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We theoretically study the Kondo screening of a spin-1/2 magnetic impurity in the bulk of a type-II Weyl
semimetal (WSM) by use of the variational wave-function method. We consider a type-II WSM model with two
Weyl nodes located on the kz axis, and the tilting of the Weyl cones are along the kx direction. Due to coexisting
electron and hole pockets, the density of states at the Fermi energy becomes finite, leading to a significant
enhancement of the Kondo effect. Consequently, the magnetic impurity and the conduction electrons always
form a bound state; this behavior is distinct from that in type-I WSMs, where the bound state is only formed
when the hybridization exceeds a critical value. Meanwhile, the spin-orbit coupling and unique geometry of the
Fermi surface lead to a strongly anisotropic Kondo screening cloud in coordinate space. The tilting terms break
the rotational symmetry of the type-II WSM about the kz axis, but the system remains invariant under a combined
transformation T Ry(π ), where T is the time-reversal operation and Ry(π ) is the rotation about the y axis by π .
Largely modified diagonal and off-diagonal components of the spin-spin correlation function on three principal
planes reflect this change in band symmetry. Most saliently, on the x-z plane, tilting terms trigger the emergence
of nonzero off-diagonal spin-spin correlation function Jyz(r) and Jxy(r), while in a type-I WSM they vanish on
the x-z plane.
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I. INTRODUCTION

As representatives of a new state of topological quan-
tum matter, topological semimetals [1] which host Dirac or
Weyl fermions as low-energy excitations in the bulk have
attracted much attention in recent years. Three-dimensional
(3D) Dirac semimetals have been realized experimentally
in Na3Bi [2] and Cd3As2 [3,4] materials, where the Dirac
points are stabilized by the inversion (P), time-reversal (T ),
and crystalline symmetries. If the P and/or T symmetry
is broken, a transition towards the Weyl semimetal (WSM)
phase takes place and each Dirac point splits into a pair of
Weyl nodes [5–7]. There has been tremendous interest in
WSMs because a new TaAs family of WSMs was predicted
theoretically [8,9] and subsequently observed in experiments
[10–17]. The Weyl fermions in the TaAs family approximately
respect the Lorentz symmetry. However, the Weyl fermions
realized in condensed matter physics are quasiparticles which
can violate the Lorentz invariance, indicating that the Weyl
cones in momentum space can be tilted.

Two-dimensional (2D) tilted anisotropic Dirac cones have
been found in the 8-pmmn borophene [18] and in the organic
semiconductor α-(BEDT-TTF)2I3 [19,20]. In 3D systems, the
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band crossing points are more robust and generic than in 2D
materials. Type-II Dirac or Weyl fermions [21–23] are ob-
tained when Dirac or Weyl cones are tilted strongly in momen-
tum space. In this case the electron and hole pockets coexist
with the Dirac or Weyl nodes. Type-II Weyl fermions are pre-
dicted and soon confirmed in WTe2 and MoTe2 [22,24–28].
Very strongly robust type-II Weyl nodes are predicted in Ta3S2

[29] and observed in crystalline solid LaAlGe [30]. Type-II
WSMs show remarkable properties such as an anisotropic
chiral anomaly [22], unusual thermodynamic and optical re-
sponses in the presence of magnetic fields [31–34], and an
anomalous Hall effect [35,36].

The Kondo effect [37] takes place when a magnetic impu-
rity forms a singlet with the conduction electrons at a tem-
perature lower than the Kondo temperature. In type-I Dirac or
Weyl semimetals, the density of states (DOS) vanishes when
the Fermi level lies at the Dirac points or Weyl nodes. Conse-
quently, the magnetic impurity problem in these systems falls
into the category of the pseudogap Kondo problem [38–40],
in which a threshold of hybridization exists for the impurity
and conduction electrons to form a bound state. It has been
shown that the Kondo effect can be enhanced by tuning the
chemical potential away from the Weyl node, and the charge
imbalance between two Weyl cones with different chiralities
can be detected through the magnetic susceptibility [41].

Major differences between type-I and type-II WSMs in
Kondo screening originate from the band structure and the
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Fermi surface of the host materials. By tuning the tilting terms
in the model Hamiltonian, we are able switch the system
between type-I and type-II WSM phases to compare the
differences. In a type-II WSM, due to coexisting electron and
hole pockets at the Fermi level, the DOS becomes finite [34].
Our results on the binding energy of a magnetic impurity em-
bedded in the bulk of a WSM reflect this change. We find that
due to the finite DOS, the bound state is always favored in the
type-II WSM, whereas in a type-I WSM, in which the DOS
vanishes at half-filling, the hybridization strength has a lower
bound to form a bound state [42]. In addition to this, the tilting
terms change the symmetry properties of the WSM, which
can be shown by the spatial spin-spin correlations between a
magnetic impurity and the conduction electrons. Specifically
in the present paper, the tilting terms break the rotational
symmetry of the WSM, leading to very interesting features
such as the emergence of nonzero off-diagonal correlation
functions [Jyz(r) and Jxy(r)] on the x-z plane. However, if
the tilting terms vanish, which corresponds to the case of
a type-I WSM, Jyz(r) and Jxy(r) are always 0 on the x-z
plane.

In this paper, we use the variational wave-function method
to systematically investigate the binding energy and the spatial
Kondo screening cloud. The variational method has been used
to study the ground state of the Kondo problem in normal
metals [43,44], antiferromagnets [45], 2D helical metals [46],
and various novel topological materials [42,47–50]. The paper
is organized as follows. We present the model Hamiltonian,
dispersion, and the electron and hole pockets at the Fermi level
in Sec. II. In Sec. III, we apply the variational method to study
the binding energy and present the differences caused by the
tilting terms. In Sec. IV, we calculate the spin-spin correlation
between the magnetic impurity and the conduction electrons
in a type-II WSM on three principal planes in coordinate
space and analyze the results. Finally, the discussion and
conclusions are given in Sec. V.

II. THE HAMILTONIAN

We use the Anderson impurity model to study the Kondo
screening of a spin-1/2 magnetic impurity in a type-II WSM;
the total Hamiltonian is given by

H = H0 + Hd + HV . (1)

H0 is the kinetic energy term, Hd describes the magnetic
impurity part, and HV is the hybridization between the local
impurity and the conduction electrons. The low-energy effec-
tive Hamiltonian of a type-II WSM in momentum space is
given by

H0 =
∑

k

�
†
k[h0(k) − μ]�k, (2)

with

h0(k) = t ′τz(σxkx + σyky) + tτzσ0kz + τxσ0Mk

+ λτ0σz + (
atiltkx + ξk2

x /2
)
τ0σ0. (3)

h0(k) is obtained by expanding the lattice model Hamiltonian
[31] (with lattice constant a0 = 1), and the Fermi energy is
fixed at μ = 0 throughout this work. The basis vectors are

given by �k = {ak↑, ak↓, bk↑, bk↓}T , where a†
ks (bks) creates

(annihilates) an electron with spin-s (s =↑,↓) on the a (b)
orbit. σα and τα (α = x, y, z) are the spin and orbital Pauli
matrices. t ′ is the in-plane orbital-resolved spin-orbit coupling
strength, and t is the out-of-plane orbital-resolved hopping
strength. In principle, t and t ′ can be different, but here
we fix t = t ′ and set them as the energy unit, in order to
eliminate extra anisotropy. Mk hybridizes the two orbitals
and is obtained by expanding m0 − t

∑
α cos kα around k = 0

with m0 = 3t . Notably h0(k) differs from the conventional
type-I WSM Hamiltonian [7] by additional atilt and ξ terms.
Moreover, in order to stop the electron and hole pockets from
spreading over the entire Brillouin zone, the term τyσ0 sin kz

is replaced with τzσ0 sin kz [31]. In the original type-I WSM
Hamiltonian given in Ref. [7] in the absence of λ, atilt , and
ξ , H0 describes a Dirac semimetal with degenerate Dirac
points located at k = 0. A nonzero λ breaks the time-reversal
symmetry, and a type-I WSM emerges with a pair of Weyl
nodes at (0, 0,±λ/t ) on the kz axis. The atilt term tilts the
Weyl cones along the kx direction, and the electron and hole
pockets emerge when atilt > (2t−m0 )2−t2+λ2

2λ(2t−m0 ) t ′, leading to a type-
II WSM. ξ further breaks the symmetry between the electron
and the hole pockets around each Weyl node.

The single-particle eigenenergy is given by

εk = ±
√

ηk ± 2νk + nk, (4)

where νk ≡
√

t2k2
z [λ2 + t ′2(k2

x + k2
y )] + λ2M2

k , ηk ≡
λ2 + t ′2(k2

x + k2
y ) + t2k2

z + M2
k , and nk ≡ atiltkx + ξk2

x /2.
H0 in its diagonal basis reads

H0 =
∑

k

�
†
kh0(k)�k =

∑
ki

εkiγ
†
kiγki (i = 1, 2, 3, 4). (5)

The relation between the eigenstates γ
†
ki and γki and the

original electron creation and annihilation operators is given
in the Appendix.

The localized state is described by

Hd = εd

∑
s=↑,↓

d†
s ds + Ud†

↑d↑d†
↓d↓. (6)

d†
s and ds are the creation and annihilation operators of the

spin-s (s =↑,↓) state at the impurity site. εd is the impurity
energy level, and U is the on-site Coulomb repulsion.

Finally, the hybridization term between the localized state
and the electron spins in the type-II WSM is given by

HV =
∑

k,s=↑,↓
Vk[(a†

ks + b†
ks)ds + H.c.]. (7)

Here Vk ≡ V 
(� − |ε(k)|), where 
(x) is a step function,
which is 1 for x > 0 and 0 for x < 0. � is the energy cutoff
and is chosen as a large enough value so that the low-energy
physics is expected to be insensitive to the value of �. The
impurity is equally coupled to the a and b orbits and to the
spin-up and -down states. In the diagonal basis of the type-II
WSM, the hybridization part HV reads

HV =
∑

ki

Vk(γ †
kidki + H.c.). (8)
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FIG. 1. Schematic of the band structure of a type-II WSM for
ky = 0. λ determines the distance between the pair of Weyl nodes in
a type-I WSM, atilt tilts the Weyl cones along the kx axis, generating
a pair of electron and hole pockets on the Fermi surface, and ξ

breaks the symmetry between the electron and the hole pockets. The
Fermi energy is fixed at μ = 0, and the energy level of the magnetic
impurity is εd < μ, so for a large enough U the impurity is always
singly occupied.

The k-dependent impurity operators are connected to the
original ones through the transformation

d†
ki = [(�1i + �3i )d

†
↑ + (�2i + �4i )d

†
↓]

= χi1(k) d†
↑ + χi2(k) d†

↓, (9)

where i = 1, 2, 3, 4 are the band indices, and the definition of
�i j is given in the Appendix.

In Fig. 1 we show a schematic of the dispersion of a
type-II WSM for ky = 0. The two Weyl nodes are located at
kz = ±λ/t , and the relatively large atilt term generates a pair
of electron and hole pockets around each Weyl node. The ξ

term breaks the symmetry between the electron and the hole
pockets. Throughout this work, the Fermi energy is fixed at
μ = 0, and the magnetic impurity energy level is εd < μ. For
a large enough U the impurity site shall be always singly
occupied.

In Fig. 2 we plot the electron and hole pockets for λ = 0.5t .
The electron and hole pockets only emerge when the tilting
term atilt becomes large enough [31]. We can see that while
ξ = 0, for both atilt = 0.4t and atilt = 0.6t , the electron and
hole pockets are symmetric. The finite ξ = 0.2t breaks the
symmetry between the pockets around each Weyl node when
atilt = 0.4t . As ξ increases, the asymmetry between the pock-
ets becomes more significant. The tilting terms modify the
DOS at the Fermi energy and also break the rotational symme-
try about the z axis of the type-II WSM model Hamiltonian.
Hence the binding energy and the spatial Kondo screening
cloud are expected to be distinct from those in a conventional
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FIG. 2. Electron and hole pockets on the kx-kz plane for λ = 0.5t ,
with different combinations of atilt and ξ .

type-I WSM. Notably, the essential physics remain valid even
if atilt and ξ take a smaller magnitude.

III. THE SELF-CONSISTENT CALCULATION

In order to investigate the eigenstate property, we utilize
a trial wave-function approach. The Coulomb repulsion U
is assumed to be large enough, and εd is below the Fermi
energy, so that the impurity site is always singly occupied by
a local moment. First, we may assume that HV = 0, which
is the simplest case where the magnetic impurity and the
host material are completely decoupled from each other. The
ground state of H0 is given by

|�0〉 =
∏

k∈�,i

γki
†|0〉. (10)

i is the band index, and the product runs over all states within
the Fermi sea �. If we consider a singly occupied impurity
and ignore the energy given by the hybridization, then the
total energy of the system is just the sum of the bare impurity
energy and the total energy of the WSM,

E0 = εd +
∑

k∈�,i

εki. (11)

If the hybridization is taken into account and according to
Eq. (8), only the conduction states and the impurity states with
the same band indices are hybridized, so that the trial wave
function for the ground state can be written in the diagonal
basis as [46]

|�〉 =
(

g0 +
∑

k∈�,i

gkid
†
kiγki

)
|�0〉. (12)

g0 and gki are all numbers and they are the variational param-
eters to be determined through self-consistent calculations.
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The energy of the total Hamiltonian in the variational state
|�〉 is

E = 〈�|H |�〉
〈�|�〉 . (13)

We can obtain 〈�|�〉 = g2
0 + ∑

k∈�,i g2
ki(|χi1(k)|2 +

|χi2(k)|2) = 1 according to the wave-function normalization
condition.

Then the total energy of the type-II Weyl system with a
magnetic impurity in the trial state |�〉 is written

E =
∑

k∈�,i

[
(E0 − εki + μ)(|χi1(k)|2 + |χi2(k)|2)g2

ki

+ 2Vkg0gki(|χi1(k)|2 + |χi2(k)|2)

+ (εki − μ)g2
0

]/[
g2

0 +
∑

k∈�,i

g2
ki(|χi1(k)|2 + |χi2(k)|2)

]
.

(14)

The variational principle requires that ∂E/∂g0 = ∂E/∂gk =
0, leading to the two equations(

E −
∑

k∈�,i

εki

)
g0 =

∑
k∈�,i

Vkgki(|χi1(k)|2 + |χi2(k)|2),

(E − E0 + εki )gki = Vkg0. (15)

We then obtain the self-consistent equation

εd − �b =
∑

k∈�,i

V 2
k (|χi1(k)|2 + |χi2(k)|2)

εki − �b
, (16)

where �b = E0 − E is the binding energy. If �b > 0, the
hybridized state has a lower energy and is more stable than
the bare state. �b can be obtained by numerically solving the
self-consistent equation, (16). g0 and gki for each value of k
and i can be calculated according to the relations

g2
0 +

∑
k∈�,i

g2
ki(|χi1(k)|2 + |χi2(k)|2) = 1,

gki = Vk

εki − �b
g0. (17)

In Fig. 3 we present the self-consistent results of �b as a
function of Vk/� for various combinations of atilt and ξ . The
results are obtained by numerically solving Eq. (16). Here
we fix the value of λ = 0.5t , and � is the energy cutoff.
When atilt = 0 and ξ = 0, H0 describes a type-I WSM, such
that the DOS at the Fermi energy vanishes. In this case,
the magnetic impurity problem falls into the category of the
pseudogap Kondo problem [38–40]. The magnetic impurity
and the conduction electron spins form a bound state only if
the hybridization is stronger than a critical value [42]. If we
slightly tilt the Weyl nodes (atilt = 0.2t , ξ = 0 or atilt = 0,
ξ = 0.5t), the electron and hole pockets are not formed on
the Fermi surface, so the DOS at the Fermi energy is still 0.
Similarly to the case of a type-I WSM, �b is positive only if
Vk is larger than a critical value, but the values of �b slightly
increase at the same hybridization strength, indicating that
for the tilted system the bound state is more easily formed,
although the DOS at the Fermi energy is still 0. If we go

FIG. 3. Self-consistent results of the binding energy with λ =
0.5t for various combinations of atilt and ξ . μ = 0 and εd = 7.5 ×
10−5�, where � is the energy cutoff. There exists a critical Vk to form
a positive binding energy when the DOS at the Fermi energy is 0
with {atilt = 0, ξ = 0}, {atilt = 0.2t , ξ = 0}, or {atilt = 0, ξ = 0.5t}.
Otherwise, when the electron and hole pockets are formed as shown
in Fig. 2, the DOS becomes nonzero at the Fermi energy, so the
binding energy is always positive, although the magnitude is very
small when the value of Vk is small.

on to increase the tilting term to atilt = 0.4t , as shown in
Fig. 2, a pair of electron and hole pockets emerges around
each Weyl node, leading to a finite DOS at the Fermi energy.
It is found that for atilt = 0.4t , �b for small Vk is very close to
0 but becomes a positive value. This means that for any small
values of Vk the impurity and the host material always form
a bound state. Similar behavior has been reported in studies
of magnetic impurity in a helical metal [46], topological
nodal loop semimetals [50], and multi-Weyl semimetals [48].
In these systems, the DOS becomes finite if μ 	= 0, and a
low but positive binding energy emerges for any finite Vk.
If a nonzero value of ξ is added, then the electron and hole
pockets become asymmetric, leading to a larger DOS value at
the Fermi energy. Hence for these cases the binding energy
becomes higher than the symmetric case when ξ is 0.

IV. THE SPIN-SPIN CORRELATION

In this section, we study the spin-spin correlation between
the magnetic impurity and the conduction electrons in type-II
WSMs. The spin operators of the magnetic impurity and
conduction electrons in type-II WSMs are defined as Sd =
1
2 d† 
σd , Sa = 1

2 a† 
σa, and Sb = 1
2 b† 
σb. d = {d↑, d↓}T , a =

{a↑, a↓}T , and b = {b↑, b↓}T are the annihilation operators at
the impurity site and for the two orbits in the type-II WSM, re-
spectively. Without loss of generality, we choose the position
of the magnetic impurity as r = 0 such that the hybridization
Vk is in fact a constant. We also use the assumption that the
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FIG. 4. Terms of the spin-spin correlation Juv (u, v = x, y, z) in the x-y coordinate space. All the other off-diagonal terms not shown are 0
on the x-y plane. In all the plots λ = 0.5t and the tilting terms are (a) atilt = 0, ξ = 0, (b) atilt = 0.4t , ξ = 0, and (c) atilt = 0.4t , ξ = 0.5t .

impurity is equally coupled to each band, such that for both
the a and the b orbits Vk is identical. Both orbits contribute
to the spin-spin correlation between the magnetic impu-
rity and the conduction electron located at r. The correla-
tion function consists of two parts, Juv (r) = 〈Su

a (r)Sv
d (0) +

Su
b (r)Sv

d (0)〉 = Ja
uv (r) + Jb

uv (r). The first term is the a-orbital
contribution, while the second term is that of the b orbital.
Here u, v = x, y, z, and 〈. . . 〉 denotes the ground-state average.

The magnitude of the binding energy �b depends directly
on the DOS at the Fermi energy. In a Dirac semimetal or
in a type-I WSM, the DOS vanishes at the Dirac points or
Weyl nodes, so there exists a threshold of the hybridization
strength for a positive �b. However, if one tunes μ away from
the Dirac points or the Weyl nodes, the DOS at the Fermi
energy becomes finite. �b always has a positive solution; the
localized state and the conduction electrons form bound states
for arbitrarily small Vk . On the other hand, once the bound
states are formed, the spatial spin-spin correlation functions
are not much affected by the choice of μ except for the magni-
tude. In the present paper, the spin-spin correlation function is
evaluated for μ = 0. The diagonal and the off-diagonal terms
of the spin-spin correlation in coordinate space are given by
Eq. (A5) in the Appendix. For a finite value of μ, the spatial
patterns of the various components of the spin-spin correlation
are expected to be qualitatively the same.

In Fig. 4 to Fig. 6 we show the results of the spin-
spin correlation between the local magnetic impurity and the
conduction electrons on the x-y, y-z, and x-z planes in the
coordinate space. We fix λ = 0.5t , and three typical combina-
tions of tilting terms are (i) atilt = ξ = 0, representing a type-I
WSM; (ii) atilt = 0.4t and ξ = 0, with symmetric electron and
hole pockets; and (iii) atilt = 0.4t and ξ = 0.5t , representing
a type-II WSM with asymmetric electron and hole pockets.

In the first case, the time-reversal symmetry is broken, but
the system preserves the rotational symmetry about the z axis,
so we have Juv (r) = Ju′v′ (r′) if u′ = Rz(β )u, v′ = Rz(β )v,
r′ = Rz(β )(r), where Rz(β ) is a rotation operator about the
z axis. As the atilt and ξ terms become finite the rotational
symmetry about the z axis is broken, but one can easily

demonstrate that the Hamiltonian is still invariant under a
combined operation T Ry(π ), where T is the time-reversal
operation and Ry(π ) is a rotation of angle π about the y
direction. Under the transformation T Ry(π ) we have

{x, y, z} → {−x, y,−z},
{kx, ky, kz} → {kx,−ky, kz},
{sx, sy, sz} → {sx,−sy, sz}. (18)

A large enough atilt generates a pair of electron and hole
pockets around each Weyl node, and a nonzero ξ triggers
the asymmetry between the electron and the hole pockets as
plotted in Fig. 2. The change in the band structure and DOS
due to the atilt and ξ terms naturally leads to the modifications
in the spin-spin correlation between the magnetic impurity
and the conduction electron spins. In fact, the binding energy
�b will take different values while the model parameters
change. However, we may fix the value of �b in the spin-spin
correlation calculations in order to mainly concentrate on the
spatial patterns. The parameters we use in this section are
Vk = 0.1t and �b = 0.1t . The length unit is chosen as 1/kd ,
where kd is the momentum cutoff. The values of Amn(r) given
in Eq. (A6) are complex numbers in general, so naturally the
off-diagonal terms Juv (r) 	= Jvu(r) (u, v = x, y, z). However,
we find that Juv (r) and Jvu(r) show similar patterns with the
same symmetry property on the three principal planes. Hence
we only plot the components Jxz(r), Jyz(r), and Jxy(r) in the
text, and others are discussed and plotted in the Appendix. A
positive (negative) value of the diagonal component indicates
a ferromagnetic (an antiferromagnetic) correlation between
the impurity spin and the conduction electron spin.

In Fig. 4 we show the results of the diagonal and off-
diagonal terms of the spin-spin correlation between the mag-
netic impurity and the conduction electrons on the y-z plane
in coordinate space. In Fig. 4(a) the tilting terms vanish
(atilt = ξ = 0), so the Hamiltonian describes a type-I WSM
with two Weyl nodes located at ±λ/t on the kz axis. λ breaks
the time-reversal symmetry, but the system still preserves the
rotational symmetry about the z axis. Hence in Fig. 4(a) Jzz(r)
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FIG. 5. Terms of the spin-spin correlation Juv (u, v = x, y, z) on the y-z plane for λ = 0.5t . All the off-diagonal terms not shown are 0 on
the y-z plane. (a) atilt = 0, ξ = 0, (b) atilt = 0.4t , ξ = 0, and (c) atilt = 0.4t , ξ = 0.5t .

has rotational symmetry on the x-y plane, and the correla-
tion is antiferromagnetic nearby the magnetic impurity and
oscillates as |r| increases. The other two diagonal terms have
the relation Jxx(r) = Jyy(Rz(π/2)r), and both are ferromag-
netic along one real-space axis but antiferromagnetic along
the other axis. Among the off-diagonal terms, only Jxy(r)
is nonzero. By carefully examining the results we find that
the terms Ja

xz(r) = −Jb
xz(r) and Ja

yz(r) = −Jb
yz(r), so finally

the off-diagonal components Jxz(r) and Jyz(r), vanish on the
x-y plane. According to the transformation given in Eq. (18)
Jxy(x, y) = −Jxy(−x, y), and if x = 0 the off-diagonal term
Jxy(r) is always 0. This is valid even if the tilting terms are
added, as shown in Figs. 4(b) and 4(c), since the system is
still invariant under T Ry(π ). When the atilt term becomes
finite as shown in Fig. 4(b), all four terms of the spin-spin
correlation function lose the rotational symmetry of π about
the z direction. We can see that all three diagonal terms are
tilted along the y axis, and this change is most obvious in
Jzz(r). The magnitude of the off-diagonal term Jxy(r) also
becomes asymmetric with respect to the x axis. If the term ξ

is also imposed as shown in Fig. 4(c), the rotational symmetry
is further broken. The magnitude of the spin-spin correlation
shows much stronger anisotropy.

Plotted in Fig. 5 are the components of the spin-spin
correlation on the y-z principal plane. Among the off-diagonal
terms, only Jyz(r) is nonzero. Jxz(r) and Jxy(r) vanish be-
cause the a-orbital and b-orbital contributions cancel each
other. In Fig. 5(a) we show the spin-spin correlation for the
type-I WSM. The system preserves the rotational symme-
try about the z axis. Consequently, all three diagonal terms
show Juu(r) = Juu(Rz(π )r) (u = x, y, z). Moreover, due to the
T Ry(π ) symmetry, the diagonal terms also exhibit the prop-
erty Juu(y, z) = Juu(y,−z). As for the off-diagonal term we
have Jyz(r) = Jyz(Ry(π )r) and Jyz(y, z) = −Jyz(y,−z). With
finite atilt and ξ as in Figs. 5(b) and 5(c), the rotational
symmetry is broken, and the WSM is only invariant under
the operation T Ry(π ). In the presence of a finite atilt as in
Fig. 5(b), we can see that the rotational symmetry of π of
spin-spin correlations is broken. However, the diagonal terms

have the property Jzz(y, z) = Jzz(y,−z), Jxx(y, z) = Jxx(y,−z),
and Jyy(y, z) = Jyy(y,−z) due to the transformation given in
Eq. (18). The off-diagonal term is Jyz(y, z) = −Jyz(y,−z).
Even if the tilting term ξ is added, the system is still in-
variant under the combined T Ry(π ) transformation, such that
diagonal terms are symmetric about the z axis while the off-
diagonal term is Jyz(y, z) = −Jyz(y,−z).

In Fig. 6 we show the spin-spin correlation function in the
x-z coordinate space for λ = 0.5t , atilt = 0.4t , and ξ = 0.5t .
For the case λ = 0.5t in the absence of tilting terms, the
system has rotational symmetry about the z axis and is also in-
variant under T Ry(π ). In this case, the results on the x-z plane
have a direct relation with those on the y-z plane: Jzz(x, z) =
Jzz(y, z), Jxx(x, z) = Jyy(y, z), and Jyy(x, z) = Jxx(y, z). Among
the off-diagonal terms, only Jxz(r) is nonzero and it is related
to the correlation on the y-z plane by Jxz(x, z) = Jyz(y, z).
Hence when atilt = ξ = 0, we can relate all the nonzero
components of the spin-spin correlation on the x-z plane to
those on the y-z plane.

Very interestingly, the tilting term atilt = 0.4t triggers
nonzero off-diagonal components Jyz(r) and Jxy(r) on the
x-z plane. If a nonzero ξ is added, the spatial pattern of the
correlations are slightly modified, but the symmetry properties
remain the same, so we only show the results for λ = 0.5t ,
atilt = 0.4t , and ξ = 0.5t in Fig. 6. Once the tilting terms
become finite, the rotational symmetry about the z axis is
broken, but the system is still invariant under the transfor-
mation T Ry(π ). Hence the diagonal terms Jxx(r), Jyy(r), and
Jzz(r) show inversion symmetry on the x-z plane, which can
be given as Juu(x, z) = Juu(−x,−z). The off-diagonal term
Jxz(r) also shows the same inversion symmetry, while Jyz(r) =
−Jyz(r) and Jxy(r) = −Jxy(−r) since the spin operator sy →
−sy under the operation T Ry(π ) as given in Eq. (18).

V. CONCLUSIONS

In summary, we have utilized the variational wave-function
method to investigate the binding energy and the spatial
anisotropy of the Kondo screening cloud in a type-II WSM.
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FIG. 6. Terms of the spin-spin correlation Juv (r) (u, v = x, y, z)
in the x-z coordinate space for λ = 0.5t , atilt = 0.4t , and ξ = 0.5t .
Due to the tilting terms the off-diagonal terms Jyz(r) and Jxy(r) show
nonzero values on the x-z plane.

The type-II WSM is defined by a continuous four-band model
Hamiltonian, with a pair of Weyl nodes located on the kz axis.
In the presence of tilting terms, the Weyl cones are tilted along
the kx direction forming pairs of electron and hole pockets.
The DOS becomes finite at the Fermi energy, so the Kondo
effect is significantly enhanced. The bound state is always
favored by the magnetic impurity and the type-II WSMs.

This behavior is distinct from that of a type-I WSM, where
the bound state is only formed if Vk > Vc [42], where Vc is
a threshold of hybridization strength. The spatial spin-spin
correlation function shows very strong anisotropy due to the
spin-orbit coupling and the unique band structure of the type-
II system. The topology of the type-II WSM is the same as
that of the type-I WSM, but the geometry of the bands and the
DOS become distinct. The tilting terms atilt and ξ break the
rotational symmetry about the z direction. However, the type-
II WSM model Hamiltonian remains invariant under T Ry(π ).
Our spin-spin correlation results reflect these changes in the
host materials. All the nonzero components of the spin-spin
correlation function on the three principal planes are largely
modified by the tilting terms. The most significant changes are
the emergence of nonzero off-diagonal correlation functions
Jxy(r) and Jyz(r) in type-II WSMs on the x-z coordinate plane.
It has been theoretically suggested that the topology and the
form of the Fermi surface of a type-II WSM are very sensi-
tive to pressure, strain, and elastic deformation [22,51]. This
offers us the opportunity to tune the Kondo effect in various
regimes in the type-II WSMs. The type-II WSM also shows
unique Fermi arc surface states [52], and we will address the
issue of magnetic impurity in novel surface states in future
work.
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APPENDIX

The 4 × 4 Hamiltonian of the type-II WSM h0(k) given in
Eq. (2) can be easily diagonalized through

V†h0(k)V = E (k). (A1)

E (k) is the diagonal matrix whose diagonal elements are the
eigenenergies. The elements of the vector matrix V are given
by

�1i = −λ
(
t2k2

z + M2
k + qνk

) + (pνk + (−1)i+1tkzλ)
√

ηk + 2qνk + tkz
( − T 2

(
k2

x + k2
y

) − qνk − λ2
)

T (kx + iky)(λ − tkz )Mk
· Ci,

�2i = −qνk − t2k2
z + (−1)i+1tkz

√
ηk + 2qνk

(λ − tkz )Mk
· Ci,

�3i = −qνk − λ2 + (−1)i+1λ
√

ηk + 2qνk

T (kx + iky)(λ − tkz )
· Ci,

�4i = Ci. (A2)
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FIG. 7. Jzy(r) for three combinations of atilt and ξ on the y-z coordinate plane for λ = 0.5t . The values are different from Jyz(r) given in
Fig. 5, but the symmetry property is the same.

Ci (i = 1, 2, 3, 4) are normalization factors, and p and q
are simply numbers. When i ∈ {1, 2}, q = −1; otherwise,
q = +1. When i ∈ {1, 4} p = −1; otherwise, p = +1. The
eigenstates of the tilted Dirac cone are given by

�k = V†�k, (A3)

where �k = {ak↑, ak↓, bk↑, bk↓}T and �k = {γk1, γk2, γk3,

γk4}T . Then H0 in its diagonal basis is written

H0 =
∑

k

h0(k) =
∑

ki

εkiγ
†
kiγki (i = 1, 2, 3, 4). (A4)

Both the a and the b orbits of the type-II WSM contribute to
the spin-spin correlation between the magnetic impurity and
the conduction electron located on r. Subsequently, the corre-
lation function consists of two parts, Juv (r) = 〈Su

a (r)Sv
d (0) +

Su
b (r)Sv

d (0)〉 = Ja
uv (r) + Jb

uv (r). Here u, v = x, y, z, and 〈. . . 〉
denotes the ground-state average. The spin-spin correlation
functions between a magnetic impurity and the conduction
electrons from a and b orbits are given by

Ja
zz(r) = −1

4
(|A11|2 − |A12|2 − |A21|2 + |A22|2),

Jb
zz(r) = −1

4
(|A31|2 − |A32|2 − |A41|2 + |A42|2),

Ja
xx(r) = −1

2
[Re(A12A∗

21) + Re(A11A∗
22)],

Jb
xx(r) = −1

2
[Re(A32A∗

41) + Re(A31A∗
42)],

Ja
yy(r) = −1

2
[−Re(A12A∗

21) + Re(A11A∗
22)],

Jb
yy(r) = −1

2
[−Re(A32A∗

41) + Re(A31A∗
42)],

Ja
xy(r) = 1

2
[Im(A∗

12A21) + Im(A11A∗
22)],

Jb
xy(r) = 1

2
[Im(A∗

32A41) + Im(A31A∗
42)],

Ja
xz(r) = −1

2
[Re(A11A∗

21) − Re(A12A∗
22)],

Jb
xz(r) = −1

2
[Re(A31A∗

41) − Re(A32A∗
42)],

Ja
yz(r) = 1

2
[Im(A∗

11A21) + Im(A12A∗
22)],

Jb
yz(r) = 1

2
[Im(A∗

31A41) + Im(A32A∗
42)],

Ja
yx(r) = 1

2
[Im(A∗

12A21) − Im(A11A∗
22)],

Jb
yx(r) = 1

2
[Im(A∗

32A41) − Im(A31A∗
42)],

Ja
zx(r) = −1

2
[Re(A12A∗

11) − Re(A22A∗
21)],

Jb
zx(r) = −1

2
[Re(A32A∗

31) − Re(A42A∗
41)],

Ja
zy(r) = 1

2
[Im(A11A∗

12) + Im(A22A∗
21)],

Jb
zy(r) = 1

2
[Im(A31A∗

32) + Im(A42A∗
41)]. (A5)

The function Amn(r) is given by

Amn(r) =
∑

ki

�∗
mi(k)χin(k)gkie

−ikr, (A6)

where the numbers {i, j, m, n} = {1, 2, 3, 4} are band indices.
Each component of the spin-spin correlation function given
in Eq. (A5) is obtained by a straightforward calculation.

FIG. 8. Jzx (r) and Jzy(r) on the x-z plane for λ = 0.5t , atilt =
0.4t , and ξ = 0.5t .
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To clarify, we take Ja
zz(r) as an example to introduce the pro-

cess. We remember the hybridized wave function in Eq. (12),
and when it is normalized, the correlation function is given by

Ja
zz(r) = 〈�|sz

a(r)sz
d (0)|�〉

= 〈�0|
(

g0 +
∑
pm

gpmγ †
pmdpm

)
sz

a(r)sz
d (0)

×
(

g0 +
∑
qn

gqnd†
qnγqn

)
|�0〉. (A7)

sz
a(r) can be transformed to the diagonal basis of conduction

electrons following Eq. (A3), and we can easily know that

〈�0|γ †
pmγ

†
kiγk′ jγqn|�0〉 = δpqδmnδkk′δi j − δpk′δm jδkqδin.

(A8)

The first term in Eq. (A8) returns r-independent results, and
only the second term, which shows the spatial patterns, is of
interest to us. The spatial spin-spin correlation function is then
given by

Ja
zz(r) = 1

4

∑
kk′i j

(�∗
1i(k)�1 j (k′) − �∗

2i(k)�′
2 j (k

′))e−i(k−k′ )r〈�0|gkigk′ jdk′ j (d
†
↑d↑ − d†

↓d↓)d†
ki|�0〉

= 1

4

∑
kk′i j

(�∗
1i(k)�1 j (k′) − �∗

2i(k)�′
2 j (k

′))e−i(k−k′ )rgkigk′ j (χ
∗
j1(k′)χi1(k) − χ∗

j2(k′)χi2(k))

= − 1

4
(|A11(r)|2 − |A12(r)|2 − |A21(r)|2 + |A22(r)|2). (A9)

Other components of the spin-spin correlation function can be
obtained in similar ways.

Amn(r) values given in Eq. (A6) are complex numbers,
so Juv (r) 	= Jvu(r) in general. Below we mainly analyze the
nonzero off-diagonal components of the spin-spin correlation
on the three principal planes.

Jxy(r) and Jyx(r) are nonzero on the x-y plane and,
also, on the x-z plane in the presence of tilting terms. We
find that the second terms of Ja

xy(r) and Jb
xy(r) cancel each

other, meaning that Im(A11A∗
22) + Im(A31A∗

42) = 0. Con-
sequently, on the x-y and x-z coordinate planes, Jxy(r) =
Jyx (r).

Jyz(r) and Jzy(r) are nonzero on the y-z plane and, also,
on the x-z plane in the presence of tilting terms. On the y-z
plane, Jyz(r) 	= Jzy(r), and we plot the results of Jzy(r) on the
y-z plane in Fig. 7.

On the x-z plane, and in the absence of atilt and ξ , the
model Hamiltonian of the type-II WSM preserves the rota-
tional symmetry about the z direction. Hence one may have
Jxz(x, z) = Jyz(y, z) and Jzx(x, z) = Jzy(y, z). In Fig. 8 we show
the results for nonzero off-diagonal components of the spin-
spin correlation function on the x-z plane. Remarkably, we
find that Jzy(r) is negative when z > 0, while Jyz(r) is positive.
The values of Jzx (r) are different in comparison to those of
Jxz(r) plotted in Fig. 6.

[1] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.
90, 015001 (2018).

[2] Z. Liu, B. Zhou, Y. Zhang, Z. Wang, H. Weng, D. Prabhakaran,
S.-K. Mo, Z. Shen, Z. Fang, X. Dai et al., Science 343, 864
(2014).

[3] Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D.
Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch,
Z. Fang, X. Dai, Z. Shen, D. Feng, Z. Hussain, and Y. Chen,
Nat. Mater. 13, 677 (2014).

[4] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C.
Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin et al.,
Nat. Commun. 5, 3786 (2014).

[5] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,
Phys. Rev. B 83, 205101 (2011).

[6] A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84,
235126 (2011).

[7] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 027201
(2013).

[8] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai,
Phys. Rev. X 5, 011029 (2015).

[9] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,
B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S.

Jia, A. Bansil, H. Lin, and M. Hasan, Nat. Commun. 6, 7373
(2015).

[10] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.
Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang,
H. Zheng, J. Ma, D. Sanchez, B. Wang, A. Bansil, F. Chou,
P. Shibayev, H. Lin, S. Jia, and M. Hasan, Science 349, 613
(2015).

[11] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J.
Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z.
Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013
(2015).

[12] S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R.
Chang, H. Zheng, V. Strocov, D. Sanchez, G. Chang, C. Zhang,
D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B. Wang,
A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia,
and M. Zahid Hasan, Nat. Phys. 11, 748 (2015).

[13] C.-L. Zhang, Z. Yuan, Q.-D. Jiang, B. Tong, C. Zhang, X. C.
Xie, and S. Jia, Phys. Rev. B 95, 085202 (2017).

[14] L. Yang, Z. Liu, Y. Sun, H. Peng, H. Yang, T. Zhang, B.
Zhou, Y. Zhang, Y. Guo, M. Rahn, D. Prabhakaran, Z. Hussain,
S.-K. Mo, C. Felser, B. Yan, and Y. Chen, Nat. Phys. 11, 728
(2015).

235108-9

https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.1245085
https://doi.org/10.1038/nmat3990
https://doi.org/10.1038/nmat3990
https://doi.org/10.1038/nmat3990
https://doi.org/10.1038/nmat3990
https://doi.org/10.1038/ncomms4786
https://doi.org/10.1038/ncomms4786
https://doi.org/10.1038/ncomms4786
https://doi.org/10.1038/ncomms4786
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/nphys3437
https://doi.org/10.1103/PhysRevB.95.085202
https://doi.org/10.1103/PhysRevB.95.085202
https://doi.org/10.1103/PhysRevB.95.085202
https://doi.org/10.1103/PhysRevB.95.085202
https://doi.org/10.1038/nphys3425
https://doi.org/10.1038/nphys3425
https://doi.org/10.1038/nphys3425
https://doi.org/10.1038/nphys3425


WANG, HU, LI, XU, SUN, AND CHEN PHYSICAL REVIEW B 99, 235108 (2019)

[15] Z. Wang, Y. Zheng, Z. Shen, Y. Lu, H. Fang, F. Sheng, Y.
Zhou, X. Yang, Y. Li, C. Feng, and Z.-A. Xu, Phys. Rev. B 93,
121112(R) (2016).

[16] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang,
H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen,
Phys. Rev. X 5, 031023 (2015).

[17] B. Lv, N. Xu, H. Weng, J. Ma, P. Richard, X. Huang, L. Zhao,
G. Chen, C. Matt, F. Bisti, V. Strocov, J. Mesot, Z. Fang, X. Dai,
T. Qian, M. Shi, and H. Ding, Nat. Phys. 11, 724 (2015).

[18] A. Lopez-Bezanilla and P. B. Littlewood, Phys. Rev. B 93,
241405(R) (2016).

[19] M. O. Goerbig, J.-N. Fuchs, G. Montambaux, and F. Piéchon,
Phys. Rev. B 78, 045415 (2008).

[20] M. Hirata, K. Ishikawa, G. Matsuno, A. Kobayashi, K.
Miyagawa, M. Tamura, C. Berthier, and K. Kanoda, Science
358, 1403 (2017).

[21] A. A. Soluyanov, Physics 10, 74 (2017).
[22] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X.

Dai, and B. A. Bernevig, Nature (London) 527, 495 (2015).
[23] Y. Xu, F. Zhang, and C. Zhang, Phys. Rev. Lett. 115, 265304

(2015).
[24] Y. Sun, S.-C. Wu, M. N. Ali, C. Felser, and B. Yan, Phys. Rev.

B 92, 161107 (2015).
[25] Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha,

X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, Phys. Rev.
Lett. 117, 056805(R) (2016).

[26] K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan,
H. Huang, H. Zhang, Z. Xu et al., Nat. Phys. 12, 1105 (2016).

[27] L. Huang, T. M. McCormick, M. Ochi, Z. Zhao, M.-T. Suzuki,
R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan et al., Nat. Mater. 15,
1155 (2016).

[28] J. Jiang, Z. Liu, Y. Sun, H. Yang, C. Rajamathi, Y. Qi, L. Yang,
C. Chen, H. Peng, C. Hwang et al., Nat. Commun. 8, 13973
(2017).

[29] G. Chang, S.-Y. Xu, D. S. Sanchez, S.-M. Huang, C.-C. Lee,
T.-R. Chang, G. Bian, H. Zheng, I. Belopolski, N. Alidoust
et al., Sci. Adv. 2, e1600295 (2016).

[30] S.-Y. Xu et al., Sci. Adv. 3(6), e1603266 (2017).

[31] T. E. O’Brien, M. Diez, and C. W. J. Beenakker, Phys. Rev. Lett.
116, 236401 (2016).

[32] Z.-M. Yu, Y. Yao, and S. A. Yang, Phys. Rev. Lett. 117, 077202
(2016).

[33] S. Tchoumakov, M. Civelli, and M. O. Goerbig, Phys. Rev. Lett.
117, 086402 (2016).

[34] M. Udagawa and E. J. Bergholtz, Phys. Rev. Lett. 117, 086401
(2016).

[35] Y. Ferreiros, A. A. Zyuzin, and J. H. Bardarson, Phys. Rev. B
96, 115202 (2017).

[36] S. Saha and S. Tewari, Eur. Phys. J. B 91, 4 (2018).
[37] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
[38] C. Gonzalez-Buxton and K. Ingersent, Phys. Rev. B 57, 14254

(1998).
[39] L. Fritz and M. Vojta, Phys. Rev. B 70, 214427 (2004).
[40] M. Vojta and L. Fritz, Phys. Rev. B 70, 094502 (2004).
[41] L. Li, J.-H. Sun, Z.-H. Wang, D.-H. Xu, H.-G. Luo, and W.-Q.

Chen, Phys. Rev. B 98, 075110 (2018).
[42] J.-H. Sun, D.-H. Xu, F.-C. Zhang, and Y. Zhou, Phys. Rev. B

92, 195124 (2015).
[43] O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 50, 604

(1983).
[44] C. M. Varma and Y. Yafet, Phys. Rev. B 13, 2950 (1976).
[45] V. Aji, C. M. Varma, and I. Vekhter, Phys. Rev. B 77, 224426

(2008).
[46] X.-Y. Feng, W.-Q. Chen, J.-H. Gao, Q.-H. Wang, and F.-C.

Zhang, Phys. Rev. B 81, 235411 (2010).
[47] D. Ma, H. Chen, H. Liu, and X. C. Xie, Phys. Rev. B 97, 045148

(2018).
[48] H.-F. Lü, Y.-H. Deng, S.-S. Ke, Y. Guo, and H.-W. Zhang,

Phys. Rev. B 99, 115109 (2019).
[49] J.-H. Sun, L.-J. Wang, X.-T. Hu, L. Li, and D.-H. Xu, Phys. Rev.

B 97, 035130 (2018).
[50] Y.-H. Deng, H.-F. Lü, S.-S. Ke, Y. Guo, and H.-W. Zhang,

J. Phys.: Condens. Matter 30, 435602 (2018).
[51] M. Zubkov and M. Lewkowicz, Ann. Phys. 399, 26 (2018).
[52] H. Zheng and M. Z. Hasan, Adv. Phys.: X 3, 1466661

(2018).

235108-10

https://doi.org/10.1103/PhysRevB.93.121112
https://doi.org/10.1103/PhysRevB.93.121112
https://doi.org/10.1103/PhysRevB.93.121112
https://doi.org/10.1103/PhysRevB.93.121112
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1038/nphys3426
https://doi.org/10.1038/nphys3426
https://doi.org/10.1038/nphys3426
https://doi.org/10.1038/nphys3426
https://doi.org/10.1103/PhysRevB.93.241405
https://doi.org/10.1103/PhysRevB.93.241405
https://doi.org/10.1103/PhysRevB.93.241405
https://doi.org/10.1103/PhysRevB.93.241405
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1103/PhysRevB.78.045415
https://doi.org/10.1126/science.aan5351
https://doi.org/10.1126/science.aan5351
https://doi.org/10.1126/science.aan5351
https://doi.org/10.1126/science.aan5351
https://doi.org/10.1103/Physics.10.74
https://doi.org/10.1103/Physics.10.74
https://doi.org/10.1103/Physics.10.74
https://doi.org/10.1103/Physics.10.74
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1103/PhysRevLett.115.265304
https://doi.org/10.1103/PhysRevLett.115.265304
https://doi.org/10.1103/PhysRevLett.115.265304
https://doi.org/10.1103/PhysRevLett.115.265304
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevLett.117.056805
https://doi.org/10.1103/PhysRevLett.117.056805
https://doi.org/10.1103/PhysRevLett.117.056805
https://doi.org/10.1103/PhysRevLett.117.056805
https://doi.org/10.1038/nphys3871
https://doi.org/10.1038/nphys3871
https://doi.org/10.1038/nphys3871
https://doi.org/10.1038/nphys3871
https://doi.org/10.1038/nmat4685
https://doi.org/10.1038/nmat4685
https://doi.org/10.1038/nmat4685
https://doi.org/10.1038/nmat4685
https://doi.org/10.1038/ncomms13973
https://doi.org/10.1038/ncomms13973
https://doi.org/10.1038/ncomms13973
https://doi.org/10.1038/ncomms13973
https://doi.org/10.1126/sciadv.1600295
https://doi.org/10.1126/sciadv.1600295
https://doi.org/10.1126/sciadv.1600295
https://doi.org/10.1126/sciadv.1600295
https://doi.org/10.1126/sciadv.1603266
https://doi.org/10.1126/sciadv.1603266
https://doi.org/10.1126/sciadv.1603266
https://doi.org/10.1126/sciadv.1603266
https://doi.org/10.1126/sciadv.1603266
https://doi.org/10.1103/PhysRevLett.116.236401
https://doi.org/10.1103/PhysRevLett.116.236401
https://doi.org/10.1103/PhysRevLett.116.236401
https://doi.org/10.1103/PhysRevLett.116.236401
https://doi.org/10.1103/PhysRevLett.117.077202
https://doi.org/10.1103/PhysRevLett.117.077202
https://doi.org/10.1103/PhysRevLett.117.077202
https://doi.org/10.1103/PhysRevLett.117.077202
https://doi.org/10.1103/PhysRevLett.117.086402
https://doi.org/10.1103/PhysRevLett.117.086402
https://doi.org/10.1103/PhysRevLett.117.086402
https://doi.org/10.1103/PhysRevLett.117.086402
https://doi.org/10.1103/PhysRevLett.117.086401
https://doi.org/10.1103/PhysRevLett.117.086401
https://doi.org/10.1103/PhysRevLett.117.086401
https://doi.org/10.1103/PhysRevLett.117.086401
https://doi.org/10.1103/PhysRevB.96.115202
https://doi.org/10.1103/PhysRevB.96.115202
https://doi.org/10.1103/PhysRevB.96.115202
https://doi.org/10.1103/PhysRevB.96.115202
https://doi.org/10.1140/epjb/e2017-80437-4
https://doi.org/10.1140/epjb/e2017-80437-4
https://doi.org/10.1140/epjb/e2017-80437-4
https://doi.org/10.1140/epjb/e2017-80437-4
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1103/PhysRevB.57.14254
https://doi.org/10.1103/PhysRevB.57.14254
https://doi.org/10.1103/PhysRevB.57.14254
https://doi.org/10.1103/PhysRevB.57.14254
https://doi.org/10.1103/PhysRevB.70.214427
https://doi.org/10.1103/PhysRevB.70.214427
https://doi.org/10.1103/PhysRevB.70.214427
https://doi.org/10.1103/PhysRevB.70.214427
https://doi.org/10.1103/PhysRevB.70.094502
https://doi.org/10.1103/PhysRevB.70.094502
https://doi.org/10.1103/PhysRevB.70.094502
https://doi.org/10.1103/PhysRevB.70.094502
https://doi.org/10.1103/PhysRevB.98.075110
https://doi.org/10.1103/PhysRevB.98.075110
https://doi.org/10.1103/PhysRevB.98.075110
https://doi.org/10.1103/PhysRevB.98.075110
https://doi.org/10.1103/PhysRevB.92.195124
https://doi.org/10.1103/PhysRevB.92.195124
https://doi.org/10.1103/PhysRevB.92.195124
https://doi.org/10.1103/PhysRevB.92.195124
https://doi.org/10.1103/PhysRevLett.50.604
https://doi.org/10.1103/PhysRevLett.50.604
https://doi.org/10.1103/PhysRevLett.50.604
https://doi.org/10.1103/PhysRevLett.50.604
https://doi.org/10.1103/PhysRevB.13.2950
https://doi.org/10.1103/PhysRevB.13.2950
https://doi.org/10.1103/PhysRevB.13.2950
https://doi.org/10.1103/PhysRevB.13.2950
https://doi.org/10.1103/PhysRevB.77.224426
https://doi.org/10.1103/PhysRevB.77.224426
https://doi.org/10.1103/PhysRevB.77.224426
https://doi.org/10.1103/PhysRevB.77.224426
https://doi.org/10.1103/PhysRevB.81.235411
https://doi.org/10.1103/PhysRevB.81.235411
https://doi.org/10.1103/PhysRevB.81.235411
https://doi.org/10.1103/PhysRevB.81.235411
https://doi.org/10.1103/PhysRevB.97.045148
https://doi.org/10.1103/PhysRevB.97.045148
https://doi.org/10.1103/PhysRevB.97.045148
https://doi.org/10.1103/PhysRevB.97.045148
https://doi.org/10.1103/PhysRevB.99.115109
https://doi.org/10.1103/PhysRevB.99.115109
https://doi.org/10.1103/PhysRevB.99.115109
https://doi.org/10.1103/PhysRevB.99.115109
https://doi.org/10.1103/PhysRevB.97.035130
https://doi.org/10.1103/PhysRevB.97.035130
https://doi.org/10.1103/PhysRevB.97.035130
https://doi.org/10.1103/PhysRevB.97.035130
https://doi.org/10.1088/1361-648X/aae21d
https://doi.org/10.1088/1361-648X/aae21d
https://doi.org/10.1088/1361-648X/aae21d
https://doi.org/10.1088/1361-648X/aae21d
https://doi.org/10.1016/j.aop.2018.08.006
https://doi.org/10.1016/j.aop.2018.08.006
https://doi.org/10.1016/j.aop.2018.08.006
https://doi.org/10.1016/j.aop.2018.08.006
https://doi.org/10.1080/23746149.2018.1466661
https://doi.org/10.1080/23746149.2018.1466661
https://doi.org/10.1080/23746149.2018.1466661
https://doi.org/10.1080/23746149.2018.1466661

