

{γ , Jm, P,C, JC}Q

{Jγ , m, P,C, JC}Q

{Jγ , m, P, 
C, J
C}Q

{γ , Jm, P, 
C, J
C}Q

R3 0 Z2 Z2 Z DIII

28, PQC
εc = 1, ηc = 1, εpq = −1, εpc = −1, εqc = 1

εc = −1, ηc = −1, εpq = −1, εpc = −1, εqc = −1
{γ , Jm,C, JC}Q,
P

{γ , Jm, 
C, J
C}Q,
P
R×2

0 Z×2 0 0 0

29, PQC
εc = 1, ηc = −1, εpq = −1, εpc = −1, εqc = 1

εc = −1, ηc = 1, εpq = −1, εpc = −1, εqc = −1
{γ , Jm,C, JC}Q,
P

{γ , Jm, 
C, J
C}Q,
P
R×2

4 Z×2 0 Z×2
2 Z×2

2

30, PQC
εc = −1, ηc = 1, εpq = −1, εpc = −1, εqc = 1

εc = 1, ηc = −1, εpq = −1, εpc = −1, εqc = −1
{Jγ , m,C, JC}Q,
P

{Jγ , m, 
C, J
C}Q,
P
R×2

2 Z×2
2 Z×2

2 Z×2 0

31, PQC
εc = −1, ηc = −1, εpq = −1, εpc = −1, εqc = 1
εc = 1, ηc = 1, εpq = −1, εpc = −1, εqc = −1

{Jγ , m,C, JC}Q,
P

{Jγ , m, 
C, J
C}Q,
P
R×2

6 0 0 Z×2 0

32, PQC
εc = 1, ηc = 1, εpq = 1, εpc = 1, εqc = −1

εc = −1, ηc = 1, εpq = 1, εpc = 1, εqc = −1
{Jγ , m, JP, 
C, J
C}Q

{γ , Jm, JP, 
C, J
C}Q
R5 0 Z 0 Z2

33, PQC
εc = 1, ηc = −1, εpq = 1, εpc = 1, εqc = −1

εc = −1, ηc = −1, εpq = 1, εpc = 1, εqc = −1
{Jγ , m, JP, 
C, J
C}Q

{γ , Jm, JP, 
C, J
C}Q
R1 Z2 Z 0 0

34, K ηk = 1 {γ , Jm, J
, K, JK} R1 Z2 Z 0 0 AI/D in [63]

35, K ηk = −1 {γ , Jm, J
, K, JK} R5 0 Z 0 Z2 AII/C in [63]

36, PK ηk = 1, εpk = 1 {γ , Jm, J
, K, JK}
P R×2
1 Z×2

2 Z×2 0 0 BDI in [63]

37, PK ηk = −1, εpk = 1 {γ , Jm, J
, K, JK}
P R×2
5 0 Z×2 0 Z×2

2 CII in [63]

38, PK
ηk = 1, εpk = −1

ηk = −1, εpk = −1
{γ , Jm, J
, K, JK}, [J
P]
{γ , Jm, J
, K, JK}, [J
P]

C1 0 Z 0 Z CI/DIII in [63]

guarantee spectral degeneracies on the imaginary part but not
the real part.

B. Biorthogonal Kramers degeneracy for type C symmetry

We now prove a generalization of Kramers degeneracy
for the type C symmetry with εc = +1 and ηc = cc∗ = −1,
in which the symmetry is sufficient to guarantee that for
each eigenstate, there is an associated pair with the same
complex eigenvalue. This spectral consequence is similar
to time-reversal symmetry in Hermitian systems, indicating
that the type C symmetry is the more natural non-Hermitian
generalization of time-reversal symmetry. This Kramers
degeneracy is directly applied in Sec. VI B, where the type
C symmetry provides a robust twofold degeneracy for a
Hamiltonian in class 7. Since the type C symmetry makes use
of a transpose operation, it is necessary to consider both left
and right eigenvectors.

To proceed, let us write left and right eigenvalue equations
as vLh = λLvL and hvR = λRvR; it is well known that the set
of left and right eigenvalues must be the same since both of
them are roots of the determinant equation det(h − λI) = 0.
However, since h �= h†, left and right eigenvectors are no
longer related by a conjugate transpose, implying that left
(right) eigenvectors are not orthonormal among themselves
anymore. The correct generalization of orthonormality is that
the left and right eigenvectors form a biorthogonal system,
where vn

Lvm
R = δn,m, corresponding to the unconjugated inner

product between the row (vn
L) and column (vm

R ) vectors being
a Kronecker delta.

In the presence of a type C symmetry, one can relate left
and right eigenvectors. Since this symmetry maps �k to −�k,
h−�k = chT

�k c†,

λL,�kvL = vLh�k = vLchT
−�kc†

⇒ λL,�k (vL,�kc) = (vL,�kc)hT
−�k

⇒ λL,�k (vL,�kc)T = h−�k (vL,�kc)T . (27)

Therefore, if vL,�k is a left eigenvector of h�k , then (vL,�kc)T is a
right eigenvector of h−�k .

To show the generalized Kramers degeneracy, it is neces-
sary to show that at the time-reversal-invariant points �k = −�k,
the resulting right eigenvector (vn

Lc)T is different from the
biorthonormal partner of vn

L. To proceed, we observe that
ηc = cc∗ = −1 implies that cT = −c. Now, suppressing the
momentum index for the time-reversal-invariant points, let us
write vL(vLc)T = λ, then

λ = vL(vLc)T = vLcT vT
L

= (
vLcT vT

L

)T
as it is a number

= vLcvT
L = −vLcT vT

L = −λ, (28)

implying that λ = 0. Thus, vL and (vLc)T are orthogonal,
and do not form a biorthonormal pair. This implies that at
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the time-reversal-invariant point, there exists a pair of inde-
pendent right (left) eigenvectors with the same eigenvalue,
thus ensuring the generalized Kramers degeneracy. Combined
with the relation between eigenvalues at h�k and h−�k described
above, we also find that the winding direction of two bands
forming a Kramers pair will be opposite from each other
in 1D. This crucial consequence on the spectra will play
an important role in our determination of the Z2-topological
invariant in Sec. VI B.

V. TOPOLOGICAL CLASSIFICATION FOR
NON-HERMITIAN SYSTEMS

Equipped with an understanding of the non-Hermitian
symmetry classes, we now proceed to classify the topological
band structure for each symmetry class. Before providing
the full classification, however, we first clarify the type of
topology that we are considering here.

In Hermitian systems, the topology of the system is pro-
vided by equivalence classes of Hamiltonians, subject to
desired symmetry conditions, where Hamiltonians belonging
to different classes cannot be continuously deformed into each
other without closing the band gap [13]. Another way to view
this condition is that the energy never crosses a specified
value, which is typically chosen to be the Fermi energy EF

and shifted to be set to 0.
In the non-Hermitian setting, the spectra can now be com-

plex, and correspondingly one natural generalization of the
gapped condition is for the spectrum to not touch a complex
base energy EB [63], which we shift to 0 without loss of
generality (see Fig. 1). This can be viewed as a dynamical
generalization of the gapped condition, where in addition
to conditions on the real part of the energy, the dynamical
influence of gain and loss is also important. As we shall see,
such a condition also allows us to directly establish a mapping
to Hermitian classification problems.

In the following, we discuss in detail the procedure for de-
riving the classifications for SPTs protected by non-Hermitian
symmetries. We first perform a unitarization procedure, in
analogy to band flattening in the Hermitian case, in order to
bring the non-Hermitian Hamiltonian into a standard form.
The unitarized Hamiltonian is then doubled into a Hermitian
Hamiltonian with an additional chiral symmetry, for which a

FIG. 1. In the non-Hermitian setting, two configurations are
equivalent if one can deform the complex spectra to another, subject
to symmetry constraints, while not touching the base energy EB = 0
(origin in this figure). By this deformation, one can transform the
Hamiltonian into a unitary matrix.

one-to-one correspondence between topological classes can
be specified. We then proceed to provide the classification
for the corresponding Hermitian problem, and use this to
obtain the classifications for SPTs protected by non-Hermitian
symmetries.

A. Unitarization of non-Hermitian Hamiltonians

In analogy to the flattening procedure in Hermitian clas-
sification approaches [13], where the spectrum is deformed
to have eigenvalues of ±1, here we perform a unitarization
procedure [63], such that the eigenvalues are brought onto a
unit circle centered at the base reference point, which is here
chosen to be 0. This provides a convenient canonical form for
the following classifications.

More specifically, we show that any invertible Hamiltonian
h can be continuously deformed (in a symmetry-respecting
way) into a unitary matrix u, where u is given by the unitary
matrix in the polar decomposition of h = uP, P =

√
h†h is

positive-definite. This decomposition will always be unique
as long as the eigenvalue spectrum does not touch the base
point (i.e., it is invertible), which is our prescribed condition
for equivalence classes of Hamiltonians.

To prove the existence of a continuous deformation from
h to u, we utilize the following property of positive-definite
matrices: if A and B are positive-definite matrices, and A2 =
B2, then A = B since a positive-definite matrix has a unique
positive-definite square root. Using this property, we show
in Appendix B that u respects the same non-Hermitian sym-
metries as h. This implies that the path h(λ) = λh + (1 −
λ)u = u[λP + 1 − λ], for λ going from 0 to 1, will be a
symmetry-respecting continuous path connecting the non-
Hermitian Hamiltonian h and the unitary matrix u defined
above, along which the Hamiltonian remains invertible. Thus,
symmetry-respecting unitarization is always possible.

B. Doubling the Hamiltonian

With the non-Hermitian Hamiltonian defined with respect
to the base energy h − EB now deformed into a unitary Hamil-
tonian u, we can make use of previous classification results of
Floquet SPTs [96] by rewriting the unitary matrix as a doubled
Hamiltonian [63,92,96]

Hu =
(

0 u
u† 0

)
, (29)

which by construction is guaranteed to be Hermitian, squares
to identity, and automatically possesses a chiral symmetry of
the form 
 = σz ⊗ I. As has been shown in Refs. [63,96],
there is a one-to-one correspondence between the homotopy
classes of u with the corresponding ones of Hu, where Hu is
subject to the constraints of the chiral symmetry 
, Hermitic-
ity, and a gapped spectrum. This thus allows us to obtain the
topological classification of a non-Hermitian system from its
Hermitian counterpart, for which mature techniques have been
developed.

To obtain the corresponding Hermitian classification prob-
lem, we also need to understand how the symmetries are
mapped over to the case of the doubled Hamiltonian Hu.
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Defining

P̄ =
(

p 0
0 p

)
, Q̄ =

(
0 q
q 0

)
,

C̄ =
(

0 c
c 0

)
K, K̄ =

(
k 0
0 k

)
K, (30)

where K denotes complex conjugation, we find that the origi-
nal symmetry definitions imply for the doubled Hamiltonians
that

{P̄, Hu} = [Q̄, Hu] = [K̄, Hu] = 0, Hu = εcC̄HuC̄
−1. (31)

Note that the last two “doubled” symmetries C̄ and K̄ are
actually antiunitary and we prescribe them to send momentum
�k 
→ −�k. In addition, we can directly verify that

[P̄, 
] = [K̄, 
] = {Q̄, 
} = {C̄, 
} = 0, (32)

P̄2 = Q̄2 = ηcC̄
2 = ηkK̄2 = I, (33)

and the commutation relations between the different types of
symmetries carry over to the doubled Hamiltonian.

Thus, working with the doubled Hamiltonian Hu, the in-
herent chiral symmetry 
, and the doubled symmetries P̄,
Q̄, C̄, K̄ , and having specified their commutation relations
and squares, we can employ standard K-theory techniques
to determine the classifying space and resulting topological
classification. In the following, we clarify a few technical
points that arise when performing this procedure.

C. Unitary, commuting symmetries

The combination of several symmetries may give rise to a
unitary symmetry, denoted as M, which commutes with the
Hamiltonian. For the specific Hamiltonians we are consid-
ering, there are only two possibilities: M = Q̄ or M = 
P̄,
which both satisfy M2 = +1.

Depending on the commutation relations with other sym-
metries, this may either result in multiple symmetry sectors,
in which we should consider the problem separately in each
symmetry sector, or generate a complex unit J that transforms
a real Clifford algebra into a complex one. When both unitary
symmetries exist but do not commute with each other, the
results could also depend on the order of diagonalizing into
the symmetry sectors. Here, we choose to always go into the
symmetry sectors of the symmetry Q̄ first, and then inspect
whether a unitary, commuting symmetry 
P̄ still exists within
each symmetry sector of Q̄.

In the following, we explain in detail our procedure for
dealing with these possibilities.

(1) All remaining symmetry generators commute with M.
In this case, we can directly separate the problem into two
symmetry sectors, with eigenvalues of M being ±1, while
retaining all other symmetries. This will usually result in a
doubling of the classification; however, as shown in the next
section, in the case of a type Q symmetry, one can show that
this doubling is in fact not physically meaningful, as the two
sectors can be directly related by a symmetry operation.

(2) One unitary symmetry generator anticommutes with M,
while the rest commute with M. In this case, we can still go into
the ±1 eigenspace of M, except that now we should drop the

symmetry generator that anticommutes with M since it is no
longer a symmetry in each subspace.

(3) One antiunitary symmetry generator anticommutes
with M, while the rest commute with M. As discussed above,
without loss of generality, we only need to consider at most
one antiunitary symmetry generator at a time. Therefore,
the generator JM, where J is the imaginary unit, actually
commutes with all other symmetry generators. However, since
(JM )2 = −1, JM effectively acts as a complex unit “i” and
reduces a real Clifford algebra into a complex one. Thus, we
can obtain the classification using all symmetry generators
other than M, and then reduce any real classes into complex
classes by the identity Clp,q ⊗R Cl1,0 � Clp+q [99].

(4) Multiple symmetry generators anticommute with M.
In this case, we take the first unitary symmetry that anti-
commutes with M and multiply it onto the remaining ones
that anticommute with M. The resulting generators will now
all commute with M, so we have reduced the problem to that
of case (2), where we simply discard the first noncommuting
generator when we go into each symmetry sector.

This allows us to take care of any unitary, commuting
symmetries that may have existed as a consequence of the
symmetries we specified.

D. Relation between type Q symmetry sectors

For the unitary, commuting symmetry generated by a
type Q symmetry, it turns out that the two symmetry sec-
tors will always be directly related by a transformation, and
hence the sectors are in fact not independent. To see this,
consider the doubled Hamiltonian Hu defined above with
symmetry Q̄. The symmetry can be easily block diagonalized
by

UQ̄U † =
(

q 0
0 −q

)
, U = 1√

2

(
I I
I −I

)
. (34)

Correspondingly, the doubled Hamiltonian is transformed into

UHuU
† =

(
u+u†

2
u†−u

2
u−u†

2 − u+u†

2

)
. (35)

We can diagonalize q with a unitary matrix, and this will
preserve the structure in Eq. (35); moreover, since q2 = I , we
will only have eigenvalues of ±1. Therefore, without loss of
generality, we assume that q is diagonal with the form q =
diag(I1,−I2), where I1 and I2 are identity matrices. We can
move to the basis where q is diagonalized and ordered in such
a way. Since qu†q† = u, this implies that if we write u in this
basis, we must have

u =
(

a b
c d

)
⇒ u† = q†uq =

(
a −b

−c d

)
, (36)

such that the doubled Hamiltonian now takes the form

UHuU
† =

⎛
⎜⎝

a 0 0 −b
0 d −c 0
0 b −a 0
c 0 0 −d

⎞
⎟⎠, (37)

where the central block corresponds to eigenvalue −1, while
the corner blocks correspond to eigenvalue +1. On the other
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hand, we know that(
0 I
I 0

)(
a −b
c −d

)(
0 I
I 0

)
= −

(
d −c
b −a

)
. (38)

Therefore, the two symmetry sectors of the Hamiltonian are
directly related by a symmetry transformation, up to a sign
change. This implies that the topological properties of the two
classes will always be locked to be the same.

Thus, we only need to consider one of the symmetry sec-
tors of the doubled Q̄ symmetry. This also makes the resulting
classification consistent with the well-known Hermitian AZ
classes; otherwise, the classification obtained with our method
would be doubled compared to the conventional AZ classes.

Here, we would like to remark that even though the inher-
ent chiral symmetry 
 does not always enter as a Clifford
algebra generator in these cases (e.g., rows 14–21 in Table II),
it still plays the important role of restricting the form of the
Hamiltonian in Eq. (35), which is necessary for showing that
the two sectors are directly related to each other.

Note also that if we repeat the same analysis for the
unitary, commuting symmetry 
P̄, we find that the doubled
Hamiltonian is constrained to have the form

Hu =

⎛
⎜⎝

0 0 0 b
0 0 c 0
0 c† 0 0
b† 0 0 0

⎞
⎟⎠, (39)

such that the two symmetry sectors, formed by the central
2 × 2 and the corner 2 × 2, are independent from each other.
Therefore, we can separately define topological invariants
in each symmetry sector, and the classification is indeed
doubled.

E. Topological classification

With the above procedure, we have taken care of any poten-
tial unitary, commuting symmetries in the doubled Hamilto-
nian. Working in the remaining symmetry sector, the problem
has been reduced to that of classifying a Hermitian Hamilto-
nian Hu with a set of known symmetries of the usual form,
which allows us to follow standard procedures of constructing
the Clifford algebra extension problem and determining the
topological classification, as reviewed in Sec. II.

In our case, at this point of the analysis, there is at most
one antiunitary and one unitary symmetry generator that must
anticommute with the Hamiltonian. The only remaining step
then is to multiply J to any unitary symmetry generators or
Hamiltonian terms that commute with the antiunitary symme-
try generator ea, so that all the generators anticommute with
each other. We then also include the antiunitary symmetry
generator Jea, which will automatically satisfy the desired
anticommutation relations and is independent from ea due to
the presence of the imaginary unit.

Different topological phases are obtained from distinct
ways to gap out the massless Dirac Hamiltonian by Hu =∑d

i=1 kiγi + e0, which correspond to inequivalent ways of
adding the generator e0 = m or e0 = Jm to the Clifford al-
gebra formed by {s, γ }, where s are the set of symmetries, γ

are the set of momentum coefficient matrices, m is the mass
term, and J the imaginary unit. The set of representations for

e0 form the classifying space, denoted as Ck or Rk for complex
and real classes.

For complex classes, where the Clifford algebra extension
problem is from Cln → Cln+1, the classifying space is Cn;
for real classes, if the mass generator takes the form m, then
e2

0 = m2 = 1, and we have the extension problem Clp,q →
Clp,q+1, for which the classifying space is Rq−p; if the mass
generator takes the form Jm, then e2

0 = (Jm)2 = −1, and we
have the extension problem Clp,q → Clp+1,q, for which the
classifying space is Rp+2−q. The topological classification is
then obtained from counting the connected components of the
classifying space, as discussed in Sec. II.

At this point, we would like to note that since momentum
is reversed under time reversal, γi and m will always have
opposite commutation behavior with an antiunitary symmetry
generator ea, and thus they must appear either as {Jγ , m} or
{γ , Jm} in the Clifford algebra. From our preceding discus-
sion of the classifying space, this shows that as we increase the
dimension of momentum space, the subscript of the classify-
ing space decreases, which is the conventional shift direction
similar to Hermitian AZ classes.

Following through the complete procedure described
above, we arrive at the classification table in Table II, where
we enumerated each symmetry class with its characteriza-
tion by the commutation relations and squaring properties of
the symmetry generators, and the corresponding topological
classification in physically-relevant dimensions 0 to 3. We
note that the classification for other dimensions can also be
obtained directly from the Bott periodicity [13,14], e.g., for a
system with classifying space Rq in 0D, its classifying space
is Rq−d in d dimensions, and the topological classification can
be directly read off from Table I. As discussed in Sec. III C,
some of the symmetry relations are equivalent to each other,
and hence belong to the same topological class. For such
cases, we include all equivalent representations in the table.

Moreover, we label the symmetry classes that have been
discussed in the literature previously, such as the standard AZ
classes [12,14] as well as the non-Hermitian classes described
in Ref. [63]. We note that based on our analysis of the spectral
consequences of non-Hermitian symmetries (P, Q,C, K) in
Sec. IV, the assignment of non-Hermitian AZ class labels
in Ref. [63] is somewhat unnatural: For example, we found
above that type C symmetry acts similar to the usual time-
reversal symmetry in terms of guaranteeing spectral degenera-
cies. In order to avoid future confusion with the more natural
assignment, we use an overline notation in Table II, e.g., BDI
in [63], to indicate these non-Hermitian symmetry classes
discussed in Ref. [63]. As expected, our classification results
agree with prior ones where they overlap, but also provide
a broad range of additional symmetry classes with nontrivial
topological properties.

F. Obtaining explicit topological invariants for systems with
type Q symmetry

In this section, we present an alternative approach to obtain
the classification for symmetry combinations that contain a
type Q symmetry, without resorting to the doubled Hamil-
tonian. We note that the results here also provide a way to
explicitly construct topological invariants for Hermitian free
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bosons, which due to their commutation relations, naturally
realize band models with a type Q symmetry implemented by
q = σz ⊗ I [66].

Consider a non-Hermitian Hamiltonian h that possesses a
type Q symmetry, and possibly an additional type P symmetry
and type C symmetry. We can rewrite the type Q symmetry
condition as

h = qh†q† ⇒ hq = (hq)†, (40)

where we have used the fact that q2 = I. Thus, we can
directly construct a Hermitian Hamiltonian for these symme-
try classes, without resorting to the preceding procedure of
doubling the Hamiltonian.

The other symmetries can be correspondingly adapted for
hq. If h possesses a type C symmetry, then hq will also
possess a type C symmetry, with the symmetry now being
implemented by cq∗. The parameters for the type C symmetry
become

ε′
c = εcεcq, η′

c = ηcεcq, ε′
cp = εcpεpq. (41)

If h possesses a type P symmetry, then we shall find that

hq = −εqp p(hq)p†. (42)

Thus, if εqp = 1, then the constructed Hermitian Hamiltonian
also possesses a chiral symmetry; otherwise, p is a unitary
symmetry that commutes with the Hamiltonian. Similar to the
discussion in Sec. V C, if p commutes with the antiunitary
symmetry cq∗, then we can treat it as a unitary, commuting
symmetry and perform the analysis within each symmetry
sector; otherwise, we multiply p by the imaginary unit J such
that it commutes with cq∗, in which case J p acts as a complex
number that reduces real classes into complex classes.

Since q is invertible, the singular points where h touches
the base point EB = 0 will coincide with those where hq
touches the base point and, correspondingly, the topological
classification will be the same between the two Hamiltonians.
Thus, we can apply the standard Hermitian classification
schemes to hq to extract the topological properties of h. We
have confirmed that this approach gives results consistent with
the preceding classification table. In addition, this explicit
connection also allows us to directly extract the topological
invariants of non-Hermitian systems with type Q symmetry,
by simply mapping the Hamiltonian onto its Hermitian coun-
terpart hq, and using well-known interpretations of topologi-
cal invariants for Hermitian SPTs. However, such an approach
only works for Hamiltonians that possess a type Q symmetry,
and the remaining symmetry classes still require the more
general approach discussed in the preceding sections.

We note that, more generally, there is another way one
can obtain explicit non-Hermitian topological invariants from
known Hermitian invariants. Due to the presence of the in-
herent chiral symmetry 
 in the doubled Hamiltonian, the
non-Hermitian Hamiltonian is precisely the block off-
diagonal projector q(k) defined in Ref. [14], and thus meth-
ods to obtain topological invariants for Hermitian Hamilto-
nians based on generalized winding numbers of the block
off-diagonal projector can be directly applied to the non-
Hermitian case.

VI. EXAMPLES OF CLASSIFICATION AND
CONSTRUCTION OF EXPLICIT INVARIANTS

We now discuss the preceding classification results in more
detail by analyzing some specific examples, in order to eluci-
date the nature of the invariants and describe various useful
techniques to directly obtain topological invariants. More
specifically, we provide a detailed analysis of 0D pseudo-
Hermitian systems (class 3), which possess a Z classification,
and 1D systems with a type C symmetry (class 7), which
possess a Z2 classification, in order to illustrate some nontriv-
ial examples beyond what has been analyzed before. Finally,
we also comment on invariants for 2D systems, and describe
how they can be understood from winding numbers associated
with block off-diagonal projectors in chiral Hermitian Hamil-
tonians. While we illustrate the results for specific examples,
many of the techniques can be readily generalized to other
symmetry classes and dimensions.

A. Zero-dimensional systems with Z classification

In previous non-Hermitian SPT classification attempts
[63], all 0D systems belonged to the Z2 or trivial classifica-
tion, and the Z2 topological invariant was interpreted as the
parity of the number of negative real eigenvalues. However,
our analysis shows that there exist several 0D non-Hermitian
classes which are classified by a Z invariant. Indeed, a gen-
eral Hermitian system without any additional symmetries is
expected to possess a Z classification. However, we also find
other classes, with a somewhat different topological interpre-
tation compared to the Hermitian case.

First, let us consider a non-Hermitian Hamiltonian possess-
ing a type Q symmetry (class 3 in Table II). Without loss of
generality, we have two possibilities for q, being either I or
σ3 in an appropriate basis (σ1,2,3 are the Pauli matrices, and
below we write σi j = σi ⊗ σ j , etc.). The former one implies
that the system is simply Hermitian h = h†, and the latter one
implies that the system is pseudo-Hermitian, h = σ3h†σ3. In
both cases, we obtain a Z classification (see Table II); more
precisely, we will show that an N-state system has N + 1
distinct topological classes of Hamiltonians.

For the former case of a Hermitian matrix, the topological
invariant is known to simply count the number of eigenvalues
below zero. The latter case, however, requires more care-
ful analysis; consider a two-band model, where we expect
three different classes as in the Hermitian case. The pseudo-
Hermitian model is constrained to have the following form:

h = aI + biσ1 + ciσ2 + dσ3, a, b, c, d ∈ R (43)

where the eigenvalues are a ± √
d2 − b2 − c2. This implies

that the spectra consist of either two real eigenvalues, or a
complex-conjugate pair. Crucially, however, the emergence
of a complex-conjugate pair of eigenvalues from two real
eigenvalues requires the two real eigenvalues to coalesce first.

For this eigenvalue spectrum, unlike the Hermitian case
where I � −I, we now have I ∼ −I since these two matrices
can be connected by taking the following path:

(a, b) : (1, 0) 
→ (1, 1) 
→ (−1, 1) 
→ (−1, 0), (44)

235112-11



HENGYUN ZHOU AND JONG YEON LEE PHYSICAL REVIEW B 99, 235112 (2019)

Re(E)

Im(E)

Re(E)

Im(E)

Re(E)

Im(E)

Re(E)

Im(E)
Re(E)

Im(E)(a)

(b)

FIG. 2. Z classification of 0D topological classes with a type Q
symmetry σz (class 3), illustrated for the case of a two-band model
[Eq. (43)]. (a) Two eigenvalues on the negative real axis can combine,
split into the complex plane, and move over to the positive real
axis. (b) In contrast, an eigenvalue on the positive axis cannot swap
places with an eigenvalue on the negative axis because there are
no eigenvalues on the same side to combine and move over in the
complex plane.

with c = d = 0. In terms of eigenvalues, this corresponds to
the path shown in Fig. 2(a). However, one can see that h = σ3

and h′ = −σ3 are not connected since the two eigenvalues of
each matrix lie on the positive and negative real axis, and
do not have partners on the same side to combine and split
into the complex plane [see Fig. 2(b)]. Therefore, in order for
the two eigenvalues to switch places, they must pass through
the origin, and must thus go through a topological phase
transition. For more than two bands, there is a corresponding
generalization of this intuition, where unlike the Z2 case
[63], only certain eigenvalues originating from different chiral
symmetry sectors are allowed to combine and split into the
complex plane and move from the positive real axis to the
negative real axis.

The different topological classes can also be seen more
directly by observing that for a generic type Q symmetry q, the
symmetry condition implies that hq is Hermitian, and since q
is an invertible matrix, there is a one-to-one correspondence
between topological equivalence classes of h and hq (see
Sec. V F). Thus, the topological classes of h are characterized
by the number of negative eigenvalues of the modified Hamil-
tonian hq. Studying the form of the doubled Hamiltonian as
in Sec. V D, one obtains similar results.

B. One-dimensional systems with Z2 classification

In 1D, previous classification results in Ref. [63] described
the existence of a Z invariant, characterizing the winding
number of the bands around the origin of the complex energy
plane E = 0. However, we find that our periodic table gives
rise to more possibilities when generic non-Hermitian sym-
metries are considered. Here, we present a model with a Z2

invariant. This model does not possess a type Q symmetry, and
thus the nature of the invariant cannot be simply understood
from the transformation described in Sec. V F.

Consider symmetry class 7 in Table II, which possesses
only a type C symmetry, where chT c† = h and cc∗ = −1.
We construct a Hamiltonian realizing this symmetry class by
making use of the following complex representation of the
Clifford algebra:

Gen. 
 C̄ JC̄ γx Jm
Rep. σ30 σ12K iσ12K σ21 iσ10

where we have satisfied all constraints on the realization of
generators, such that 
 always takes the form of σ3 ⊗ I , and
C̄ takes the form (σ1 ⊗ M )K [see Eq. (30)]. Using the given
representations of kinetic and mass terms, one can construct
the following non-Hermitian Hamiltonian:

h(kx ) = i sin kxσ1 + (m − cos kx )σ0, (45)

where m is a tuning parameter and the symmetry is im-
plemented as c = σ2. Here, in moving from a low-energy
continuum description to a lattice model, we have chosen
a momentum-dependent coefficient m − cos kx for the mass
term, so that the system is gapless only at kx = 0 and m = 1.
If the mass term is chosen to be independent of kx, then there
will be two Dirac points at kx = 0, π that will be gapped
out together, corresponding to two topological transitions
happening simultaneously.

There are two bands in the Hamiltonian (45), with energies
E± = m − cos kx ± i sin kx. The E+ and E− branches have
opposite winding numbers around the origin, and they are
related by the type C symmetry as E+(−kx ) = E−(kx ). The
two different topological phases (m > 1 or m < 1) for this
model can then be characterized by the parity of a winding
number, defined as

w′ =
∫ π

−π

dk

4π i
∂kx [arg E+(kx ) − arg E−(kx )], (46)

where (−1)w
′ = −1 for the topologically nontrivial phase

and (−1)w
′ = 1 for the trivial phase. This definition can be

generalized into any model with 2n bands for this symmetry
class since the generalized Kramers degeneracy (Sec. IV B)
ensures that all bands come in pairs, with opposite chiralities.
Unlike the previously studied 1D non-Hermitian classes
with a Z classification [63], this symmetry class has a Z2

classification. Thus, we observe robust helical modes with
Re(E ) = 0 and Im(E ) > 0 in Fig. 3(a), implying that the
physical response of the system at late times depends on a
pair of counterpropagating modes. We remark that this feature
is very similar to the edge of a 2D topological insulator (TI)
[class 15 (Hermitian class AII) in Table II]. Considering that
(i) the symmetry of class 7 gives rise to a non-Hermitian
Kramers degeneracy and (ii) classifications of class 7 in
d dimension and class 15 at (d + 1) dimension exactly
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FIG. 3. Z2 classification of 1D topological classes with type C
symmetry (class 7), for the case of two copies of the two-band model.
(a) Spectra for the model in Eq. (45), with two degenerate bands.
One band (red) has winding number +1, and the other (blue) has
winding number −1. (b) Coupling two copies of the model under
symmetry-respecting perturbations as in Eq. (47). Here, bands split
in such a way that all bands have zero winding number with respect
to the origin.

match, one may conjecture that there exists a higher-level
of correspondence between non-Hermitian and Hermitian
classifications for these specific cases.

To demonstrate how the classification becomes Z2 instead
of Z, let us consider two copies of the aforementioned sys-
tem, and analyze the effects of symmetry-preserving per-
turbations. When we have two copies of Eq. (45), the
symmetry action becomes c = σ20. Under this symmetry,
the following mass terms (coupling between two copies)
are allowed: σ00, σ01, σ12, σ22, σ32, σ03. For simplicity, we
consider

h′(kx ) = i sin kxσ10 + (m − cos kx )σ00 + δ(σ12 + 2iσ32),
(47)

where the mass term σ12 + 2iσ32 is chosen to break degen-
eracies. At m = δ = 0, we obtain Fig. 3(a), where four bands
are quadruply degenerate, and we have |w′| = 2. However,
at m = 0 and δ = 0.1, the spectra become that of Fig. 3(b)
where the four bands split into doubly degenerate bands with
|w′| = 0. Thus, this phase coincides with two copies of the
topologically trivial phase (m = 2 and δ = 0), demonstrating
that the classification is Z2, and the newly defined winding
number w′ is defined modulo 2.

C. Two-dimensional systems with Z2 classification

Moving up another dimension, we provide an example in
which the system has a nontrivial classification in 2D. Note
that in previous non-Hermitian classifications [63], all 2D
classes were found to be trivial.

The simplest example is class 3, which possesses a type
Q symmetry. For a Hamiltonian with a type Q symmetry,
the invariant can be obtained similarly to the 0D example,
in which we may transform the Hamiltonian by the type
Q symmetry to obtain the topological invariant of the non-
Hermitian system from the corresponding Hermitian one.

In the absence of a type Q symmetry, the first nontrivial 2D
example is again given by class 7, with a type C symmetry. To
illustrate the topological classification for this symmetry class,
we make use of the following complex representation of the
Clifford algebra:

FIG. 4. Z2 classification of 2D topological classes with a type C
symmetry (class 7). Since the Brillouin zone is now two dimensional,
the complex spectra are also a two-dimensional object. The system
carries a different topological index ν depending on where the origin
(base energy) is located at, as labeled. Black dots represent a Dirac
cone in the real part of the spectrum, where topological phase
transitions occur. (a) Spectra of Eq. (48), where there is no anisotropy
between x and y directions. Here, m = 0.5 and C = 1. (b) Spectra
for the Hamiltonian (51) with a modified mass term. Here, m = 0.5,
Cx = 1, and Cy = 2.

Gen. 
 C̄ JC̄ γx γy Jm
Rep. σ30 σ12K iσ12K σ11 σ12 iσ20

This gives rise to the following non-Hermitian Hamiltonian
on a lattice:

h(kx, ky) = sin kxσ1 + sin kyσ2

− i[m + C(cos kx + cos ky)], (48)

with the corresponding doubled Hamiltonian given by

H (kx, ky) = sin kxσ11 + sin kyσ12

+ [m + C(cos kx + cos ky)]σ20. (49)

Upon closer inspection, we find that the doubled Hamiltonian
is identical to the 2D class DIII example described in Sec.
4.1.4 of Ref. [14]. At the doubled level, the Z2 invariant can
be expressed as the Kane-Mele invariant [103], which can be
reduced to the Pfaffian of the sewing matrix (characterizing
the transformation of eigenstates under symmetry operations)
at time-reversal-invariant points [14,103,104]. Evaluating the
Pfaffian, we find that the Z2 invariant is given by

ν =
∏

�k∈TRI

Pf[w(�k)] =
∏

�k∈TRI

m(�k)

|m(�k)|
= sgn(m + 2C) [sgn(m)]2 sgn(m − 2C), (50)

where m(�k) = m + C(cos kx + cos ky) and w(�k) is the sewing
matrix defined in Ref. [14]. Thus, the phase with −2C < m <

2C is nontrivial while the phase with m > 2C or m < −2C is
trivial. In Fig. 4(a), we plot the dispersion of Eq. (48) for m =
0.5, C = 1. As one can see, there are two “holes” in the two-
dimensional dispersion drawn in the complex energy plane.
The system undergoes a topological phase transition as the
origin moves into the holes, resulting in different topological
classes depending on where the origin is located relative to the
spectrum.

235112-13



HENGYUN ZHOU AND JONG YEON LEE PHYSICAL REVIEW B 99, 235112 (2019)

We can also consider a more generic case in which there is
an anisotropy between the x and y directions. Here, the mass
term is given by

m(�k) = m + Cx cos(kx ) + Cy cos(ky), (51)

where the expression for topological indices is modified ac-
cordingly. In this case, there are three holes in the complex
spectra [see Fig. 4(b)], the spectra in Fig. 4(a) being the spe-
cial case where Cx = Cy, so that the middle hole disappears.
Black dots in the figure represent Dirac points in the real part
of the spectrum, and the topological transition in this specific
model is also accompanied by a sign change of the imaginary
energy of the Dirac point.

We can also directly obtain the invariant of the 2D sys-
tem by making use of the correspondence between the non-
Hermitian Hamiltonian and the block off-diagonal projector
q(k) [14], which characterizes one off-diagonal subblock of
a Hermitian Hamiltonian with chiral symmetry, in an ap-
propriate basis. From Table II, we observe that the doubled
Hamiltonian of symmetry class 7 has a classifying space R3,
which is identical to a Hermitian system of symmetry class
DIII. As discussed in detail in Ref. [14], for Hermitian class
DIII, the two-dimensional Z2 invariant is the first descendant
of a three-dimensional Z invariant.

Thus, the topological invariant can be obtained by the
following general procedure: First, identify a trivial phase
corresponding to non-Hermitian Hamiltonian h0(k) (or, equiv-
alently, the block off-diagonal projector of the doubled Hamil-
tonian). Then, for a given Hamiltonian h1(k), its topological
invariant relative to the trivial phase can be determined by
constructing a continuous path h(k, t ), t ∈ [0, π ], such that
h(k, 0) = h0(k) and h(k, π ) = h1(k) (the system must remain
gapped throughout the trajectory). This path can then be ex-
panded to a non-Hermitian Hamiltonian in one higher dimen-
sion h(k, t ), with t ∈ [0, 2π ] now regarded as an additional
momentum direction, such that the expanded Hamiltonian
satisfies the symmetry constraint for class DIII h(k, t ) =
−c̄hT (−k, 2π − t )c̄† where c̄ = σ1 ⊗ c. The winding number
of this higher-dimensional Hamiltonian can then be calculated

ν3[h(k, t )] =
∫

BZd=3

1

24π2
tr[(h−1dh)3], (52)

and the topological invariant relative to Hamiltonian h0(k)
will be

ν = (−1)ν3[h(k,t )] (53)

since different path interpolations [14] between h0(k) and
h1(k) can be shown to be equivalent mod 2. Thus, using this
procedure, it is possible to provide a topological invariant
for a general 2D non-Hermitian Hamiltonian in class 7. As
commented in the preceding sections, since the chiral sym-
metry is inherent to the doubling procedure, this technique
is also applicable to many non-Hermitian Hamiltonians in
other symmetry classes, at least for the ones which contain
a chiral symmetry in the Clifford generator set and do not
possess an imaginary unit that reduces real classes to complex
classes (see third column in Table II). We note that these
techniques can also be readily generalized to other symmetry
classes or higher-dimensional models, either by a coupled-

wire/coupled-layer construction or by directly examining
higher-dimensional winding numbers.

D. Non-Hermitian skin effect

Having examined the topological classification and corre-
sponding models for non-Hermitian systems, we now discuss
some more physical consequences of the topological invari-
ants in 1D. In noninteracting Hermitian systems, the bulk
topological invariant gives rise to gapless boundary modes
that appear in addition to the bulk spectrum when the system is
terminated at a boundary (bulk-boundary correspondence). In
the non-Hermitian setting, however, things can be drastically
different: upon changing from periodic boundary conditions
(PBC) to semi-infinite boundary conditions or open boundary
conditions (OBC), the spectrum can be completely modified
[63,85–90]. In addition, the system may manifest a non-
Hermitian skin effect [87], in which an extensive number of
eigenmodes pile up at one of the boundaries.

For many models, including those considered above, we
find that the topological invariant can be connected to this
non-Hermitian skin effect. First, consider 1D systems. For
symmetry class 1 in Table II, the topological invariant is
defined by the winding number w(EB) defined with respect to
the base energy EB [63], and it has been shown that if w(EB) �=
0 for some EB, then the system under OBC exhibits the non-
Hermitian skin effect. In the case of symmetry class 7 con-
sidered in Fig. 3(a), we numerically find that upon changing
to OBC, the complex spectra collapse to an exceptional point
(EP), or to a one-dimensional line of complex eigenvalues for
more general parameters. Inspecting the spatial profile of the
eigenmodes, we find that they pile up at both left and right
ends, owing to the opposite winding of the two bands related
by type C symmetry. Now, one may ask what happens if we
couple two copies of the same model [Fig. 3(b)], as then the
topological invariant would be zero. However, this is only
true for w(EB) defined with respect to EB = 0. In fact, we
immediately notice that w(EB) of one of the degenerate bands
would be nonzero for EB located inside of the figure 8 shape
in Fig. 3(b). Accordingly, we find that the two separated loops
again collapse into one-dimensional arcs of complex eigen-
values, with similar skin-mode localization on the left/right
edges. Thus, one can make the following observation: In 1D,
if a complex energy spectrum has a nontrivial winding w

for some EB ∈ C, then the corresponding system under OBC
exhibits piling of eigenmodes at the left (w > 0) or right
(w < 0) edge. Note that this is expected to hold only for 1D
topological invariants characterized by a winding number in
the complex plane, so that Hermitian topological invariants
are excluded.

These features can be understood by an extension of previ-
ous arguments [63,87,89] under semi-infinite boundary con-
ditions and open boundary conditions, at least for few-band
models. For simplicity, let us consider a single band belonging
to a pair of bands related by the type C symmetry. For semi-
infinite boundary conditions, the winding number around a
given base point EB can be shown to be directly related to
the number of eigenmodes localized at the boundary [63].
Further modifying the boundary conditions to OBC imposes
additional constraints from the other edge, which requires that

235112-14



PERIODIC TABLE FOR TOPOLOGICAL BANDS WITH … PHYSICAL REVIEW B 99, 235112 (2019)

the absolute value of the spatial decay factor |β1|, |β2| of the
two dominant modes to match, so that there is a nontrivial
solution in the long chain limit [86,87,89]. This imposes one
additional constraint, which generically reduces the solutions
from filling the interior of the winding band structure to only
occupying a one-dimensional line of eigenmodes.

VII. SUMMARY AND DISCUSSION

In conclusion, we have classified non-Hermitian topo-
logical bands in arbitrary spatial dimension, systematically
accounting for the types of symmetries that are unique to
non-Hermitian systems. Making use of the Bernard-LeClair
symmetry classes, we have found that these generic non-
Hermitian symmetries give rise to a wide range of possibil-
ities, where many symmetry classes that have thus far not
been explored possess a nontrivial classification. The entire
Hermitian AZ classification is also naturally incorporated as a
special instance of our current classification scheme [94] since
Hermiticity is viewed in this picture as a type Q symmetry,
with the symmetry implemented as the identity matrix.

In addition, by a direct mapping of the non-Hermitian
Hamiltonian into a Hermitian one, we have elucidated how
the nature of the topological invariant for symmetry classes
with a type Q symmetry can be understood from well-known
examples in Hermitian systems. We have also provided topo-
logical invariants for classes where such a transformation is
not immediately available. In particular, we find that unlike
previous work [63], there do exist non-Hermitian models
in 1D and 2D, with no direct transformation to Hermitian
models, that possess a Z2 topological invariant.

Moreover, there seems to be an interesting correspondence
between classifications of d-dimensional non-Hermitian sys-
tems and (d + 1)-dimensional Hermitian systems, where the
long time behavior of certain classes of non-Hermitian sys-
tems resembles the anomalous boundary of Hermitian sys-
tems. Considering that a non-Hermitian Hamiltonian can be
regarded as an effective description of a Hermitian system
where the bulk is integrated out, this may hint at the possibility
of non-Hermitian classifications capturing anomalous physics
in the same dimension.

Beyond its immediate importance for understanding the
topological structure of non-Hermitian systems, the periodic
table we have derived can also guide experimental design,
where the symmetries that can give rise to unique topological
effects are now known. Such results, in combination with
further understanding of the unconventional bulk-boundary
correspondence, may facilitate experimental studies in atomic
and photonic systems. Furthermore, our results may also find
applications in Hermitian systems where the physics may be
understood with a non-Hermitian effective description; this in-
cludes noninteracting bosonic Hermitian systems which, due
to their commutation relations, may lead to non-Hermitian
dynamical matrices characterizing the modes [65,105], as
well as geophysical systems, where nonlinearities give rise to
effectively non-Hermitian equations of motion [106]. In addi-
tion, the formalism can be readily extended to include other
types of symmetries such as crystalline symmetries [99,107],
as well as studies of higher-order topological insulators in
non-Hermitian systems [108–122]. Finally, we would like

to mention that the current classification makes use of one
particular generalization of the Hermitian notion of a gapped
phase, namely, the prohibition of touching a base point [63],
but there may also be other generalizations, particularly ones
related to spectral degeneracies such as exceptional points,
where symmetry-protected nodal lines and nodal surfaces
have been found in 2D and 3D [73–75].

Note added. Recently, we became aware of a related work
by Kawabata, Shiozaki, Ueda, and Sato [122]. Although we
initially counted the number of symmetry classes as 42, we
revisited our calculations and removed a redundancy using
Eq. (24) after knowing the 38-fold symmetry classification in
Ref. [122].
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APPENDIX A: REQUIREMENTS ON SQUARE OF
SYMMETRY OPERATOR

As mentioned in the main text, the condition that the
symmetries are involutions also imposes restrictions on the
unitary symmetry implementation u. Acting twice with each
of the symmetries, one obtains

h = −php−1 = p2h(p2)−1, (A1)

h = qh†q−1 = q(qh†q−1)†q−1 = q2h(q2)−1, (A2)

h = εcchT c−1 = c(chT c−1)T c−1 = (cc∗)h(cc∗)−1, (A3)

h = kh∗k−1 = k(k∗h∗kT )k−1 = (kk∗)h(kk∗)−1, (A4)

where the matrices p, q, c, k are the unitary implementations
of type P, Q, C, K symmetries. Since the symmetry operations
are required to be involutions and h can be a generic Hamilto-
nian, by Schur’s lemma we must have that p2 = q2 = cc∗ =
kk∗ = λI. Moreover, since the matrices are unitary, |λ| = 1;
for p and q, we can multiply a phase factor to make λ = 1; for
c and k, we can show that λ = ±1 as follows:

uu∗ = λ 
→ u∗ = λu† 
→ u = λ∗uT ,

uu∗ = λ 
→ u = λuT ,

(λ − λ∗)uT = 0. (A5)

Thus, λ is real and, being norm 1, must take on values λ =
±1. The same argument holds for the Hermitian antiunitary
symmetries, namely, time-reversal symmetry and particle-
hole symmetry.
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APPENDIX B: DETAILS OF UNITARIZATION OF
NON-HERMITIAN HAMILTONIAN

We now prove that the unitary matrix u in the polar
decomposition h = uP of a non-Hermitian Hamiltonian has
the same symmetry as h, for each of the four symmetry
classes. As discussed in the main text, we will make use of the
following property: if A and B are positive-definite matrices,
and A2 = B2, then A = B, since a positive-definite matrix has
a unique positive-definite square root.

(1) Type P. We know that

hup = −uph ⇔ uPup = −upuP, (B1)

where we have written the unitary symmetry implementation
as up to emphasize its unitary nature. As above, u is also
unitary and P Hermitian. Taking the complex conjugate of the
preceding equation and multiplying it from the left on both
sides, using the unitarity of u and up as well as the Hermiticity
of P, we have

(u†
pPup)2 = P2, (B2)

which by virtue of P being positive-definite results in u†
pPup =

P via the preceding property. Plugging this back in, we have

uPup = uupP = −upuP ⇒ uup = −upu, (B3)

where we have used the positive-definite property of P in the
last step. Thus, u satisfies the same symmetry as h.

(2) Type Q. We follow the same recipe:

huq = uqh† ⇔ uPuq = uqPu†

⇒ (u†
qPuq )2 = (uPu†)2 ⇔ u†

qPuq = uPu†

⇒ uuq(uPu†) = uqu†uPu† ⇒ uuq = uqu, (B4)

where in the last step we used the fact that uPu† is positive-
definite.

(3) Type C:

huc = εcuchT ⇔ uPuc = εcucPT uT

⇒ (u†
cPuc)2 = (u∗PT uT )2 ⇔ u†

cPuc = u∗PT uT

⇒ uPuc = uuc(u∗PT uT ) = εcucuT (u∗PT uT )

⇒ uuc = εcucuT . (B5)

(4) Type K :

huk = ukh∗ ⇔ uPuk = uku∗P∗

⇒ (u†
kPuk )2 = (P∗)2 ⇔ u†

kPuk = P∗

⇒ uPuk = uukP∗ = uku∗P∗

⇒ uuk = uku∗. (B6)

This completes the proof.

APPENDIX C: CONSTRUCTING CONCRETE EXAMPLES
OF CLASSIFICATION

In this Appendix, we provide some more examples to il-
lustrate the construction of non-Hermitian Hamiltonians from
the Clifford algebra approach, and show that the resulting
Hamiltonians have topological characteristics that are consis-
tent with the results of the periodic table.

The general recipe is to start from the Clifford generators
in Table II, and iterate through different combinations of Pauli
operators to find a Clifford algebra realization that satisfies the
commutation relations, squares, as well as the specified forms
of the operators 
 = σz ⊗ I and Eq. (30). This discussion,
however, is only valid within each symmetry sector of the
doubled Hamiltonian, so to construct the full Hamiltonian
we write a model for each symmetry sector of the unitary
commuting symmetry 
P, and make use of the relationship
between type Q symmetry sectors (Sec. V D) to obtain the
original non-Hermitian Hamiltonian with the desired non-
Hermitian symmetries.

As an example, let us consider the Hamiltonians for sym-
metry classes 14 and 18 in 0D. Class 14 corresponds to the
Hermitian AI class, while class 18 differs due to the different
commutation relation between q and c. From Table II, we see
that the different commutation relation drastically changes the
classification, such that the Z classification for the Hermitian
AI class now becomes trivial under class 18.

Using the Clifford algebra generators described in
Table II, we find the simplest realization for class 14 has
generators

Gen. C̄ JC̄ Jm
Rep. σ1K iσ1K iσ0 | iσ1 | iσ2

while for class 18,

Gen. 
C̄ J
C̄ m
Rep. σ2K iσ2K σ1 | σ2 | σ3

Since the class 14 Hamiltonian is Hermitian, we can easily
write the Hamiltonian

Class Hamiltonian C sym. Q sym.
14 m1σ0 + m2σ1 + m3σ2 σ1 σ0

where the mass terms mi are all real. The spectrum for

the class 14 Hamiltonian is E = m1 ±
√

m2
2 + m2

3, where
the system belongs to different phases depending on
whether m2

1 > m2
2 + m2

3 or m2
1 < m2

2 + m2
3. Additionally, for

m2
1 > m2

2 + m2
3, the system belongs to two different phases

depending on whether m1 > 0 or m1 < 0, since a continuous
deformation between them necessarily touches E = 0. Geo-
metrically, the three phases are separated by the double cone

m1 = ±
√

m2
2 + m2

3 in parameter space. Thus, there are three
topological classes for this two-band model, consistent with
the Z classification.

Now, we consider the non-Hermitian Hamiltonian char-
acterizing class 18. We choose the type Q symmetry to be
of the form q = σ3. The doubled symmetry Q̄ in Eq. (30)
will then be diagonalized by the Hadamard-type matrix
UQ = 1√

2
(I I
I −I). Using the relation between type Q
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symmetry sectors described in Sec. V D, we map

σ0 → −σ33, σ1 → σ22,

σ2 → σ21, σ3 → σ30 (C1)

to obtain the complete Hamiltonian at the doubled level
from the Hamiltonian in a single symmetry sector, in a basis
where the type Q symmetry is diagonalized. Conjugating
by UQ to return to the usual basis, which maps the first
element in the Pauli string σ1 → σ3, σ3 → σ1, σ2 → −σ2, and
taking the upper right block of the doubled Hamiltonian,
we find that the non-Hermitian Hamiltonian and symmetry
implementations are

Class Hamiltonian C sym. Q sym.

18 m3σ0 + im2σ1 − im1σ2 σ1 σ3

The eigenvalue spectrum is E = m3 ± i
√

m2
1 + m2

2, where a
positive value of m3 can easily be deformed into a negative
one simply by choosing a finite value for m2

1 + m2
2 and varying

m3. Thus, all nonsingular Hamiltonians belong to the same
topological class in this example, consistent with our general
results that give a trivial classification in this case.
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