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The dynamical susceptibility of strongly correlated electronic systems can be calculated within the framework
of dynamical mean-field theory (DMFT). The required measurement of the four-point vertex of the auxiliary
impurity model is however costly and restricted to a finite grid of Matsubara frequencies, leading to a cutoff
error. It is shown that the propagation of this error to the lattice response function can be minimized by virtue
of an exact decomposition of the DMFT polarization function into local and nonlocal parts. The former is
measured directly by the impurity solver, while the latter is given in terms of a ladder equation for the Hedin
vertex that features an unprecedentedly fast decay of frequency summations compared to previous calculation
schemes, such as the one of the dual boson approach. At strong coupling, the local approximation of the
TRILEX approach is viable, but vertex corrections to the polarization should be dropped on equal footing to
recover the correct prefactor of the effective exchange. In finite dimensions, the DMFT susceptibility exhibits
spurious mean-field criticality, therefore, a two-particle self-consistent and frequency-dependent correction term
is introduced, similar to the Moriya λ correction of the dynamical vertex approximation. Applications to the two-
and three-dimensional Hubbard models on the square and cubic lattices show that the expected critical behavior
near an antiferromagnetic instability is recovered.
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I. INTRODUCTION

Dynamical mean-field theory (DMFT) is a powerful non-
perturbative approach to strong local correlations in the
Hubbard model [1]. Although in widespread use, many as-
pects of the DMFT are still under investigation, which is
fueled to large extent by persistent algorithmic advances in
the solution of its auxiliary Anderson impurity model [2].
These improvements allow insights into the two-particle level
of the DMFT approximation [3], which is also the elemental
precursor for its diagrammatic extensions [4].

A basic application for DMFT at the two-particle level
is the calculation of the dynamical susceptibility, which al-
lows to study, for example, phase transitions [1], the elec-
tron energy loss spectrum [5], nuclear relaxation rate [6],
and Goldstone excitations [7]. The DMFT susceptibility is
furthermore an integral part of the ladder dynamical vertex
approximation [8,9]. Calculation of this correlation function
however requires knowledge of the impurity vertex function,
which is often evaluated by means of improved estimators
for continuous-time quantum Monte Carlo (CTQMC) solvers
[10,11]. The further development of improved estimators is
highly desirable, as they allow to efficiently calculate the
DMFT susceptibility in multiorbital settings, see, for example,
Refs. [6,7,12]. Recently, progress has been reported in the
measurement of the vertex function within the exact diago-
nalization method [13].

The role of the improved estimators in CTQMC methods
is to minimize the statistical noise of the Monte Carlo mea-
surement, which for fixed run time greatly increases with the
number of dynamic degrees of freedom (Matsubara frequen-
cies) of the measured quantity. A further numerical error is
introduced because the measurement of the impurity vertex

function is restricted to a finite grid of Matsubara frequencies.
In order to obtain a gauge invariant lattice response function in
DMFT, it is necessary to account for an infinite number, that
is, a ladder of vertex corrections [14]. For each vertex correc-
tion, the value of the impurity vertex at all frequencies enters
the calculation, and therefore due to the finite Matsubara grid
a cutoff error arises. Consequently, the numerical error of the
DMFT response function may not only be minimized by an
improved Monte Carlo measurement but also by reduction of
the cutoff error. A straightforward way to do this is to account
for the asymptotics of the vertex function [15–18].

A further option for improvement, the subject of this work,
is to use the numerically exact impurity solver to sum local
diagrams exactly. For concreteness, within the dual boson
approach and in a calculation scheme by Pruschke et al., the
DMFT susceptibility X is written as the sum of local and
nonlocal parts [14,19,20],

Xq(ω) = χ (ω) + X̃q(ω), (1)

where q is the lattice momentum and ω the (bosonic) Mat-
subara frequency. The local part, the impurity susceptibility
χ , depends only on one frequency and is calculated directly
by the impurity solver, which in effect sums all local two-
particle diagrams that taken together yield χ . Moreover, even
though DMFT neglects nonlocal correlations, the lattice sus-
ceptibility takes local vertex corrections at different lattice
sites into account, which give rise to the nonlocal term X̃
(see also Fig. 1 of Ref. [21]). The dual boson formula (1) is
numerically efficient because the statistical and cutoff errors
attached to the impurity vertex only affect the nonlocal term,
not χ . Even when the asymptotic behavior of the impurity
vertex is neglected it allows the analytical continuation of the
susceptibility to the real axis [5,14]. It is however desirable
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to preserve numerical resources, hence further improvements
are welcome.

In this work, it will be shown that the concept of breaking
down the DMFT susceptibility into simpler diagrammatic
pieces can be taken to a further level by separating exactly
the diagrams from the vertex function that are irreducible
with respect to the bare Hubbard interaction U . This leads
to a decomposition of the polarization function �, which is
U -irreducible, into local and nonlocal parts [22], �q(ω) =
π (ω) + �̃q(ω), analogous to equation (1). The nonlocal part
�̃ is obtained via an efficient ladder equation for the Hedin
three-leg vertex [23]. The lattice polarization �q(ω) in turn
encapsulates all nontrivial information about the two-particle
spectrum.

The Hedin vertex also plays a central role in the TRILEX
(triply irreducible local expansion) approach [24]. In this
method, nonlocal vertex corrections to the Hedin vertex are
neglected, and therefore the calculation of the four-point ver-
tex function of the impurity model is not necessary. However,
this approximation can be introduced in different ways, for
example, within the dual boson formalism it accounts for
more vertex corrections than in TRILEX [22]. It is shown
in this work that for large interaction these additional ver-
tex corrections decide about the prefactor of the effective
exchange coupling. Both TRILEX and dual boson account
for a nonlocal self-energy, however, this work focuses on
approximations to the polarization function.

Lastly, a further aspect is considered in the application
of the efficient formula for the polarization. In finite dimen-
sions, the DMFT susceptibility violates the Pauli principle
and suffers from a spurious mean-field instability in two
dimensions. It has been shown previously that the Mermin-
Wagner theorem is satisfied in the renormalized ladder dual
fermion approach [25] or after introduction of the Moriya
λ correction to the DMFT susceptibility [26]. In three di-
mensions, both approaches renormalize the criticality of the
underlying dynamical mean-field starting point [27,28]. Fur-
thermore, in the ladder dynamical vertex approximation the
satisfaction of local charge and spin sum rules by the Moriya λ

correction is crucial to ensure the proper asymptotic behavior
of the electronic self-energy [26,29]. Similar to the Moriya
λ and two-particle self-consistent approach (TPSC) [30], in
this work the mean-field artifacts of the DMFT susceptibility
are removed by virtue of a frequency-dependent correction
term that is fixed by a two-particle self-consistent constraint.
It is shown that this approach satisfies the Mermin-Wagner
theorem and predicts the same criticality of the half-filled
three-dimensional Hubbard model as the Moriya λ.

The paper is organized as follows. The Hubbard Hamil-
tonian, the DMFT approximation, and the Anderson impu-
rity model are briefly recollected in Sec. II. The reducible
and irreducible vertices of the impurity model are defined
in Sec. III. The efficient formula for the DMFT polariza-
tion is presented in Sec. IV and compared to the dual
boson formula. A two-particle self-consistent modification
of the DMFT susceptibility and a TRILEX-like approxima-
tion are introduced in Sec. V and applied in Sec. VI. The
conclusions follow in Sec. VII. A self-contained derivation
of the ladder equation for the Hedin vertex is provided
in Appendices A–D.

II. HUBBARD HAMILTONIAN AND DMFT
APPROXIMATION

The Hamiltonian of the paramagnetic two- or three-
dimensional Hubbard model is given as

H = −
∑
〈i j〉σ

ti jc
†
iσ c jσ + U

∑
i

ni↑ni↓, (2)

where ti j is the nearest-neighbor hopping between lattice sites
i, j, its absolute value t = 1 is the unit of energy. c, c† are
the construction operators, σ = ↑,↓ the spin index. U is the
Hubbard repulsion between the densities nσ = c†

σ cσ .
In the DMFT approximation, the self-energy � of Green’s

function is local,

Gk = [ıν − εk + μ − �(ν)]−1, (3)

where k = (k, ν) comprises lattice momentum and fermionic
Matsubara frequency, εk is the dispersion, μ is the chemical
potential. �(ν) is the self-energy of an auxiliary Anderson
impurity model (AIM) that is solved numerically exactly. The
action of the AIM reads

SAIM = −
∑
νσ

c∗
νσ (ıν + μ − �ν )cνσ + U

∑
ω

n↑ωn↓ω. (4)

Here, �ν denotes the hybridization function, ω is a bosonic
Matsubara frequency, summations

∑
ν and

∑
ω imply mul-

tiplication with the temperature T . c∗, c are Grassmann
numbers. In DMFT the hybridization function is fixed self-
consistently according to the constraint,∑

k

Gk = gν, (5)

where g is the numerically exact local Green’s function of
the AIM. Note that summation over k implies division by the
number of lattice sites N .

III. IMPURITY VERTICES

The calculation of the dynamical susceptibility requires
knowledge of higher correlation functions of the impurity.
Directly measured by the solver are the susceptibility, χα

ω =
−〈ρα

−ωρα
ω〉 + β〈n〉〈n〉δωδα,ch, the four-point,

g(4),α
νν ′ω = − 1

2

∑
σi

sα
σ ′

1σ1
sα
σ ′

2σ2
〈cνσ1

c∗
ν+ω,σ ′

1
cν ′+ω,σ2

c∗
ν ′σ ′

2
〉,

and the three-point function,

g(3),α
νω =1

2

∑
σσ ′

sα
σ ′σ 〈cνσ c∗

ν+ω,σ ′ρ
α
ω〉 =

∑
ν ′

g(4),α
νν ′ω ,

where sα are the Pauli matrices (α = ch, sp), ρch = n↑ + n↓
and ρsp = n↑ − n↓ are the charge and spin densities.

A. Reducible vertices

One defines the four- and three-point vertices f and λ̄,

f α
νν ′ω = g(4),α

νν ′ω − βgνgν+ωδνν ′ + 2βgνgν ′δωδα,ch

gνgν+ωgν ′gν ′+ω

, (6)

λ̄α
νω = g(3),α

νω + βgν〈n〉δωδα,ch

gνgν+ω

. (7)
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(a) λ = 1 + +× +× + ...

(b) f = × + × + + ...

= f i + λ̄i λi

(c) = + π

FIG. 1. Lowest-order contributions to the U α-reducible three-leg
(a) and four-leg (b) vertices λ and f of the impurity. Dashed lines in-
dicate the bare interaction ±U , arrows the impurity Green’s function
g. Red crosses mark RPA-like contributions that are not included in
the U α-irreducible λi and f i. The second line of diagram (b) shows
the relation between f , f i, and λi, the wiggly line denotes the
screened interaction w of the impurity [cf. Eq. (9) and Appendix A],
which is represented in diagram (c) as a geometric series.

Although numerically unfavorable λ̄ can in principle also be
obtained by attaching legs to f from the right and adding
1, λ̄α

νω = 1 + ∑
ν ′ f α

νν ′ωgν ′gν ′+ω, therefore λ̄ is a right-sided
three-leg vertex [31], the left-sided one λ is obtained by
attaching the legs from the left or via the symmetry relation,
λ̄α

νω = λα
ν+ω,−ω.

B. Uα-irreducible vertices

In order to make the later calculation of the DMFT lat-
tice correlation functions efficient the impurity vertices are
decomposed following Hertz and Edwards [32].

The diagram (a) in Fig. 1 shows that when the three-leg
vertex λα is expanded diagrammatically one may encounter,
in going from left to right, an insertion of the bare interaction
U α , where U ch = +U or U sp = −U . The Hubbard interaction
is just a constant, and the incoming impurity Green’s function
lines on the left of U α can thus be contracted, the same is case
for the out-going lines.

On the left of U α there hence arises a contribution to the
U α-irreducible polarization πα of the impurity [related to
the susceptibility via χα

ω = 2πα
ω/(1 − U απα )], whereas on the

right of U α begins once again an expansion of the three-leg
vertex. As shown algebraically in Appendix A, one thus sepa-
rates diagrams from λ that are once or manifold U α-reducible,

λα
νω = λi,α

νω

1 − U απα
ω

, (8)

where λi is the U α-irreducible three-leg vertex—the Hedin
vertex—of the impurity.

Let us perform this procedure also for the four-point vertex
f , as depicted in Fig. 1(b). f obviously contains one part f i

that is irreducible, whereas in the remaining terms one finds
at least one insertion U α . At this point the incoming lines may
be closed and a right-sided Hedin vertex λ̄i arises on the left
of U α . In fact, also on the right of U α the lines may be closed,

which means that a true four-point contribution does not arise
in the U α-reducible diagrams. For this reason, the whole of the
reducible diagrams may be split into the three- and two-point
objects λ̄i, λi, and π , respectively,

f α
νν ′ω = f i,α

νν ′ω + λ̄i,α
νω wα

ω λi,α
ν ′ω, (9)

where wα
ω = U α/(1 − U απα

q ) is the screened interaction of
the impurity [cf. Fig. 1(c)].

Equations (8) and (9) are valuable because they separate
RPA-like diagrams from the vertices λ and f , which are
absorbed into the geometric series in Fig. 1(c), the screened
interaction w.1 Similar relations are also valid for the Hubbard
model (2), see Ref. [33] and Appendix A. The characteristic
triangle-wiggle-triangle diagram in Fig. 1(b) is typically large
when the corresponding susceptibility χα is large, since then
U απα ≈ 1.

One should note that in the reducible contribution
λ̄i

νωwωλi
ν ′ω in Eq. (9) the dependence on ν and ν ′ is separated.

Therefore this term is comprised in the lowest order of a
singular value decomposition of f [34].

IV. EFFICIENT FORMULA

The goal is to calculate the dynamical susceptibility in the
DMFT approximation, see also definition (C1),

X α
q = 2�α

q

1 − U α�α
q

, (10)

where q = (q, ω) and �α
q is the lattice polarization. The form

of Eq. (10) resembles the RPA susceptibility, however, the
polarization � is similar to the Lindhard function only in the
weak coupling limit, while for intermediate and large coupling
� is strongly renormalized by the frequency dependence of
the DMFT self-energy �(ν) and vertex corrections [14]. The
latter can be taken into account in the following efficient way.

It is shown in Appendix C that in DMFT the polarization
can be decomposed into local and nonlocal parts [22],

�α
q = πα

ω +
∑

ν

�i,α
νq X̃ 0

ν (q)λ̄i,α
νω = πα

ω + �̃α
q . (11)

The nonlocal corrections are denoted as �̃, analogous to the
dual boson formula for the susceptibility (1) and X̃ 0

ν (q) is a
nonlocal bubble,

X̃ 0
ν (q) =

∑
k

G̃k+qG̃k . (12)

Here, G̃k = Gk − gν is the nonlocal DMFT Green’s function,
which decays with the frequency as 1/ν2, and �i,α is the
left-sided lattice Hedin vertex. Equation (11) is depicted di-
agrammatically in Fig. 2(b).

1The polarization π can indeed be interpreted as the ‘self-energy’
of the screened interaction w, analogous to the Dyson equation g =
g0/(1 − g0�), and the bare interaction U assumes the role of the bare
Green’s function g0. On the other hand, U also corresponds to the
two-particle self-energy of the RPA approximation [41,46], one may
therefore refer to the diagrams in Fig. 1(c) as “RPA-like.”
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(a) Λ(i) = λ(i) + Λ(i) f (i)

(b) Π = π + Λi λ̄i

(c) X = χ + 2× Λ λ̄

FIG. 2. (a) DMFT approximation to the three-leg vertices � and
�i (full triangles). Bare triangle and box represent the three- and
four-leg vertices of the impurity. Arrows denote nonlocal Green’s
functions G̃. (b) The lattice polarization � (full circle) is given as
the sum of the impurity polarization π (bare circle) and nonlocal
corrections. Note that the latter are given by two Hedin vertices on
the left and right, whereas in the original TRILEX there is only
one [24]. (c) Dual boson formula (1) for the susceptibility. Here the
nonlocal corrections are given by the U -reducible three-leg vertices
�, λ.

We now come to the main result, which is a nonlocal ladder
equation for the Hedin vertex in the DMFT approximation
[26]. It is shown in Appendix D that

�i,α
νq =λi,α

νω +
∑
ν ′

�i,α
ν ′qX̃ 0

ν ′ (q) f i,α
ν ′νω, (13)

which is depicted in Fig. 2(a). Note that f i is the U α-
irreducible four-leg vertex of the impurity model, it is the only
true four-point object needed in the calculation.

A. Comparison to dual boson formula

It will now be shown that the formula (11) for the polariza-
tion is numerically more efficient than the dual boson formula
(1). To this end, let us recall that in the latter case the nonlocal
corrections are given as (see Appendix C, Refs. [5,14], and
Fig. 2(c)),

X̃ α
q = 2

∑
ν

�α
νqX̃ 0

ν (q)λ̄α
νω, (14)

similar to �̃ in Eq. (11), except that the U -reducible three-leg
vertices �,λ are in place of the Hedin vertices �i, λi (and the
factor 2). Furthermore, the vertex � of the lattice is given by
the same ladder equation (13) [see also Fig. 2(a)], albeit the
label “i” needs to be omitted, and there is hence a complete
formal analogy in the calculation of � and X .

Let us compare the first four-point vertex contribution to
the nonlocal correction terms X̃ and �̃, by expanding the lad-
der equations for the three-leg vertices � and �i, respectively,
see also Eq. (13),

X̃q/2 (or �̃q) =
∑

ν

λ(i)
νωX̃ 0

ν (q)λ̄(i)
νω

+
∑
νν ′

λ(i)
νωX̃ 0

ν (q) f (i)
νν ′ωX̃ 0

ν ′ (q)λ̄(i)
ν ′ω + . . . , (15)

where the flavor label α was omitted for readability.

Typically the calculation of the impurity three-leg vertices
λ(i) is more efficient than that of the four-leg vertices f (i),
in the latter case one likes to minimize the domain of mea-
surement for ν, ν ′, and ω. The question is therefore how
the cutoff error in the four-point corrections that arise in the
second line of Eq. (15) affects the calculation. It is useful to
analyze the convergence of the term that is written out in the
second line of Eq. (15), let us consider first the limit |ν| → ∞
while ν ′ and ω are kept constant:

According to Eq. (8) the decay of the vertices λνω and λi
νω

with the frequency ν is the same except for a prefactor [1 −
U απα

ω ]−1, therefore, the difference in the three-leg vertices
does not lead to a different convergence of the ν summations
in X̃ and �̃. Also in both cases the nonlocal bubble X̃ 0

ν (q)
defined in Eq. (12) decays as 1/ν4. However, the vertices f
and f i behave differently, which follows from an observation
in Ref. [29]. In the limit |ν| → ∞ all diagrams contributing
to f that depend on ν have decayed, and hence asymptotically
this vertex is given by the diagrams that do not depend on ν at
all. According to the argument in the reference these diagrams
are all U -reducible, one can write for fixed ν ′,

f α
νν ′ω = U α + U α

∑
ν1

gν1 gν1+ω f α
ν1ν ′ω + O

(
1

ν

)
. (16)

Factoring out U α one identifies the reducible three-leg vertex
λ [see below Eq. (7)], therefore,

lim
|ν|→∞

f α
νν ′ω =U αλα

ν ′ω = wα
ωλi,α

ν ′ω. (17)

In the last step Eq. (7) and wα = U α/(1 − U απα
ω ) were used.

Let us now compare to the exact relation between the vertices
f and f i in Eq. (9). The asymptotic limit of f in Eq. (17)
is given exactly by the asymptotic limit of the U -reducible
diagrams λ̄i

νω wω λi
ν ′ω (note that λ̄i

νω → 1 for |ν| → ∞). This
is not surprising in view of the observation of Ref. [29] that
only U -reducible diagrams can be independent of ν. As a
result, the irreducible vertex f i

νν ′ω decays to zero for |ν| → ∞
and fixed ν ′,

f i,α
νν ′ω = 0 + O

(
1

ν

)
. (18)

For this reason, the four-point corrections in Eq. (15) decay
by at least one power of ν faster for �̃ than for X̃ , which is the
central observation of this work.

A comprehensive discussion of the asymptotics of f can
be found in Ref. [16], where it is also shown that in the
double limit |ν|, |ν ′| → ∞ one needs to consider separately
the two cases ν − ν ′ = const and ω + ν + ν ′ = const, that
is, the elements of f near the main and secondary diagonal.
However, as regards the scope of this work these cases can be
ignored, because then the nonlocal bubbles in Eq. (15) decay
as 1/ν4 and 1/(ν ′)4, respectively, leading to a still faster decay
than when only one frequency is large. In summary, in the dual
boson formula each four-point correction comes with a factor
X̃ 0

ν (q) fνν ′ω, which decays like the nonlocal bubble as 1/ν4

due to the constant background of f , whereas in the efficient
calculation scheme the corrections enter as X̃ 0

ν (q) f i
νν ′ω, which

decays at least as 1/ν5 by virtue of the combined decay of
nonlocal bubble and vertex f i.
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V. TRILEX-LIKE APPROXIMATION AND TWO-PARTICLE
SELF-CONSISTENCY

This section considers an optimal truncation of the ver-
tex corrections to the Hedin vertex and a two-particle self-
consistent constraint on the DMFT susceptibility.

A. TRILEX-like approximation

Despite all optimizations it may be unfeasible to take
four-point corrections to the Hedin vertex into account, for
example, in multiorbital settings, cf. Appendix E. In this case,
one may consider to neglect vertex corrections in Eq. (13),
�i ≈ λi, which is the philosophy of the TRILEX approach.
However, there are two ways to introduce this approximation:
Firstly, in the efficient formula (11) the local approximation to
the Hedin vertex leads to

�(2),α
q = πα

ω +
∑

ν

λi,α
νωX̃ 0

ν (q)λ̄i,α
νω, (19)

which corresponds to replacing the full triangle in Fig. 2(b)
with a bare triangle and one is left with two bare triangles.
Secondly, a more direct way to apply the approximation is
to insert it into the relation �α

q = ∑
k �i,α

νq GkGk+q, which
is equivalent to Eq. (11) when vertex corrections are kept
(cf. Appendix C). Nevertheless, �i ≈ λi leads to a different
approximation,

�(1),α
q =

∑
k

λi,α
νωGkGk+q

= πα
ω +

∑
ν

λi,α
νωX̃ 0

ν (q), (20)

In the second line, the nonlocal bubble (12) was introduced us-
ing the relation

∑
k GkGk+q = X̃ 0

ν (q) + gνgν+ω and the exact
impurity polarization was identified, πα

ω = ∑
ν λi,α

νωgνgν+ω.
Equation (20) corresponds to the way the local approximation
is introduced in the TRILEX approach [24], it has only one
bare triangle.

The obvious question is whether the first or the second
option is a more viable way to truncate the vertex corrections.
This question can be decided by considering the strong cou-
pling limit, which shows that only �(2) in Eq. (19) correctly
describes the effective exchange: It is shown in Appendix F
that for very large coupling U � t, T the static DMFT spin
susceptibility of the half-filled Hubbard model takes the form,
see also Ref. [34],

X sp(q, ω = 0) =̃ − 2

2T − Iq
, (21)

where T is the temperature and Iq is the effective exchange.
Appendix shows further that the approximations (19) and (20)
yield different expressions for Iq,

I (2)
q = − 2t2γq(

π
sp
ω=0

)2

∑
ν

λ
i,sp
ν,ω=0(gν )4λ̄

i,sp
ν,ω=0, (22)

I (1)
q = − 2t2γq(

π
sp
ω=0

)2

∑
ν

λ
i,sp
ν,ω=0(gν )4, (23)

respectively, where t is the hopping, γq depends on
the dispersion of the lattice, for the square lattice γq =

5 10 50 100

0.05

0.10

0.50

1

5

−I
/γ

U/T

1/U

4/U

I(2)

I(1)

FIG. 3. Prefactor of the effective exchange in the atomic limit
(� = 0). For U � T , the prefactors corresponding to I (2) and I (1)

approach 4t2/U and t2/U , respectively, where t = 1.

cos(qx ) + cos(qy). In this case, Iq is a nearest-neighbor inter-
action, it inherits this property from εk = −2tγk.

It is instructive to evaluate the impurity quantities that
determine Iq in the atomic limit where the hybridization
function � of DMFT vanishes. Figure 3 shows that for U �
T one has −I (2)

q /γq → 4t2/U , whereas −I (1)
q /γq → t2/U . In

combination with Eq. (21) this implies that only I (2) recovers
the correct Néel temperature of the half-filled Hubbard model
on the square lattice [q = (π, π )] in the Heisenberg mean-
field limit, TN = 4t2

U , whereas I (1) is off by a factor 4.
Apparently, the vertex corrections at each lattice site need

to be treated on an equal footing because the effective ex-
change is a coupling between equivalent nearest neighbors.
Therefore approximation (19) is used in the applications.
The fact that it recovers the effective exchange implies that
four-point vertex corrections to the efficient formula (11)
can be neglected in the limit U � t, T , which is confirmed
numerically further below.

B. Two-particle self-consistency

The DMFT susceptibility X sp in Eq. (10) may diverge in
two dimensions, in violation of the Mermin-Wagner theo-
rem, and it shows the mean-field critical behavior near an
antiferromagnetic instability in three dimensions [27,28]. As
discussed in the context of the two-particle self-consistent
(TPSC) approach, these drawbacks are due to the violation
of local sum rules [30]. In order to alleviate the mean-field
artifacts a frequency-dependent correction is introduced,

X α
q → X α

q = 2�α
q

1 − (
U α + Uα

ω

)
�α

q

, (24)

where � is the DMFT polarization (11). The correction term
Uα

ω is fixed by the self-consistency condition,∑
q

X α
q = χα

ω, (25)

thereby X yields the same kinetic and potential energy as the
impurity model of DMFT [35]. Furthermore, the local sum
rules are satisfied,∑

q

X ch
q =

∑
ω

χ ch
ω = −〈n〉 − 2〈n↑n↓〉 + 〈n〉2, (26)

∑
q

X sp
q =

∑
ω

χ sp
ω = −〈n〉 + 2〈n↑n↓〉, (27)
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which are a manifestation of the Pauli principle (n2
σ = nσ , cf.

Ref. [35]). Note that 〈n〉 = 2
∑

ν gν and 〈n↑n↓〉 are the density
and double occupancy of the impurity model (4).

The boundedness of 〈n↑n↓〉 in Eq. (27) prevents the diver-
gence of X sp

q in two dimensions for T > 0, because it would
lead to the logarithmic divergence of the two-dimensional
integral

∑
q on the left-hand side.2 For dimensions d > 2

Eq. (27) allows magnetic instabilities for T > 0, because then
the integral

∑
q over the divergent integrand remains finite

[30]. In the limit d → ∞, the constraint (25) is satisfied by the
DMFT susceptibility (10) and hence U is zero in this limit, as
expected. Finally, X preserves the feature ıωX α

q=0,ω = 0 that
is satisfied by the conserving DMFT polarization � in the
nominator of Eq. (24). The two-particle spectrum described
by X is therefore ungapped, as required by the global conser-
vation law [35].3

For all these reasons the correction Uω in Eq. (24) and
the constraint (25) appear as suitable in order to remove the
mean-field artifacts from the DMFT susceptibility (10). Note
that the self-consistency (25) does not lead to a feedback
on the impurity model of DMFT, which would in general
invalidate the conserving features of the polarization [35]. The
correction Uω is similar to the constant Moriya λ correction
[26], it can however not be interpreted straightforwardly as a
renormalization of the correlation length, nor is it a retarded
interaction. Instead, one may interpret Uω as an effective
vertex correction to the susceptibility, which takes diagrams
beyond DMFT into account that are needed to satisfy the con-
straint (25). This interpretation is consistent with the TPSC
approach [30], whose nonperturbative features follow due to
effective vertex corrections to the RPA susceptibility. The lat-
ter renormalize the mean-field criticality of the RPA [36]. Due
to the similarities, Eq. (24) and the constraint (25) are referred
to in this work as a two-particle self-consistent dynamical
mean-field (TPSC-DMF) approach to the susceptibility.

VI. NUMERICAL RESULTS

The decomposition of the impurity vertex function in
Sec. III, the efficient evaluation of the polarization in Sec. IV,
and the TPSC-DMF approach in Sec. V are applied to the two-
and three-dimensional Hubbard models (2) at half-filling. In
the calculations firstly the DMFT cycle of Sec. II was com-
pleted, then the four- and three-point correlation functions (6)
and (7) of the AIM were evaluated, where a CTQMC solver
based on the ALPS libraries [37] with improved estimators
[10] was used. The polarization was then evaluated according
to Sec. IV, then the TPSC-DMF susceptibility was obtained
according to Sec. V. The implementation is based on the dual
boson code by E.G.C.P van Loon and H. Hafermann [38].

2This does not directly imply satisfaction of the Mermin-Wagner
theorem, because it has to be shown in practice that a solution Uω

exists that satisfies Eq. (25).
3Despite the ungapped spectrum the Ward identity is nevertheless

violated, because due to the correction U the static homogeneous
limit of X is inconsistent with the one-particle level of the DMFT
approximation [45].
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FIG. 4. Real part of the impurity spin vertex f sp
νν′ω (left) and

of its components λ̄i,sp
νω wsp

ω λ
i,sp
ν′ω (center) and f i,sp

νν′ω (right) in a bad
metal [U/t = 6, see text] in νn, ν

′
n′ plane for fixed ω0 = 0 (top) and

ω3 = 6πT (bottom). White color indicates the constant background,
only for f i,sp on the right this corresponds to zero. Notice the smaller
Monte Carlo error in the center panels. Vertical lines correspond to
cuts (∗) in Fig. 5.

A. Impurity vertex function

Figure 9 further below shows a phase diagram of the
three-dimensional Hubbard model. In this section, we focus
on this model and the values U/t = 6 and U/t = 14 of the
interaction, which correspond in DMFT to a bad metal and
to an insulator with local moments [28], respectively, the
temperature is set to T/t ≈ 0.4.

For the metallic regime (U/t = 6), the left panels of Fig. 4
show the impurity spin vertex function f sp

νν ′ω in the static limit
ω0 = 0 and for ω3 = 6πT . In most directions, f sp decays
with increasing ν, ν ′ to a constant, however, it also shows two
persistent structures with shapes + and ×, see also Ref. [3].
For finite ω3, these patterns are shifted along the diagonal.

Important in this work is the exact decomposition f =
f i + λ̄iwλi discussed in Sec. III. The part that is given by
the impurity Hedin vertex λi and by the screened interaction
w is shown for α = sp in the center panels of Fig. 4. This
object merely shows a + pattern, while the right panels show
the U sp-irreducible vertex f i,sp, which features the × shape.
This correspondence is also there in the charge channel and in
different parameter regimes (not shown).

As proven in Sec. IV A, the irreducible vertex f i does not
have a constant background, and the one of the reducible
vertex f originates from the term λ̄iwλi. The magnitude of
this term is determined by the quantity [1 − U απα

ω ]−1, see
Eq. (17), which can be very large near a quantum critical
point U απα

ω=0 ≈ 1, where the impurity susceptibility χα is
large. The magnitude of f compared to f i at large frequencies
therefore depends on the physical regime. For a quantitative
comparison, Fig. 5 shows the ratio f i(ν, ν ′, ω)/ f (ν, ν ′, ω) for
fixed ν and ω along the ν ′ direction. The left panels of Fig. 5
show the metallic regime U/t = 6, where the charge and
spin susceptibilities χ ch and χ sp are both of non-negligible
magnitude, and hence f is very large compared to f i at
high frequencies. On the other hand, χ ch is very small in the
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FIG. 5. Ratio f (i)
νν′ω/ fνν′ω of irreducible and reducible vertex

along ν ′
n′ direction, νn and ωm are fixed. Full and dashed lines show

cuts at ν0 = πT and ν−3 = −5πT , respectively, bosonic frequency
(ω0, ω3) as indicated. Panels marked with a ∗ correspond to Fig. 4,
where the cuts along ν ′ direction are indicated by vertical lines.

insulating regime U/t = 14, and there is no big difference
between f ch and f i,ch, see in particular third panel on the right
of Fig. 5. Instead, in this regime, the static spin susceptibility
χ sp(ω0) dominates, leading to the fast decay of f i,sp/ f sp

visible in the top right panel.

B. Convergence of frequency summations

Let us observe the faster convergence of Matsubara sum-
mations when the irreducible vertex f i is used instead of f .
For this, it is useful to consider the quantity

c(i),α (n̄) =
n̄−1∑

n,n′=−n̄

g2(νn) f (i),α (νn, ν
′
n′ , ω = 0)g2(ν ′

n′ ),

which determines the vertex corrections to the static impurity
susceptibility χα

ω=0 (polarization πα
ω=0), for finite n̄ subjected

to a cutoff error. A meaningful measure for convergence is
ε (i),α (n̄) = |1 − c(i),α (n̄ − 1)/c(i),α (n̄)|.

Figure 6 shows the ratio εi(n̄)/ε(n̄) as function of the cutoff
n̄ for the cases discussed in Sec. VI A. Clearly, the summation
over f i excels in all cases, having both the numerically smaller
error εi(n̄) < ε(n̄) and the better scaling with n̄. Irregular
behavior sets in for large n̄ when the Monte Carlo noise
exceeds the cutoff error. Surprisingly, the improvement is even
sizable in the charge channel for U/t = 14, where due to
the tiny susceptibility χ ch(ω = 0) the reducible vertex f ch

has only a small constant background, a worst case scenario.
Nevertheless, for n̄ = 16 (i.e., a 32 × 32 grid) the respective
error εi,ch(n̄ = 16) is ten times smaller than εch(n̄ = 16), see
right panel of Fig. 6. In the physically more relevant spin
channel, this ratio is on the order of one hundred. One should
note that in Eq. (15) summations converge even faster, thanks
to the nonlocal bubble X̃ 0. The improvement of f i over f in
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U/t = 14

FIG. 6. Ratio of error functions εi and ε as a function of the
cutoff index n̄ for U/t = 6 (left) and 14 (right) corresponds to static
vertices in Fig. 5.

the second line of Eq. (15) is comparable to or better than the
example in Fig. 6 (not shown).

C. Two-particle self-consistent susceptibility

The TPSC-DMF susceptibility X is calculated according
to Sec. V. Firstly, it is verified for the Hubbard model on the
square lattice that X sp(Q, ω0) obeys the exponential scaling
with temperature required by the Mermin-Wagner theorem,
where Q = (π, π ). This is shown in the top panel of Fig. 7
for U/t = 8, at low temperature this corresponds in the
DMFT approximation to a strongly correlated Fermi liquid
(when paramagnetism is enforced). With increasing β = 1

T
the DMFT susceptibility X sp quickly diverges, whereas the
effective vertex correction U prevents that the same happens
to X sp = [X sp,−1 − U/2]−1. For large β, the correlation length
ξ eventually exceeds any fixed system size. Finite-size effects
are noticeable when ξ is of order of the half linear system size,
then the self-consistent calculation of U becomes inaccurate
(arrows).

The bottom panel of Fig. 7 shows X sp in the Brillouin
zone for the largest lattice size 256 × 256 and the lowest
considered temperature T = 1/7. The figure demonstrates si-
multaneously features of the Mermin-Wagner theorem and of
the conservation law. On the one hand, the static susceptibility
X sp(q ≈ Q, ω0) shows the required Lorentzian (Ornstein-
Zernike) form [29], while on the other hand, X sp(q ≈
0, ω1) ∝ |q|2, which is required by global spin conservation
[14].

The top panels of Fig. 8 show the effective vertex correc-
tion Uα (ωm) as a function of the Matsubara index m and as
function of frequency ωm. It is U sp(ω0) > 0, which is required
in order for [−U + U sp(ω0)]�sp(Q, ω0) < 1, preventing the
divergence of X sp [cf. Eq. (24), note that X ,� < 0]. The
temperature dependence of the static spin component U sp(ω0)
is drawn in the bottom panel of Fig. 8, it is consistent with a
smooth crossover from a high temperature regime above the
Néel temperature TN ≈ 0.4 of DMFT into a low temperature
regime, which is located roughly below TX ∼ 0.25. Below
this temperature the finite size effects documented in the top
panel of Fig. 7 indicate a fast increase of the correlation
length, consistent with a renormalized classical regime [30].
A change in the temperature dependence of U sp(ω0) here is
plausible, because the momentum integration

∑
q X (q, ω0)
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FIG. 7. TPSC-DMF results for the half-filled square lattice at
U/t = 8. (Top) Scaling of static spin susceptibility at Q = (π, π )
with inverse temperature. Arrows mark finite-size effects at indicated
linear lattice size. (Bottom) Static susceptibility (bold red) and at
ω1 (dashed red) in the Brillouin zone at low temperature. Black
lines show fits near M and � (see text), vertical lines indicate fitting
intervals.

that enters the TPSC-DMF self-consistency (25) is increas-
ingly dominated by the Lorentzian centered at the M point,
see bold red line in bottom panel of Fig. 7, whereas at high
temperature also other parts of the Brillouin zone contribute.
The magnitude of TX corresponds very well to TPSC results
at smaller interaction [30].

The corrections U sp(ω > 0) to the dynamical susceptibility
are not affected by TN . Indeed, the dashed red line in the
bottom panel of Fig. 7 exemplifies that the dynamical sus-
ceptibility X (q, ω > 0) remains flat even far below the Néel
temperature of DMFT, which is therefore not a special point.
Due to the different temperature dependence of its static and
dynamic components U sp(ω) develops a kink and U sp(ω1) −
U sp(ω0) changes sign near TX , see bottom panel of Fig. 8. In
contrast, U sp(ω2) − U sp(ω1) is largely independent of temper-
ature over a wide range, although it does show a downturn
at very low temperature. Weak temperature dependence of
U sp(ω > 0) was also observed in the three-dimensional case
discussed in the following section.

Also the effective vertex correction U ch(ω) < 0 of the
charge channel is drawn in Fig. 8. The bottom panel shows
that its static component is significant only in a region around
the Néel temperature of DMFT. Interestingly, it seems there-
fore that static charge correlators of DMFT, such as the
compressibility, remain asymptotically unrenormalized at low
temperature. On the other hand, the top left panel of Fig. 8
shows that the dynamic part U ch(ω > 0) is mostly on the
order of half the Hubbard interaction U , indeed a very large
correction.

As function of ω both U ch(ω) and U sp(ω) approach a con-
stant, reminiscent of the Moriya λ correction and of the self-
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FIG. 8. Self-consistent effective vertex correction Uα (ωm ) in
units of U , corresponds to Fig. 7. (Top) As a function of Matsubara
index (left) and frequency (right). (Bottom) Static components as
function of temperature. Thin lines show U sp(ω1) − U sp(ω0) (full)
and U sp(ω2) − U sp(ω1) (dashed), vertical line indicates Néel temper-
ature of DMFT.

consistent dual boson approach [39]. The sign of these cor-
rections is consistently the opposite of U ch = +U and U sp =
−U , respectively, which may be interpreted as a screening.
Due to the frequency dependence of U (ω) the criticality of
static quantities does not affect dynamic ones. This is different
from TPSC and Moriya λ, where the same self-consistent
correction enters the susceptibility at all frequencies equally.

D. Criticality in three dimensions

A further benchmark for the TPSC-DMF susceptibility is
to consider criticality when a spontaneous phase transition
is indeed allowed, as is the case in the half-filled three-
dimensional Hubbard model. Figure 9 shows the Néel temper-
ature predicted by the ladder dual fermion approach (LDFA)
and by the Moriya λ-corrected DMFT susceptibility [4]. The
figure also shows the phase boundary predicted by the TPSC-
DMF susceptibility, where X sp,−1(Q, ω0), Q = (π, π, π ) was
fitted with the function a(T − Tc)−γ in order to obtain the
critical temperature Tc and the critical exponent γ . The fit
interval needs to be bounded from above by the high-T mean-
field regime and from below by finite size effects. The upper
bound was determined as in Ref. [27], the lower bound is the
temperature where the correlation length ξ exceeds 1/6 of the
linear system size of the 16 × 16 × 16 lattice, as in Ref. [28].
The boundary obtained by fitting a, Tc, and γ is in excellent
agreement with the Moriya λ correction.

The maximum of Tc at U/t = 10 marks the crossover from
the bad metal to the insulating regime [28]. It was found that
already at this point the three-dimensional Hubbard model
exhibits the Heisenberg universality class [27], where γ ≈
1.4. Consistent with this the fit of X for U/t � 10 yields an
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FIG. 9. (Left) Néel temperature of d = 3 Hubbard model. TPSC-
DMF results with fixed γ ≈ 1.4 (full circles) and with γ as free
parameter (open circles) are shown. Reprinted gray and green data
points with permission from [Rohringer et al., Rev. Mod. Phys, 90
025003 (2018), see Fig. 22]. Copyright (2018) by the American
Physical Society. (Right) TPSC-DMF susceptibility without vertex
corrections f i. Dashed lines indicate extrapolation of high-T mean-
field behavior, bold lines show fit function a(T − Tc )1.414.

exponent of roughly 1.35, which compares to the mean-field
exponent 1 of DMFT. In this regime, Tc was also estimated
with γ assumed to be known from the Heisenberg model, see
blue circles in Fig. 9, which leads to an even better agreement
with the Moriya λ correction, it therefore seems that the
TPSC-DMF approach predicts the same critical behavior.4

Lastly, Tc was also determined when vertex corrections to
the Hedin vertex are neglected, �i ≈ λi. This approximation
is applied as in Eq. (19), � ≈ �(2), for the reasons explained
in Sec. V A. Note that once again the constraint Xloc = χ

is satisfied by self-consistent adjustment of U in Eq. (24).
In fact, also this approximation clearly deviates from the
mean-field criticality near the transition and for U/t � 10 is
well-described by the Heisenberg critical exponent, as shown
in the right panel of Fig. 9. Without vertex corrections Tc lies
reasonably close to the result with the vertex corrections (left
panel, yellow and red lines) but the deviation depends on the
physical regime. For large coupling, the vertex corrections
have negligible influence on Tc, which confirms the analytical
result of Sec. V A, but they play an important role in the region
where DMFT predicts a bad metal.

VII. CONCLUSIONS

An efficient method to evaluate the DMFT susceptibility
was presented by making use of the Hedin three-leg vertex.

4The similar results are a consequence of similar self-consistency
conditions. The Moriya λ is fixed by the local sum rules (26) and
(27), whose left-hand sides are in general dominated by the static
term ω = 0 near a phase transition, in this case Uα (ω = 0) ≈ λα

Moriya.

Vertex corrections to the latter arise in the form of a four-point
vertex f i of the Anderson impurity model that is irreducible
with respect to the bare interaction ±U . This vertex has no
constant background, in contrast to the full impurity vertex
f . Furthermore, the ladder equation for the Hedin vertex
is formulated in terms of nonlocal Green’s functions, as in
the dual fermion approach [40]. The combination of the fast
decay of the nonlocal Green’s functions with the decay of
the irreducible vertex f i leads to a faster convergence of
frequency summations compared to the dual fermion and dual
boson approaches [20]. As a result, the measurement of the
four-point vertex can be restricted to a smaller frequency
window. The efficient calculation scheme can be generalized
to multiorbital Hubbard models and symmetry-broken phases
(see Appendix E), furthermore, it may be possible to incor-
porate it into the dual fermion and dual boson formalisms
[20,22,40].

The efficient calculation scheme implicitly takes vertex
asymptotics into account, which were discussed, for example,
in Refs. [15–18]. In the implementation, it is nevertheless not
necessary to consider the large frequency limits explicitly,
because the contributions to the DMFT susceptibility that
originate from the constant background of the reducible vertex
f are handled in an exact way. The main difference to the
previously presented approaches to reduce the cutoff error by
taking vertex asymptotics into account is that a diagrammatic
decomposition of f is employed that is exact for all frequen-
cies, leading to a particularly simple calculation scheme. The
cutoff error may be reduced further by taking the asymptotic
behavior of the irreducible vertex f i into account.

The mean-field instability of the DMFT susceptibility
was removed by introduction of a frequency-dependent
correction U (ω) that is fixed by adjusting the local sus-
ceptibility to the impurity, Xloc(ω) = χ (ω). This approach
ensures an ungapped two-particle spectrum and the ex-
pected critical behavior in two dimensions in agreement
with the Mermin-Wagner theorem, reminiscent of the two-
particle self-consistent (TPSC) approach that is based on the
Hartree/RPA approximation [30]. Indeed, the temperature
dependence of U (ω = 0) shows a crossover to a renormalized
classical regime, a hallmark effect of the TPSC approach [30].
In the half-filled three-dimensional Hubbard model the criti-
cality of the approach is consistent with the similar Moriya λ

correction used in the dynamical vertex approximation [26],
which leads to a renormalized correlation length.

The interpretation of U (ω) is however different as a
somewhat intransparent vertex correction beyond DMFT, it
is therefore necessary to consider the domain of validity
of the approach. To do this for the weak coupling limit,
one may recall that the TPSC approach requires that the
Hartree approximation provides a reasonable description of
the Fermi surface nesting [30]. However, in the half-filled
two-dimensional Hubbard model on the square lattice, a
pseudogap opens at low temperature due to antiferromag-
netic fluctuations [41–43]. In this case, neither the Hartree
approximation nor DMFT provide a good starting point, be-
cause they predict a homogeneous Fermi surface with strong
nesting. On the other hand, even when the feedback of the
pseudogap on the two-particle spectrum is taken into account
it leads to similar results as the Moriya λ corrected DMFT
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susceptibility [4,13]. In the large coupling limit, the self-
consistency Xloc = χ imposes the unscreened local moment
of a Mott insulator by construction, although in reality it may
be screened due to short-ranged correlations. Two-particle
self-consistency can therefore impose a bias towards the
physics of the impurity model, furthermore, when it makes
a feedback on the impurity model it can violate conservation
laws [35], which was therefore avoided. In the future it may be
investigated whether the U (ω) correction yields a similar feed-
back on the single-particle spectrum as the Moriya λ correc-
tion [29] and whether it can be generalized to the multiorbital
case [9]. A further perspective is to consider the effect of the
frequency dependence of U (ω) on the two-particle spectrum.

Finally, it was shown that for large coupling vertex correc-
tions to the Hedin vertex play a minor role for the Néel tem-
perature of the half-filled three-dimensional Hubbard model.
This strengthens the case for a local approximation to the
Hedin vertex in this regime, as in the TRILEX approach
[24]. However, it was found that at the level of DMFT the
polarization diagram of TRILEX underestimates the prefactor
of the effective exchange with energy scale t2/U . The cor-
rect prefactor is obtained when the local approximation to
the Hedin vertex is applied to the efficient formula for the
polarization, which corresponds to the dual boson approach
[22]. This formula treats vertex corrections at each lattice site
on an equal footing.

During the completion of this work a manuscript was
preprinted [34] that derives a strong coupling form of the
DMFT spin susceptibility with an effective exchange cutoff.
Here this quantity was expressed in terms of local Hedin
vertex and polarization of the impurity model. The latter
remain finite at zero temperature, the effective exchange is
therefore well-defined in this limit. The calculation of the
spin susceptibility in the Mott phase at zero temperature is
an unsolved problem [1,44,45].
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APPENDIX A: Uα-IRREDUCIBLE VERTICES

It is shown how diagrams that are reducible with respect
to the bare interaction U α can be separated from the three-
leg vertex � and from the vertex function F , following an
approach of Hertz and Edwards [32]. The relations in this
section of the Appendix are formally exact for the paramag-
netic Hubbard model (2), for the Anderson impurity model (4)
capital letters may be replaced by small letters (� → λ, F →
f , and so on) and four-momenta are replaced by frequencies
[k = (k, ν) → ν, q = (q, ω) → ω]. Generalizations to more

FIG. 10. Two diagrammatic contributions to the generalized sus-
ceptibility X̂q, dashed lines denote the bare interaction ±U , arrows
denote Green’s function G. In this work, irreducibility implies that
removing U α does not lead to vertical separation of a diagram. (Left)
U α-reducible diagram. (Right) U α-irreducible diagram.

general lattice and impurity models are briefly discussed in
Appendix E.

1. Correlation functions

The four-point function is defined as

G(4),α
kk′q =−1

2

∑
σi

sα
σ ′

1σ1
sα
σ ′

2σ2

〈
Tτ ckσ1 c†

k+q,σ ′
1
ck′+q,σ2 c†

k′σ ′
2

〉
,

where definitions are as in the main text. It is convenient to
define the generalized susceptibility,

X α
kk′q = G(4),α

kk′q + 2βGkGk′δqδα,ch, (A1)

the latter can be represented in terms of a ladder equation
X̂ = X̂ 0 + X̂ 0�̂X̂ , where � is the two-particle self-energy and
all quantities denote matrices in the labels k, k′ and X 0

kk′ =
NβGkGk+qδkk′ is the bubble. Matrix multiplication implies a
factor (Nβ )−1, the labels q, α are suppressed.

2. Uα-irreducible generalized susceptibility

The goal is to separate the diagrams from X̂ that are
reducible with respect to U ch = +U and U sp = −U , respec-
tively. To this end, one defines �̂i = �̂ − �̂0, where �0,α

kk′ =
U α is the bare two-particle self-energy. The ladder equation
for X̂ can therefore be written as

X̂ = X̂ 0 + X̂ 0(�̂i + �̂0)X̂ ,

⇔ X̂ 0,−1 = X̂ −1 + �̂i + �̂0, (A2)

which implies supermatrix inversion with respect to k, k′. Let
us now define the �0-irreducible generalized susceptibility �̂,

�̂ = X̂ 0 + X̂ 0�̂i�̂,

⇔ X̂ 0,−1 = �̂−1 + �̂i. (A3)

There are no diagrams in � that can be separated into two
parts by removing a single vertex �0 (in the sense of Fig. 10).
Subtracting Eq. (A3) from (A2) eliminates �i and X 0,

0 = X̂ −1 + �̂0 − �̂−1,

⇔ X̂ = �̂ + �̂ �̂0X̂ . (A4)

In explicit notation this relation simplifies (the label α remains
dropped),

Xkk′q = �kk′q +
∑
k1k2

�kk1q�
0Xk2k′q

= �kk′q +
⎛⎝∑

k1

�kk1q

⎞⎠�0

⎛⎝∑
k2

Xk2k′q

⎞⎠, (A5)

where �0 = ±U , summations imply (Nβ )−1.
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3. Three-leg vertices and polarization

X and � will now be related to the left- and right-sided
three-leg vertices �(i) and �̄(i), using the definitions,∑

k

Xkk′q = �k′qX 0
k′q,

∑
k′

Xkk′q = X 0
kq�̄kq, (A6)∑

k

�kk′q = �i
k′qX 0

k′q,
∑

k′
�kk′q = X 0

kq�̄
i
kq, (A7)

where in the second line the �0-irreducible (Hedin) three-leg
vertex �i was introduced and X 0

kq = Gk+qGk is the bubble.
The reducible and irreducible three-leg vertices are related via
Eq. (A5), which is seen by summation over k′,∑

k′
Xkk′q =

∑
k′

�kk′q +
∑

k1

�kk1q�
0
∑
k′k2

Xk2k′q, (A8)

⇔ X 0
kq�̄kq = X 0

kq�̄
i
kq + X 0

kq�̄
i
kq�

0
∑
k′k2

Xk2k′q. (A9)

Finally, dividing by X 0
kq and identifying the susceptibility,

Xq = 2
∑

kk′ Xkk′q, one arrives at the simple relation,

�̄α
kq = �̄i,α

kq

(
1 + 1

2
U αX α

q

)
, (A10)

= �̄i,α
kq /

(
1 − U α�α

q

)
. (A11)

where the label α was reintroduced. In the second line, the
polarization was defined,

�α
q = 1

2
X α

q

/(
1 + 1

2
U αX α

q

)
. (A12)

By summing Eq. (A8) over k, one sees that

�q =
∑
kk′

�kk′q =
∑

k

X 0
kq�̄

i
kq. (A13)

Note that in contrast to the susceptibility Xq a factor 2 does not
occur [see above Eq. (A10)]. Similar to Eq. (A11) one derives
in an analogous way the relation for the left-sided three-leg
vertex,

�α
kq = �i,α

kq /
(
1 − U α�α

q

)
. (A14)

4. Four-leg vertices and screened interaction

Next, also the vertex function F will be expressed in terms
of a �0-irreducible counterpart F i. To do this, the following
relation between the generalized susceptibility X and F will
be used:

Xkk′q = X 0
kqδkk′Nβ + X 0

kqFkk′qX 0
k′q, (A15)

�kk′q = X 0
kqδkk′Nβ + X 0

kqF i
kk′qX 0

k′q. (A16)

Inserting these relations into Eq. (A5), and using once again
Eqs. (A6) and (A7) leads to

X 0
kqFkk′qX 0

k′q = X 0
kqF i

kk′qX 0
k′q + (

X 0
kq�̄

i
kq

)
�0

(
�k′qX 0

k′q
)
.

Finally, dividing by X 0
kqX 0

k′q and using Eq. (A14), the reducible
vertex F can be expressed in terms of the irreducible vertices

F i and �i,

Fα
kk′q = F i,α

kk′q + �̄i,α
kq W α

q �i,α
k′q, (A17)

where the label α was reintroduced and the screened interac-
tion W is defined as

W α
q = U α/

(
1 − U α�α

q

)
. (A18)

For the impurity model, one makes in Eqs. (A14), (A17), and
(A18) the replacements F → f , � → λ, W → w, and � →
π , leading to Eqs. (8) and (9) in the main text.

APPENDIX B: LADDER EQUATION FOR THE
REDUCIBLE THREE-LEG VERTEX

Ladder equations for the reducible and irreducible three-
leg vertices � and �i are derived in the DMFT approximation,
where the two-particle self-energy is approximated with the
one of the impurity model (4), �α

kk′q = γ α
νν ′ω [1,35]. In this

case, the Bethe-Salpeter equation for the lattice vertex func-
tion F reads

Fα
νν ′ (q) = γ α

νν ′ω +
∑
ν ′′

γ α
νν ′′ωX 0

ν ′′ (q)Fα
ν ′′ν ′ (q), (B1)

where it was used that for a local two-particle self-energy �

the vertex function does not depend on the momenta k, k′.
X 0

ν (q) = ∑
k GkGk+q denotes the bubble of DMFT Green’s

functions (3).
By ν, ν ′-matrix inversion one obtains from Eq. (B1) in

a short notation, γ̂ α,−1
ω = F̂α,−1

q + X̂ 0(q), where X 0
νν ′ (q) =

βX 0
ν (q)δνν ′ . Similarly, there exists an impurity Bethe-Salpeter

equation, γ̂ α,−1
ω = f̂ α,−1

ω + χ̂0(ω), where f denotes the impu-
rity vertex function and χ0

νν ′ (ω) = βgνgν+ωδνν ′ . Thereby, γ is
eliminated in favor of f , leading to the exact reformulation of
Eq. (B1),

Fα
νν ′ (q) = f α

νν ′ω +
∑
ν ′′

f α
νν ′′ωX̃ 0

ν ′′ (q)Fα
ν ′′ν ′ (q), (B2)

where X̃ 0
ν (q) = ∑

k(GkGk+q − gνgν+ω ) is the nonlocal bub-
ble, see also Ref. [14].

In order to arrive at an analogous ladder equation for
the three-leg vertex �, Eq. (B2) is multiplied by Gk′Gk′+q,
summed over k′, and 1 is added on both sides,

1 +
∑

k′
Fα

νν ′ (q)Gk′Gk′+q

= 1 +
∑

k′
f α
νν ′ωGk′Gk′+q +

∑
ν ′′

f α
νν ′′ωX 0

ν ′′ (q)

×
∑

k′
Fα

ν ′′ν ′ (q)Gk′Gk′+q. (B3)

On the left-hand side (LHS) arises the right-sided three-leg
vertex, �̄νq = 1 + ∑

k′ Fνν ′qGk′Gk′+q, on the right-hand side
(RHS)

∑
k GkGk+q = X̃ 0

ν (q) + gνgν+ω is inserted,

�̄α
νq = 1 +

∑
ν ′

f α
νν ′ωgν ′gν ′+ω +

∑
ν ′

f α
νν ′ωX̃ 0

ν ′ (q)

+
∑
ν ′′

f α
νν ′′ωX̃ 0

ν ′′ (q)
∑

k′
Fα

ν ′′ν ′ (q)Gk′Gk′+q. (B4)
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On the RHS, one identifies the right-sided impurity three-leg
vertex λ̄νω = 1 + ∑

ν ′ fνν ′ωgν ′gν ′+ω, and
∑

ν ′′ f α
νν ′′ωX̃ 0

ν ′′ (q) is
factored out,

�̄α
νq = λ̄α

νω +
∑
ν ′′

f α
νν ′′ωX̃ 0

ν ′′ (q)

(
1 +

∑
k′

Fα
ν ′′ν ′ (q)Gk′Gk′+q

)
.

(B5)

The term in brackets is again �̄, leading to the ladder equation
for the right-sided three-leg vertex,

�̄α
νq = λ̄α

νω +
∑
ν ′

f α
νν ′ωX̃ 0

ν ′ (q)�̄α
ν ′q. (B6)

The analogous ladder equation for the left-sided three-leg
vertex � follows from the symmetry of the impurity vertex,
fνν ′ω = fν ′+ω,ν+ω,−ω,

�α
νq = λα

νω +
∑
ν ′

�α
ν ′qX̃ 0

ν ′ (q) f α
ν ′νω. (B7)

APPENDIX C: EFFICIENT FORMULAS FOR
SUSCEPTIBILITY AND POLARIZATION

Efficient formulas for the susceptibility and polarization
are derived. The susceptibility may be calculated from the
reducible three-leg vertex � as

X α
q = − 〈

ρα
−qρ

α
q

〉 + β〈ρα〉〈ρα〉δqδα,ch

= 2
∑

k

�α
kqGkGk+q. (C1)

In the DMFT approximation, � does not depend on k, hence,
X α

q = 2
∑

ν �α
νqX 0

ν (q), where X 0
ν (q) = ∑

k GkGk+q. This re-
lation will be rewritten as the sum of impurity susceptibility χ

and nonlocal corrections X̃ .
To do this, the bubble X 0 is expressed in terms of the

nonlocal bubble X̃ 0 and the impurity bubble gνgν+ω, X 0
ν (q) =

X̃ 0
ν (q) + gνgν+ω, furthermore, Eq. (B7) is substituted for the

three-leg vertex �,

X α
q = 2

∑
k

�α
νqGkGk+q

= 2
∑

ν

[
λα

νω +
∑
ν ′

�α
ν ′qX̃ 0

ν ′ (q) f α
ν ′νω

][
X̃ 0

ν (q) + gνgν+ω

]
.

(C2)

Four terms arise, the impurity susceptibility can be identified,
χα

ω = 2
∑

ν λα
νωgνgν+ω. Furthermore,

2
∑

ν

gνgν+ω

∑
ν ′

�α
ν ′qX̃ 0

ν ′ (q) f α
ν ′νω

= 2
∑
ν ′

�α
ν ′qX̃ 0

ν ′ (q)λ̄α
ν ′ω − 2

∑
ν ′

�α
ν ′qX̃ 0

ν ′ (q), (C3)

where the right-sided impurity three-leg vertex was identified,
λ̄α

ν ′ω = 1 + ∑
ν f α

ν ′νωgνgν+ω [its trivial part 1 is canceled by
the second term on the RHS of Eq. (C3)]. Using these relations

in Eq. (C2) leads to

X α
q = χα

ω + 2
∑
ν ′

�α
ν ′qX̃ 0

ν ′ (q)λ̄α
ν ′ω − 2

∑
ν ′

�α
ν ′qX̃ 0

ν ′ (q)

+ 2
∑

ν

λα
νωX̃ 0

ν (q) + 2
∑
νν ′

�α
ν ′qX̃ 0

ν ′ (q) f α
ν ′νωX̃ 0

ν (q). (C4)

Using the ladder equation (B7) for � it is seen that the second
line cancels the third, hence,

X α
q =χα

ω + 2
∑
ν ′

�α
ν ′qX̃ 0

ν ′ (q)λ̄α
ν ′ω = χα

ω + X̃ α
q , (C5)

which is the dual boson formula (1) [14,20].
A similar relation will be derived for the polarization �. To

do this, let us invoke the local analog of Eq. (A11),

λ̄α
νω =λ̄i,α

νω/
(
1 − U απα

ω

)
, (C6)

where λ̄, λ̄i, and π are the three-leg vertices and the polar-
ization of the impurity. The latter is related to χ analogous to
Eq. (A12),

πα
ω = 1

2
χα

ω

/(
1 + 1

2
U αχα

ω

)
. (C7)

Using Eqs. (C6) and (C7) for the impurity quantities, and
Eqs. (A14) and (A12) for the lattice quantities in Eq. (C5)
leads to

�α
q

1 − U α�α
q

= πα
ω

1 − U απα
ω

+ 1

1 − U α�α
q

1

1 − U απα
ω

×
∑
ν ′

�i,α
ν ′qX̃ 0

ν ′ (q)λ̄i,α
ν ′ω. (C8)

Multiplication by 1 − U α�α
q and 1 − U απα

ω leads to the de-
sired relation (11) for the polarization,

�α
q = πα

ω +
∑
ν ′

�i,α
ν ′qX̃ 0

ν ′ (q)λ̄i,α
ν ′ω (C9)

Again, compared to Eq. (C5) a factor 2 does not occur.

APPENDIX D: LADDER EQUATION FOR
THE HEDIN VERTEX

Equation (B7) is now reformulated for the U α-irreducible
three-leg vertex �i. To do this, Eq. (A14) and its local analog
λα

νω = λi,α
νω/(1 − U απα

ω ) are inserted into the ladder equation
(B7) for �,

�i,α
νq = 1 − U α�α

q

1 − U απα
ω

λi,α
νω +

∑
ν ′

�i,α
ν ′qX̃ 0

ν ′ (q) f α
ν ′νω, (D1)

both sides were multiplied by a factor 1 − U α�α
q . On the RHS

appears the reducible impurity vertex function f , which will
be eliminated in favor of its irreducible counterpart f i using
the local analog of Eq. (A17),

f α
νν ′ω = f i,α

νν ′ω + λ̄i,α
νωwα

ωλi,α
ν ′ω, (D2)

where w is the screened interaction of the impurity,

wα
ω = U α/

(
1 − U απα

ω

)
. (D3)
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Inserting Eq. (D2) into Eq. (D1) leads to

�i,α
νq = 1 − U α�α

q

1 − U απα
ω

λi,α
νω +

∑
ν ′

�i,α
ν ′qX̃ 0

ν ′ (q) f i,α
ν ′νω

+
∑
ν ′

�i,α
ν ′qX̃ 0

ν ′ (q)λ̄i,α
ν ′ωwα

ωλi,α
νω. (D4)

Using Eqs. (D3) and (A18) the fraction on the RHS can
be expressed as wα

ω

W α
q

. Furthermore, Eq. (C9) can be used to

identify in the second line,
∑

ν ′ �
i,α
ν ′qX̃ 0

ν ′ (q)λ̄i,α
ν ′ω = �α

q − πα
ω .

Eq. (D4) thus becomes

�i,α
νq = wα

ω

W α
q

λi,α
νω +

∑
ν ′

�i,α
ν ′qX̃ 0

ν ′ (q) f i,α
ν ′νω

+ (
�α

q − πα
ω

)
wα

ωλi,α
νω. (D5)

Using the relation (D3) between w and π , and the relation
(A18) between W and � leads to the desired ladder equation
(13) for the Hedin vertex,

�i,α
νq = λi,α

νω +
∑
ν ′

�i,α
ν ′qX̃ 0

ν ′ (q) f i,α
ν ′νω. (D6)

APPENDIX E: GENERAL BARE INTERACTION

In the Hedin formalism, the bosons arise because Green’s
function lines are contracted at a bare interaction vertex that
does not depend on fermionic momentum energies k = (k, ν),
see Sec. III B. This requirement allows for much more general
interaction Hamiltonians than considered here.

In particular, the Appendices A–D (i.e., the efficient calcu-
lation of the DMFT polarization) can be generalized to mul-
tiorbital systems and/or symmetry-broken phases. In these
cases a matrix-valued bare interaction of the form U ab enters
the Bethe-Salpeter equation, where a = (m1m2σ1σ2) is a su-
perindex of two orbital and two spin indices,5 see also Ref. [9].
As in Appendix A 2, one removes the bare part from the two-
particle self-energy, �̂i,ab = �̂ab − �̂0,ab, where �0,ab

kk′ = U ab.
One then derives the crucial equation (A5), which becomes a
matrix relation with respect to the superindices, it serves as
the vantage point for the remaining calculations.

On an equal footing it seems possible to introduce a TPSC-
DMF prescription (25),

∑
q X ab

q = χab
ω , which is fixed by an

effective vertex correction Uab(ω).6

Finally, it is possible to generalize Appendix A to a non-
local and/or retarded interaction. However, only the RPA-
like vertex U (q, ω) can be separated from the Bethe-Salpeter
equation, not the Fock exchange U (k′ − k, ν ′ − ν), since it
depends on the fermionic variables. Appendices B–D rely
on the DMFT approximation where interaction of lattice and
impurity need to be equivalent.

5For the single-band Hubbard model, U ↑↑↓↓ = U ↓↓↑↑ =
−U ↓↑↑↓ = −U ↑↓↓↑ = U , the other elements are zero.

6It is unclear whether a generalization of TPSC-DMF to symmetry-
broken phases inherits thermodynamic consistency at second order
critical points from the DMFT approximation [47], which may be
investigated in future work.

APPENDIX F: STRONG COUPLING LIMIT

This Appendix considers phase transitions of the half-filled
Hubbard model in the strong coupling limit U � T, t . Static
impurity quantities carry a label “0,” e.g., π (ω = 0) = π0,
furthermore q0 = (q, ω = 0).

1. DMFT

Near an instability of the static DMFT spin susceptibil-
ity X sp(q0) = 2/[�sp,−1(q0) − U sp] one has for the polariza-
tion �sp(q0) = π

sp
0 + �̃sp(q0) ≈ 1

U sp . On the other hand, for
strong coupling and at half-filling DMFT predicts a Mott in-
sulator with χ

sp
0 ∝ −β. Using π

sp
0 = 1

2χ
sp
0 /[1 + U sp 1

2χ
sp
0 ] and

Uβ � 1, it follows that π
sp
0 ≈ 1

U sp . Hence, |π sp
0 | � |�̃sp(q0)|

and one can expand,

X sp(q0) ≈ 2

π
sp,−1
0 − π

sp,−2
0 �̃sp(q0) − U sp

(F1)

= − 2

−2χ
sp,−1
0 + π

sp,−2
0 �̃sp(q0)

. (F2)

In the second line χ
sp
0 = 2/(π sp,−1

0 − U sp) was used. Defining
the effective exchange as Iq = −π

sp,−2
0 �̃sp(q0) one arrives at

the strong coupling form of the DMFT spin susceptibility
[34]. For very large interaction, the local moment is fully
developed and χ

sp,−1
0 ≈ −T , leading to Eq. (21) in the main

text.

2. TRILEX-like approximation

Let us consider the approximations (19) and (20) for the
polarization �. Both expressions contain the nonlocal bubble
X̃ 0

ν (q) = ∑
k GkGk+q − gνgν+ω, which can be simplified in

the strong coupling limit using similar steps as in Ref. [34].
For small hybridization � ≈ 0, one can expand Green’s func-
tion Gk ≈ gν + gνεkgν , hence,

X̃ 0
ν (q) ≈

∑
k

(
gνg2

ν+ωεk+q + g2
νgν+ωεk + g2

νg2
ν+ωεkεk+q

)
= g2

νg2
ν+ω

∑
k

εkεk+q, (F3)

where it was used that
∑

k εk = ∑
k εk+q = 0. For the dis-

persion εk = −2tγk of the d-dimensional hypercubic lattice
with γk = ∑d

i=1 cos(ki ) one has
∑

k εkεk+q = 2t2γq. Using
this and Eq. (F3) yields for the nonlocal part of (19) and (20),
respectively,

�̃(2),α
q = 2t2γq

∑
ν

λi,α
νωg2

νg2
ν+ωλ̄i,α

νω, (F4)

�̃(1),α
q = 2t2γq

∑
ν

λi,α
νωg2

νg2
ν+ω. (F5)

Inserting into Eq. (F2) leads to the expressions I (2) and I (1) for
the effective exchange in Eqs. (22) and (23).
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