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Ferromagnetic instability for the single-band Hubbard model in the strong-coupling regime
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We study a ferromagnetic instability in a doped single-band Hubbard model by means of dynamical mean-
field theory with the continuous-time quantum Monte Carlo simulations. Examining the effect of the strong
correlations in the system on the hypercubic and Bethe lattice, we find that the ferromagnetically ordered state
appears in the former, while it does not in the latter. We also reveal that the ferromagnetic order is more stable
in the case that the noninteracting density of states (DOS) exhibits a slower decay in the high-energy region.
The present results suggest that, in the strong-coupling regime, the high-energy part of DOS plays an essential
role for the emergence of the ferromagnetically ordered state, in contrast to the Stoner criterion justified in the
weak-interaction limit.
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I. INTRODUCTION

The ferromagnetic (FM) metallic state in the strongly
correlated electron systems is a long-standing problem though
iron is known to be a magnet from ancient times. In the
multiorbital system, there exists the Hund coupling between
electrons in degenerate orbitals, which tends to realize the
FM ordered states at low temperatures [1–4]. In fact, the
ordered state has been reported in the doped Hubbard model
with degenerate orbitals [5], and double exchange model
[6], which should be relevant for realistic materials such as
La1−xSrxMnO3 [7]. By contrast, the FM instability in simpler
models is less understood. When the Hartree approximation
is applied to the single-band Hubbard model, one meets the
Stoner criterion, namely, the FM instability appears due to the
Coulomb interaction when the system has a large density of
states (DOS) at the Fermi level. This criterion is qualitatively
correct in the weak-coupling region. In fact, the existence of
the FM ordered states has been clarified in the single-band
systems with flat bands [8–15] and asymmetric DOS [16–19].

In the case with strong Coulomb interactions, the Stoner
theory is not applicable because of the large modulation
of the low-temperature susceptibility. To take into account
the spin fluctuations, theoretical attempts have been devoted
previously [20–22]. In the strong-coupling limit, intersite
correlations via the effective Heisenberg interactions should
be dominant, which enhances antiferromagnetic (AFM) fluc-
tuations against the FM instability. In the bipartite system
in the d > 1 dimensions, the AFM ordered state is always
realized at half filling [23]. Away from half filling, doped
holes should gain kinetic energy, and therefore it is not trivial
that the AFM ordered state survives in the strong-coupling
limit. On the other hand, Nagaoka has proved that for a single
hole in the Hubbard model on a lattice with closed loops the
ground state is a fully polarized ferromagnet in this limit, the
so-called Nagaoka ferromagnetism [24]. Therefore, it is still
controversial how stable such a polarized ordered state is in
the system with finite hole density. An important point is that,
in this strong-coupling region, large Coulomb interactions and

low-energy metallic properties must be taken into account
precisely on an equal footing.

In our paper, to discuss the instability of the ferromag-
netism we use dynamical mean-field theory (DMFT) [25–28],
which is exact in the infinite dimensions and one of the appro-
priate frameworks to take into account the wide range of en-
ergy scales. It has already been clarified that the asymmetry of
the DOS plays an important role for realizing the FM state in
the weak-coupling region [17–19]. As for the strong-coupling
region, it has been clarified that the FM ordered state is not
realized in the system on the Bethe lattice [19,29], but in the
hypercubic lattice [30,31]. These facts in the strong-coupling
region may be understood in terms of the Nagaoka mechanism
since there are no closed loops in the Bethe lattice. However,
in the framework of DMFT, the lattice structure is involved
only via the noninteracting DOS, which should lead to a
minor change in the system, e.g., the critical interactions for
Mott transitions [32,33]. Therefore, key factors for stabilizing
the strong-coupling FM ordered state remain unclear. Fur-
thermore, quantitative treatments are still lacking even in the
infinite dimensional systems since with conventional impurity
solvers such as the noncrossing approximation [30,34–36] and
numerical renormalization group [29,31,32,37–39] it is hard
to obtain the dynamical quantities in both low-energy and
extremely high-energy regions precisely. To overcome this,
in this paper, we make use of the continuous-time quantum
Monte Carlo (CTQMC) method [40,41] based on the segment
algorithm. We then discuss the FM instability in the system
more precisely to determine the finite temperature phase
diagram.

The paper is organized as follows. In Sec. II, we introduce
the single-band Hubbard model and briefly explain the frame-
work of DMFT. In Sec. III, we consider the infinite dimen-
sional Hubbard model on the hypercubic and Bethe lattices
to discuss the FM instability at low temperatures. The effect
of the noninteracting DOS is also addressed, by examining
magnetic properties in the system with Student-t distribution
DOS. A summary is given in the final section.
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II. MODEL AND METHODS

We consider the single-band Hubbard model, which is
described by the following Hamiltonian as

H = − t
∑

〈i, j,〉,σ
(c†

iσ c jσ + H.c.) + U
∑

i

ni↑ni↓

−
∑

iσ

(
μ + h

2
σ

)
niσ , (1)

where ciσ (c†
iσ ) annihilates (creates) an electron with spin

σ (=↑,↓) at the ith site and niσ = c†
iσ ciσ . t is the transfer inte-

gral, U is the on-site interaction, μ is the chemical potential,
and h is the external magnetic field.

To study magnetic properties in the single-band Hubbard
model, we make use of DMFT [25–28]. In DMFT, the lattice
model is mapped to the problem of a single impurity con-
nected dynamically to a “heat bath.” The electron Green’s
function is obtained via the self-consistent solution of this
impurity problem. The treatment is exact in the limit of
the infinite dimensions since nonlocal electron correlations
are irrelevant. The self-energy is reduced to be site-diagonal
�σ (k, iωn) = �σ (iωn), where ωn[= (2n + 1)πT ] is the Mat-
subara frequency and T is the temperature. The lattice Green’s
function is given as

Gσ (k, iωn)−1 = G0σ (k, iωn)−1 − �σ (iωn), (2)

where G0σ (k, iωn)−1 = iωn + μ + h
2σ − εk and εk is the dis-

persion relation. The local Green’s function is then obtained as

Gloc,σ (iωn) =
∫

dkGσ (k, iωn) (3)

=
∫

dx
ρ0(x)

iωn + μ + h
2σ − x − �σ (iωn)

, (4)

where we introduce the noninteracting DOS ρ0(x) =∫
dkδ(x − εk ). In the effective impurity model, the Dyson

equation is given as

Gσ (iωn)−1 = Gimp,σ (iωn)−1 + �imp,σ (iωn), (5)

where G(iωn) is the effective bath. Solving the effective
impurity model, one can obtain the self-energy and
Green function. We iterate the self-consistency conditions
Gσ (iωn) = Gimp,σ (iωn) and �σ (iωn) = �imp,σ (iωn) until the
desired numerical accuracy is achieved.

In our calculations, we make use of the hybridization
expansion CTQMC simulations [40,41] based on the seg-
ment algorithm, which is one of the powerful methods to
solve the effective impurity model. In the method, Monte
Carlo samplings are efficiently performed by local updates
such as insertion (removal) of a segment or empty space
between segments (antisegment), or shifts of segment end
points. However, the acceptance probabilities are exponen-
tially suppressed with respect to the interaction strength U .
Therefore, it is hard to evaluate the Green’s function with a
reasonable computational cost when U � t . Here, we also
use additional updates, where the configurations for both spins
in a certain interval are simultaneously changed. This allows
us to perform the CTQMC method in the strong-coupling
region efficiently [42]. Furthermore, we use the intermediate

representation for the Green’s function [43] since Gimp(τ ) is
expected to change rapidly around τ = 0, β in the strong-
coupling region.

To discuss magnetic properties in the single-band Hubbard
model, we calculate the uniform magnetization and magnetic
susceptibility, which are defined as

m = 1

2

∑
i

(〈ni↑〉 − 〈ni↓〉), (6)

χ = lim
h→0

m

h
. (7)

In our calculations, the magnetic susceptibility is numerically
evaluated by the induced magnetization in the system with a
fixed chemical potential since the modulation of the electron
number is confirmed to be negligible in the presence of h.
Here, we focus on the nature of the FM metallic state in
the single-band Hubbard model. For this purpose, we ne-
glect the AFM ordered state and phase separation, which
should be realized close to half filling n ∼ 1 [30,31], where
n = ∑

iσ 〈niσ 〉/N . This simplification allows us to exhibit the
essence of the FM instability in the strong-coupling region.

In our paper, we consider the Hubbard model on the Bethe
and hypercubic lattices to study their magnetic properties. The
corresponding noninteracting DOS, which is important in the
framework of DMFT [see Eq. (4)], is given as

ρb(x) = 2

πD

√
1 −

(
x

D

)2

, (8)

ρhc(x) = 1√
πD

exp

[
−

(
x

D

)2
]
, (9)

where D is the characteristic energy scale. It has been clarified
that the difference in the shape of DOS simply leads to the
quantitative change in the critical interaction of the Mott
transition [32,33]. On the other hand, away from commen-
surate fillings, the shape has been discussed to be crucial for
the instability to the FM ordered state in strongly correlated
metals [19,29–31]. In particular, as for the above two forms of
the DOS, their high-energy parts are obviously different; the
DOS of the hypercubic lattice has an exponentially decaying
tail, but that of the Bethe lattice is finite only in the limited
region, as shown in Fig. 1. In the following, we discuss the
role of the shape of the DOS for the FM instability through
systematic finite temperature calculations.

III. NUMERICAL RESULTS

We first consider the Hubbard model on the hypercubic
lattice [30,31] to clarify the presence of the FM ordered
phase when the system is away from half filling (n < 1) in
the case of large Coulomb interactions. Figure 2 shows the
magnetic susceptibility in the single-band Hubbard model at
T/D = 0.05 and 0.1. It is found that in the noninteract-
ing system (U = 0) the susceptibility little depends on the
electron density and temperature in this scale (χD ∼ 0.3).
When the interaction strength is much larger than the hop-
ping (bandwidth) and temperature, nonmonotonic behavior
appears in the susceptibility as a function of the filling n.
The peak structure develops with increasing the Coulomb
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FIG. 1. Solid and dashed lines represent DOS in the noninter-
acting system on the hypercubic and Bethe lattices. The dot-dashed
line represents the Student-t distribution, which will be defined in
Eq. (11). The inset shows the tails of their DOS in the large |ω|
region.

interaction and decreasing the temperature. At the low temper-
ature T/D = 0.05, the susceptibility has a maximum around
n ∼ 0.95, where ferromagnetic fluctuations are enhanced.
This suggests that the FM instability appears away from the
half filling when the system has a larger interaction strength
at lower temperatures.

To examine the presence of the FM ordered phase at finite
interactions and temperatures, we calculate the uniform sus-
ceptibility and magnetization in the system with U/D = 100
at T/D = 0.01, as shown in Fig. 3. In the small n case, the sys-
tem is in the paramagnetic (PM) state with finite susceptibility.
Increasing the electron number, the susceptibility monotoni-
cally increases and at last diverges at the critical value n =
nc1. Beyond the critical value, the finite magnetization is
induced, implying that the FM ordered state is realized in
the single-band Hubbard model on the hypercubic lattice. The
magnetization has a maximum around n ∼ 0.95 and finally it
vanishes at n = nc2, where the phase transition occurs again
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FIG. 2. Magnetic susceptibility as a function of band filling n
in the system on the hypercubic lattice when U/D = 10 (triangles),
20 (circles), and 30 (squares) at the temperatures T/D = 0.1 (open
symbols) and 0.05 (solid symbols). Solid and dashed lines around
χD ∼ 0.3 are the results for the noninteracting system at T/D =
0.05 and 0.1.
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FIG. 3. Uniform magnetic susceptibility and magnetization as a
function of the electron density in the system with U/D = 100 at the
temperature T/D = 0.01. The inset shows critical behavior of the
susceptibility and magnetization. Solid lines are guides to the eyes.

to the PM metallic state. By examining critical behavior, we
obtain the critical densities nc1 = 0.90 and nc2 = 0.98.

To reveal how stable the FM ordered state is against
thermal fluctuations, we show in Fig. 4 the temperature de-
pendence of the magnetization and magnetic susceptibility
in the system with U/D = 100 and n = 0.95. We find that
decreasing temperatures the magnetic susceptibility monoton-
ically increases and at last diverges at a finite temperature
Tc. Further decrease of temperatures drives the system to
the FM ordered state with the uniform magnetization m.
The critical temperature Tc/D ∼ 0.013 is obtained, examining
critical behavior in these quantities m ∼ (Tc − T )β and χ ∼
(T − Tc)−γ with β = 1/2 and γ = 1, as shown in the inset
of Fig. 4. These critical exponents are consistent with the
mean-field theory. On the other hand, in the case with U/D =
20, the magnetic susceptibility approaches a finite value with
decreasing temperatures, implying that the ground state is the
PM metal.

By performing similar calculations for different values
of U and n, we obtain the phase diagram at the temper-
ature T/D = 0.0067, as shown in Fig. 5(a). It is found
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FIG. 4. Solid squares (circles) represent magnetization (mag-
netic susceptibility) as a function of the temperature in the system
on the hypercubic lattice when U/D = 100 and n = 0.95. Open
circles represent the magnetic susceptibility for the system with
U/D = 20.0 and n = 0.95. The inset shows critical behavior of these
quantities. Solid and dashes lines are guides to eyes.
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FIG. 5. (a) Phase diagram of the single-band Hubbard model on
the hypercubic lattice at the temperature T/D = 0.0067. The circle
area is proportional to the moment size. (b) Uniform magnetization
as a function of the Coulomb interaction in the system with n = 0.95
at T/D = 0.0067.

that the FM ordered state is realized around n ∼ 0.95 in
the strong-coupling regime. In addition, increasing the in-
teraction strength, the magnetization smoothly increases and
approaches a certain value at the fixed temperature, as shown
in Fig. 5(b). This means that the FM ordered state becomes
stable even in the large U region. This is in contrast to the
AFM ordered state at half filling. In the state, the AFM order
parameter decreases with increasing the interaction at a fixed
temperature since intersite correlations scaled by ∼t2/U in the
strong-coupling limit [42,44]. By contrast, in the case away
from the half filing, the uniform magnetization is saturated
in the large U limit, as shown in Fig. 5(b). This suggests
that the stability of the FM ordered state is dominated by the
kinetic energy. This is similar to the origin of the Nagaoka
ferromagnetism, implying that the FM ordered state we find
is adiabatically connected to the Nagaoka ferromagnetism,
which is justified in the limits of U → ∞ and n → 1.

We also examine the ferromagnetism in the Hubbard model
on the Bethe lattice with the semielliptical DOS. The results
for the magnetic susceptibility at T/D = 0.05 and 0.1 are
shown in Fig. 6. We find that the susceptibility monotoni-
cally increases with increasing n when the temperature and
interaction strength are fixed. This suggests that the magnetic
instability should appear in the vicinity of the half filling,
in contrast to the Hubbard model on the hypercubic lattice
discussed above. To examine whether or not the FM ordered
state is realized at low temperatures, we also calculate the
temperature dependence of the susceptibility for the nearly
half-filled system (n = 0.99), as shown in Fig. 7. It is found
that, in the system with the strong interactions U/D = 100
and 200, the magnetic susceptibility monotonically increases
with decreasing temperatures. However, we cannot find ten-
dencies toward divergence (see the inset of Fig. 7). This
suggests the absence of the FM ordered state in the single-
band Hubbard model on the Bethe lattice, which is consistent
with the previous works [19,29].

Up to now, we have treated the hypercubic and Bethe
lattices to elucidate the origin of the magnetic instability to
the FM ordered state in the single-band Hubbard model; the
detailed finite temperature calculations clarified that the FM
ordered phase appears in the hypercubic lattice, while this
does not in the Bethe lattice. These facts might be understood
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FIG. 6. Magnetic susceptibility as a function of band filling n
in the system on the Bethe lattice when U/D = 10 (triangles), 20
(circles), and 30 (squares) at the temperatures T/D = 0.1 (open
symbols) and 0.05 (solid symbols). Solid and dashed lines around
χD ∼ 0.3 are the results for the noninteracting system at T/D =
0.05 and 0.1.

by the Nagaoka mechanism [24]; in the U → ∞ limit, the
FM ordered state is realized in the one-hole doped half-filled
system with the closed-loop lattice structure. However, in
the framework of DMFT, the lattice structure is indirectly
treated only via the noninteracting DOS [Eq. (4)]. Therefore,
it may be difficult to conclude that the loop structure plays an
essential role in stabilizing the FM ordered state in the infinite
dimensions. Now, we focus on the DOS in the noninteracting
system. It is clear that the DOSs around the Fermi level are
similar to each other. This suggests that the FM ordered state
found in the present system with large interactions is not
attributed to the DOS at the Fermi energy, which is crucial for
the FM ordered state caused by the Slater mechanism justified
in the weak-coupling limit.

On the other hand, in the high-energy region, there exists
a clear difference in DOS; ρb = 0 for the Bethe lattice,
while ρhc �= 0 for the hypercubic lattice. This expects that the
asymptotic form of DOS away from the Fermi level plays

 0

 10

 20

 0  0.05  0.1

U=0

χD

T/D

U/D=100
U/D=200

 0

 0.1

 0  0.01  0.02  0.03

(χD)-1

T/D

FIG. 7. Magnetic susceptibility as a function of the temperature
in the system on the Bethe lattice in the slightly doped systems n =
0.99 with U/D = 100 and 200. The inset shows the inverse of the
susceptibility. Dashed lines are deduced from two data for T/D =
0.01 and 0.02.
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FIG. 8. Magnetic susceptibility as a function of band filling n in
the system with Student-t distribution with ν = 3 when U/D = 10
(triangles), 20 (circles), and 30 (squares) at the temperatures T/D =
0.1 (open symbols) and 0.05 (solid symbols). Solid and dashed lines
around χD ∼ 0.3 are the results for the noninteracting system at
T/D = 0.05 and 0.1.

an important role in stabilizing the FM ordered state in the
strong-coupling limit. Here, we introduce another function
form, the so-called Student-t distribution [45]:

ρt (x, ν) = �
(

ν+1
2

)
√

πν�
(

ν
2

)[
1 + 1

ν
x2

]− ν+1
2

, (10)

where �(x) is the Gamma function. This is reduced to
the Cauchy-Lorentz distribution in the case ν = 1 and the
Gaussian distribution (hypercubic) in the case ν → ∞. As
an example, we consider the Student-t distribution with
ν = 3:

ρt (x, 3) = 1√
2πD

[(
x

D

)2

+ 1

2

]−2

, (11)

where D is the unit of energy, which is determined such that
its variance coincides with that of the DOS of the hypercubic
lattice given in Eq. (9). The filling dependence of the magnetic
susceptibility in the system with ρt (x, 3) is shown in Fig. 8.
We find that nonmonotonic behavior appears in the magnetic
susceptibility and the maximum of the curves is located
around n ∼ 0.95 at T/D = 0.1. The results are similar to
those for the hypercubic lattice, which expects that the FM
ordered state is realized in a finite parameter space unlike the
case of the Bethe lattice. Figure 9 shows the magnetization
and susceptibility in the system with U/D = 100 and n ∼
0.95. Decreasing temperatures, the susceptibility diverges at
the critical temperature Tc/D = 0.028 and the magnetization
appears below the temperature. This temperature is larger than
that in the case with the Gaussian DOS, indicating that the
FM ordered state in the system with the Student-t distribution
DOS is more stable than that in the hypercubic system in the
case with the strong Coulomb interaction.
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FIG. 9. Magnetization and magnetic susceptibility as a function
of the temperature in the system with Student-t distribution when
U/D = 100 and n = 0.95. The inset shows critical behavior of
the susceptibility and magnetization. Solid lines are guides to the
eyes.

IV. SUMMARY

We have studied magnetic properties in the single-band
Hubbard model in the infinite dimensions. Combining DMFT
with the continuous-time quantum Monte Carlo simulations,
we have calculated uniform magnetic susceptibility and mag-
netization systematically and have found that the FM ordered
state is realized in the system on the hypercubic lattice, while
no ordered state appears on the Bethe lattice. We have also
examined the system with Student-t distribution DOS which
has a power-law tail unlike the Gaussian distribution. We have
found that the FM ordered state in the system with Student-t
distribution is more stable than that in the system on the
hypercubic lattice.

The present results suggest that the noninteracting DOS in
the high-energy region contributes to the stability of the FM
ordered state in the strong-coupling regime while the DOS
around the Fermi level is not relevant to the emergence of
the FM ordered phase. This is in contrast to the Stoner ferro-
magnetism in the weak-coupling limit, where the DOS at the
Fermi energy is crucial for the emergence of ferromagnetism.

As for finite dimensional systems without the high-energy
DOS such as square and cubic lattices, it may be possible to
stabilize the FM ordered state due to nonlocal correlations,
which could not be taken into account in the framework
of DMFT. It is an interesting problem to discuss the FM
instability, which is now under consideration.
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