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We propose an efficient method to numerically evaluate Z4 indices of Möbius and/or hourglass topological
phases with glide symmetry. Our method directly provides Z4 indices in the lattice Brillouin zone while the
existing method requires careful observations of momentum-dependent Wannier charge centers. As applications,
we perform systematic computation of Z4 indices for Möbius materials CeNiSn and UCoGe. In particular, our
analysis elucidates that UCoGe shows strong Möbius superconductivity for the Au or B3u representation whose
topology has not been fully characterized. Furthermore, obtained phase diagrams reveal topological gapless
excitations in the bulk which are protected by nonsymmorphic glide symmetry. We observe these gapless
excitations with glide symmetry by doping holes into the superconducting phase of the B1u or B3u representation.
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I. INTRODUCTION

In the past decade, topological perspective on condensed
matter systems has been rapidly developed along with the
material realization of topological insulators and supercon-
ductors [1,2]. The realization is important not only to deepen
our insights but also to develop technology. For instance, dis-
sipationless spin current is expected to be applied to spintronic
devices. Furthermore, Majorana fermions of topological su-
perconductors attract much interest in terms of quantum com-
putation [3–5]. So far, many efforts have been made to realize
various topological insulators and superconductors [6–14]
listed in classification tables [15–17] of a so-called tenfold
way which is obtained by focusing on time-reversal, particle-
hole, and chiral symmetry.

Remarkably, the notion of topological phases has been
extended to topological crystalline insulators and supercon-
ductors [18–24]. It has turned out that a large variety of
topological phases exist in materials thanks to the complexity
and diversity of their crystal structure. Among them, topolog-
ical crystalline phases with nonsymmorphic symmetry show
intriguing behaviors [25,26]. Because of the symmetry trans-
formation accompanied by the half-translation, these phases
host Möbius and/or hourglass surface states. Furthermore,
this peculiar surface state results in Z4 classification in the
presence of the time-reversal symmetry while topological
phases with the local symmetry follow Z or Z2 classification.
This remarkable discovery urges us to search for a new series
of topological insulators and/or superconductors. After the
proposal of Möbius topological insulators and superconduc-
tors, realization of a Z4-Möbius insulator with glide symmetry
is reported for KHgX (X = As, Sb, Bi) [26,27]. In addition,
the possibility of Z4-topological insulators and/or supercon-
ductors with glide symmetry is discussed for heavy-fermion
materials; the possibility of a Möbius Kondo insulator is dis-
cussed for CeNiSn [28]; UCoGe under pressure is proposed
as a promising candidate for Z4-topological superconduc-
tors [29].

However, Möbius topological materials are not as well
explored as the ordinary topological materials with the local
symmetry. One of the reasons is the lack of efficient methods
to evaluate topological indices for the Möbius topological
phases. For characterization of two-dimensional topological
insulators without time-reversal symmetry, direct calculation
of the Chern number can be done by employing the Kubo for-
mula [30,31] or the method proposed by Fukui et al. [32,33],
which allows us to map out phase diagrams. On the other
hand, the method, which has been employed to compute
Z4 indices [26,34], requires carefully observing the flow of
Wannier charge centers (WCCs) [35,36] for each parameter of
the Hamiltonian. Therefore, in order to accelerate the material
searching, a new technique allowing efficient computation of
Z4 indices is strongly called for. In particular, mapping out
phase diagrams is fruitful in elucidating the stability of the
topological phases and also in discovering new topological
states.

Under this background, we propose an efficient method di-
rectly providing Z4 indices both for Möbius insulators of class
AII and Möbius superconductors of class DIII. Specifically,
with extending the method proposed by Fukui et al. [32,33],
we introduce the Z4 indices defined in the lattice Brillouin
zone (BZ), i.e., the discretized BZ. Our method directly pro-
vides the Z4 index. In particular, this advantage significantly
improves the efficiency when one needs to obtain a phase dia-
gram; one does not need to examine the flow of WCCs at each
point of the phase diagram. As an application, we demonstrate
systematic computation of the Z4 index for CeNiSn, which is
proposed as a three-dimensional Möbius Kondo insulator of
class AII. Furthermore, we apply our method to characterize
topological superconductivity for UCoGe whose topology has
not been fully characterized. Our numerical analysis eluci-
dates that the superconductivity of class DIII is strong Möbius
superconductivity for the Au or B3u representation. In addition,
the obtained phase diagrams reveal the presence of gapless
excitations which are topologically protected by the glide
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symmetry; the difference of Z4 indices at the BZ face and at
the BZ center ensures the gapless excitations as the difference
of the Chern number does for the Weyl superconductor [37].
We observe this type of gapless excitations with glide symme-
try in a certain carrier-density region of the superconducting
phase for the B1u or B3u representation.

The rest of this paper is organized as follows. In Sec. II, we
show how to numerically compute the Z4 indices efficiently
in the lattice BZ. In Sec. III, we apply our method to CeNiSn
which belongs to symmetry class AII. We also compute the
Z4 index by the method based on WCCs in order to show the
efficiency of our method. In Sec. IV, we apply our method
to superconductivity for UCoGe which belongs to symmetry
class DIII. In Sec. V, we give a short summary.

II. FRAMEWORK OF Z4 INDICES IN THE LATTICE BZ

In Refs. [32] and [33], the lattice version of topological in-
dices is defined in order to characterize topological insulators
with local symmetry. By extending this method, we introduce
the lattice version of Z4 indices for class AII and class DIII.
The high efficiency of our method in the lattice BZ allows us
to systematically analyze the topology of the Hamiltonian for
Möbius materials.

In the following, for each symmetry class, we introduce a
lattice version of the Z4 index after a brief review of the Z4

index.

A. Three-dimensional system of class AII

1. Brief review

First, let us review the Z4 index for three-dimensional
systems of class AII whose BZ is cubic. Consider a topologi-
cal insulator whose Hamiltonian H (k) satisfies the following
constraint,

�H (k)�−1 = H (−k), �2 = −1, (1a)

G(k)H (k)G(k)−1 = H (gk), G(gk)G(k) = −e−ikx , (1b)

with
�G(k) = G(−k)�. (1c)

Here, � denotes the time-reversal operator. k denotes the
momentum for three-dimensional systems, k := (kx, ky, kz ).
−π � kμ � π with μ = x, y, z. The glide operator flips the
momentum as k → gk := (kx,−ky, kz ). For ky = 0 or π , the
Hamiltonian can be block-diagonalized with glide symmetry.
The eigenvalues of G(k) are g±(k) = ±ie−ikx/2. Let H± denote
the block-diagonalized Hamiltonian with the eigenvalue g±.

The topological structure of this phase is characterized by
the Z4 index defined as [25]

θ3 = 2i

π

∫ π

−π

dkztrAI
+z(π, π, kz ) − 2i

π

∫ π

−π

dkztrAI
+z(π, 0, kz )

+ i

π

∫ π

0
dkx

∫ π

−π

dkztrF+zx(kx, π, kz )

− i

π

∫ π

0
dkx

∫ π

−π

dkztrF+zx(kx, 0, kz )

− i

2π

∫ π

0
dky

∫ π

−π

dkztrFyz(0, ky, kz ) (mod 4). (2a)

FIG. 1. (a) [(b)] Sketch of BZ for the three- (two-) dimensional
system. Dashed lines illustrate the BZ. Blue planes denote the do-
main of integration. Green planes denote the glide-invariant planes.
In the region denoted by thick red lines, the gauge is fixed as Eqs. (6)
and (12) for three- and two- dimensional systems, respectively.

In Fig. 1(a), blue planes indicate the region where the integrals
are evaluated. Here, [As

+z]nm(k) and [F+]nm(k) are the Berry
connection and the Berry curvature defined with the occupied
states |us

+(k)〉’s (s = I, II) of the Hamiltonian H±(k),

[
As

+μ(k)
]

nm = 〈
us

+n(k)
∣∣∂kμ

∣∣us
+m(k)

〉
, (2b)

[F+μν (k)]nm = [∂kμ
A+ν − ∂kν

A+μ]nm, (2c)

with μ, ν = x, y, z. s = I, II labels each Kramers pair. A+(k)
denotes the Berry connection for occupied states, i.e.,
A+(k) := AI

+(k) + AII
+ (k). In a way similar to that used in

Eq. (2c), the Berry curvature Fyz is defined with occupied
states of the Hamiltonian H . We note that the Z4 index
Eq. (2a) is independent of the gauge choice modulo four.

The problem here is how to evaluate the integrals with a set
of wave functions which are not defined smoothly for the BZ.
In general, numerical simulations do not provide the smooth
wave function.

2. Lattice version of the Z4 index for symmetry class AII

In this section, we show how to compute the Z4 index (2a)
with a set of wave functions which are not smooth in the BZ.
We suppose that the system satisfies Eq. (1).

First, we discretize the momentum

(kx, ky, kz ) = (−π + ix�k,−π + iy�k,−π + iz�k),

with ix, iy, iz = 0, 1, . . . , N − 1. �k = 2π/N . N is an even
integer. Suppose that we have the block-diagonalized Hamil-
tonian H+(k). Let ψ (k) := (|1(k)〉, |2(k)〉, . . . , |2M(k)〉) as
the set of corresponding eigenvectors for occupied states. We
note that numerically obtained eigenstates are not necessarily
smooth in the BZ because a gauge transformation

ψn(k) = ψ̃m(k)Vmn(k), (3)

is randomly applied for each point in the BZ, where V (k)
denotes a unitary matrix.

Even when the wave functions are not smooth in the BZ,
the Z4 index can be computed with a proper gauge choice
(see below). In order to compute the Z4 index, we extend the
approach proposed by Fukui et al. [32,33]. The lattice version

235105-2



EFFICIENT METHOD TO COMPUTE Z4 INDICES WITH … PHYSICAL REVIEW B 99, 235105 (2019)

of the Z4 index is defined as

θ3 = i

π

∑
kz

A+z(π, π, kz ) − i

π

∑
kz

A+z(π, 0, kz )

+ i

π

∑
0�kx�π,kz

F+zx (kx, π, kz )

− i

π

∑
0�kx�π,kz

F+zx (kx, 0, kz )

− i

2π

∑
0�ky�π,kz

Fyz(0, ky, kz ) (mod 4), (4)

where
∑

0�kx(y)�π,kz
denotes summation for 0 � kx(y) � π and

−π � kz � π . Here, the Berry connection and the Berry
curvature are defined as

A+μ(k) = logUμ(k), (5a)

F+μν (k) = logUμ(k)Uν (k + �kμ)U −1
ν (k)U −1

μ (k + �kν ),

(5b)

with

Uμ(k) := det[ψ†(k)ψ (k + �kμ)]/Nμ(k), (5c)

Nμ(k) := |det[ψ†(k)ψ (k + �kμ)]|, (5d)

and μ, ν = x, y, z, �kx := �k(1, 0, 0), �ky := �k(0, 1, 0),
and �kz := �k(0, 0, 1). We note that A+μ and F+μν are
obtained with the occupied states of H+. Fyz(k) denotes the
Berry curvature obtained with the occupied states of H in a
way similar to that used in Eq. (5b).

The topological index (4) is well defined only under the
following gauge fixing: Along the line of (kx, ky) = (π, 0) or
(π, π ) and for −kz < 0,

|n(−k)〉 = −�|n(k)〉, (6a)

and for k = (π, 0, 0), (π, 0, π ), (π, π, 0), and (π, π, π ),

|2n + 2(k)〉 = �|2n + 1(k)〉. (6b)

In Fig. 1(a), red lines denote the region where the above gauge
choice should be taken. We note that under this gauge, the
integral of AI in Eq. (2a) can be rewritten as an integral of A
(see Appendix A), allowing us to introduce Eq. (4).

The topological index (4) takes an integer modulo 4. This
can be seen by noticing the following two facts. (i) The first
and second terms take values modulo 4 (see Appendix B)
while the other terms are gauge independent. (ii) The index (4)
is quantized to an integer (see Appendix C).

The above two facts indicate that computing the topologi-
cal index (4) with the gauge choice (6) yields the Z4 index of
class AII.

B. Two-dimensional systems of class DIII

1. Brief review

Let us consider superconductivity described by the fol-
lowing Bogoliubov–de Gennes (BdG) Hamiltonian HBdG(k)

satisfying

�HBdG(k)�−1 = HBdG(−k), �2 = −1, (7a)

CHBdG(k)C−1 = −HBdG(−k), C2 = 1, (7b)

G(k)HBdG(k)G(k)−1 = HBdG(k), G(k)2 = −e−ikx , (7c)

with

�G(k) = G(−k)�, (7d)

CG(k) = −G(−k)C. (7e)

� (C) denotes the operator of the time-reversal (particle-
hole) symmetry. The system is two-dimensional. k = (kx, ky).
−π � kx(y) � π . The glide plane is parallel to the system,
and thus the glide operator does not flip the momentum.
The eigenvalues of the matrix G(k) are given by g±(k) :=
±ie−ikx/2. The Hamiltonian can be block diagonalized with
glide symmetry. Let H± denote the block-diagonalized Hamil-
tonian with the eigenvalue g±(k) := ±ie−ikx/2.

The topological structure of this phase is characterized by
the Z4 index defined as [25]

θ = 2i

π

∫ π

−π

dkytrAI
+y(kx = π, ky),

− i

π

∫ π

0

∫ π

−π

d2ktrF+(k) (mod 4). (8)

In Fig. 1(b), the blue plane indicates the region where the in-
tegrals are evaluated. The Berry connection AI

+ and the Berry
curvature F+(k) are defined in a similar way as Eqs. (2b)
and (2c). The Z4 index is well defined for arbitrary gauge
choice.

2. Lattice version of the Z4 index for symmetry class DIII

In this section, we show how to compute the Z4 index θ

with a set of wave functions which are not smooth in the BZ.
We suppose that the system satisfies Eq. (7).

First, we discretize the momentum
(kx, ky) = (−π + ix�k,−π + iy�k), (9)

with ix, iy = 0, 1, . . . , N − 1, and �k = 2π/N . N is an even
integer. Suppose that we have the block-diagonalized Hamil-
tonian H+(k). Let ψ (k) := (|1(k)〉, |2(k)〉, . . . , |2M(k)〉) be
the set of corresponding eigenvectors for occupied states.
We again stress that numerically obtained eigenstates are not
necessarily smooth in the BZ.

Even when the numerically computed states are not smooth
in the BZ, the lattice version of the Z4 index can be computed
with a proper gauge choice (see below). The lattice version of
the Z4 index is defined as

θ = i

π

∑
ky

A+y(kx = π, ky) − i

π

∑
0�kx�π,ky

F+(k) (mod 4).

(10)

Here, the Berry connection and the Berry curvature are
defined as

A+μ(k) = logUμ(k), (11a)

F+(k) = logUx(k)Uy(k + �kx )U −1
y (k)U −1

x (k + �ky),

(11b)
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with

Uμ(k) := det[ψ†(k)ψ (k + �kμ)]/Nμ(k). (11c)

Nμ(k) := |det[ψ†(k)ψ (k + �kμ)]| (μ=x, y). �kx=�k(1, 0).
�ky = �k(0, 1).

The topological index (10) is well defined only under the
following gauge fixing: For kx = π and −ky < 0,

|n(−k)〉 = −�|n(k)〉, (12a)

and for k = (π, 0) or (π, π ),

|2n + 2(k)〉 = �|2n + 1(k)〉. (12b)

In Fig. 1(b), the red line denotes the region where the above
gauge choice should be taken. Under this gauge, the integral
of AI can be rewritten as an integral of A (see Appendix A),
which simplify the evaluation of the first term in Eq. (8).

The topological index (10) takes an integer modulo 4.
This can be seen by noticing the following two facts: (i)
The first term takes a value modulo 4 depending on the
unitary matrix V (k) (see Appendix B) while the second term
is gauge independent. (ii) The index (10) is quantized (see
Appendix D).

The above two facts indicate that computing the summa-
tion in Eq. (10) with the gauge choice (12) yields the Z4

index of class DIII. We note that a Z2 index characterizes the
topology when CG(k) = G(−k)C holds. The lattice version
of the Z2 index is introduced in Appendix E.

III. APPLICATION OF THE Z4 INDEX
FOR CLASS AII TO CeNiSn

Reference [28] has proposed that CeNiSn can be a Möbius
Kondo insulator in three dimensions. In this section, we
demonstrate that the lattice version of the Z4 index (4) effi-
ciently characterizes the topology of the Möbius topological
Kondo insulator by the comparison with the results of the
previous study. We also obtain the Z4 index by computing
WCCs in order to demonstrate the efficiency of our method.

A. Model

The unit cell of CeNiSn includes four Ce atoms each of
which is coupled with a Ni atom. We label these Ce atoms
by a1, a2, b1, and b2. In Ref. [28], the following effective
model, of which the BZ is cubic, has been proposed to
describe a Möbius Kondo insulator with a-glide symmetry
(see Sec. III B):

Ĥ = �̂
†
kH�̂k, (13a)

H =
(

Hc(k) V (k)
V †(k) H f (k)

)
λ

, (13b)

�̂k = (�̂c(k) �̂ f (k)), (13c)

with

Hl (=c, f ) = ξ l
0 + t l

x

(
0 ξx(k)

ξ †
x (k) 0

)
τ

+ t l
y

(
0 ξy(k)

ξ †
y (k) 0

)
ρ

,

(13d)

ξ l
0 = (

2t l
z cos kz − μl

)
s0τ0ρ0, (13e)

ξx(k) = s0
(
eikx (ρ0−ρz )/2 + e−ikx (ρ0+ρz )/2

)
, (13f)

ξy(k) = s0τx(e−iky + 1), (13g)

and

V (k) =
(

VA(k) VAB(k)

VBA(k) VB(k)

)
ρ

, (13h)

VA(k) =
(

2it2 sin(kz ) t1 + szt1sze−ikx

−t1 − szt1szeikx 2it2 sin(kz )

)
τ

, (13i)

VB(k) = −VA(−k), (13j)

VAB =
(

0 t3 − syt3sye−iky

t4 − syt4sye−iky 0

)
τ

, (13k)

VBA =
(

0 syt3syeiky − t3
syt4syeiky − t4 0

)
τ

, (13l)

�̂c(k) = (
c1A↑(k) c1A↓(k) c2A↑(k) c2A↓(k)

c1B↑(k) c1B↓(k) c2B↑(k) c2B↓(k)
)T

,

(13m)

�̂ f (k) = (
f1A↑(k) f1A↓(k) f2A↑(k) f2A↓(k)

f1B↑(k) f1B↓(k) f2B↑(k) f2B↓(k)
)T

.

(13n)

Here, the constant t (l=c, f )
i (i = x, y, z) denotes the hopping for

each direction. μl (=c, f ) represents the energy level of c and f
electrons. The matrix ti (i = 1, 2, 3, 4) is defined as

t1 = i(αsx + βsz ), (14a)

t2 = iγ sz, (14b)

t3 = i(asy + bsz ), (14c)

t4 = i(asy − bsz ), (14d)

respectively. a, b, α, β, and γ are real numbers.
λi, ρi, τi, and si (i = x, y, z) are Pauli matrices. λi’s act on

the space spanned by c and f electrons. ρi’s act on the space
spanned by sites 1 and 2. τi’s act on the space spanned by sites
a and b. si’s act on the spin space.

B. Symmetry class and crystal symmetry

Here, we discuss the symmetry protecting the topology
of the Z4 index. This system preserves the time-reversal
symmetry. The corresponding operator is given as

� = isyλ0τ0ρ0K, (15)

satisfying �2 = −1. K is the operator of complex conju-
gation. Thus, the symmetry class of this system is AII. In
addition, the Hamiltonian preserves a-glide symmetry Gxy

whose operator is defined as

U (Gxy, k) = −isz

(
0 eikx (ρ0−ρz )/2

eikx (ρ0+ρz )/2 0

)
τ

, (16)
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μc/t

Z4-index

FIG. 2. Z4 index of the Hamiltonian (13a) as a function of μc.
The data are obtained with a 120×120×120 k mesh. The data already
converge for 64×64×64 k mesh. We note that the Z4 index takes 3
for 21 < μc < 35.

where Gxy flips the momentum; k → k′ := Gxyk =
(kx, ky,−kz ). We note that U (Gxy, k′)U (Gxy, k) = −eikx

holds. Thus, the Hamiltonian satisfies the condition (1).

C. Numerical results

Employing the lattice version of the Z4 index, we charac-
terize the topology of the system. The result is shown in Fig. 2.
These data are obtained for the following set of parameters,(

t c
x t c

y t c
z α β γ a b

)
= (5 −25 −10 0.525 0.525 0.1 0.5 0.5),

(17a)

and

t f
i = −t c

i /20, μ f = −μc/20. (17b)

In Fig. 2, the computed Z4 index is plotted as a function of μc.
This figure basically reproduces the one-dimensional phase
diagram obtained in Ref. [28]. The difference can be found in
the region for −35 < μc < −21. In this region, the previous
study proposed that the Z4 index takes θ = 3 because three
Dirac cones are observed at the surface of the system [28],
while Fig. 2 indicates θ = 1 which is the same value as the
case for −76 < μc < −60. However, a careful observation of
WCCs elucidates that the Z4 index takes θ3 = 1 in this region
(for details, see Appendix F), which supports our result.

Here, we discuss the efficiency of our method. As dis-
cussed in Appendix F, one needs to examine the flow of
WCCs to obtain the Z4 index for a given set of parameters.
This means that in order to obtain a phase diagram of a realis-
tic model, one needs to perform the procedure of Appendix F

for every point in the phase diagram, which is a hard task.
We also note that even around the transition points our data
converge for 64×64×64 k mesh while the convergence would
become worse around the transition point when the method
based on WCCs is employed. In the above sense, we can
conclude that the efficiently is significantly improved by our
method. In the next section, we systematically analyze the
topological superconductivity for UCoGe.

IV. APPLICATION OF THE Z4 INDEX
FOR CLASS DIII TO UCoGe

Reference [29] has proposed that UCoGe under pressure
is the first promising candidate of Möbius superconductors
with the Z4 index taking two. In that paper, a simplified rep-
resentation of the Z4 index has been derived for the zone face
of the three-dimensional BZ by using additional symmetry
of the crystal. In addition, the strong and weak indices have
been discussed upon a certain assumption [38]. In spite of
the above significant progress, not all the topological indices
have been computed for the superconductivity in UCoGe.
In particular, in order to extract strong topological indices,
it is necessary to compute the Z4 index at the BZ center
whose simplified representation is not available because of
momentum dependence of the glide operator.

In this section, by applying the lattice version of the
Z4 index [Eq. (10)], we address complete characterization
of glide topological superconductivity for UCoGe. Because
the paring symmetry of UCoGe has not been identified yet,
we analyze all possible pairing potentials of the parity-odd
superconductivity listed in Table I. In order to completely
characterize the topology, we compute the three-dimensional
winding number W3 and the Z2 index ν± as well as the Z4

index θ . The reason is the following. While the Z4 index
of class DIII is defined on the two-dimensional BZ, UCoGe
is a three-dimensional superconductor. Thus, the topology
of superconducting phase is characterized by not only the
Z4 indices but also the winding number W3 [for definition,
see Eq. (H1)]. Furthermore, although the Z4 index is de-
fined when the order parameter of superconductivity has odd
glide parity (glide-odd superconductivity), superconductivity
of UCoGe may have even glide parity. For the glide-even
superconductivity, the topology is characterized by the Z2

index ν+ (ν−) computed for the plus (minus) sector of glide
eigenvalues [for definition, see Eq. (E3) in Appendix E]. Com-
puting these topological indices elucidates whether topology
of UCoGe is two or three dimensional. The results are sum-
marized in Table III.

TABLE I. Pairing potentials for each representation of point group D2h. The third, fourth, fifth, and sixth columns indicate sgn(g) under
the transformation of g(=Gxy, Gyz, Ry, I). For sgn(g) = 1 (−1), the paring potential is even (odd) under the transformation of g.

Representation Pairing potential �(k) a-glide (Gxy) n-glide (Gyz) Reflection (Ry) Inversion (I)

Au −�x sin kxszσ0η0 + i�y sin kysyσ0η0 − �z sin kzszσzη0 Odd Odd odd odd
B1u i�x sin kxs0σ0η0 − �y sin kyszσ0η0 + i�z sin kzs0σzη0 Odd Even even odd
B2u −�x sin kxszσzη0 + i�y sin kys0σzη0 − �z sin kzszσ0η0 Even Even odd odd
B3u i�x sin kxs0σzη0 − �y sin kyszσzη0 + i�z sin kzs0σ0η0 Even Odd even odd
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a1
a2

b1b2 b1

(x0+1/2,1/4,3/2-z0)

(x0,1/4,z0)

(1/2-x0,3/4, z0-1/2) (1/2-x0,3/4, z0-1/2)

FIG. 3. Lattice structure of UCoGe. Colored circles denote ura-
nium atoms. Dashed black lines show the unite cell which is com-
posed of four sites, a1, a2, b1, and b2. Numbers with parentheses de-
note coordinates of atoms. Red (blue) circles are on the same plane,
y = 1/4 (y = 3/4), respectively. x0 = 0.0101. z0 = 0.075 [40].

To compute the topology of the superconductivity in
UCoGe, we employ the effective model proposed in Ref. [29].

A. Model

The unit cell of the system is shown in Fig. 3, which is
composed of four sublattices a1, a2, b1, and b2. The effective
model of the normal part is given by [29]

Ĥ0 = Ĉ
†
k[Hhop(k) + HASOC(k)]Ĉk, (18a)

Hhop = s0

(
Ha Hab

H†
ab HT

a

)
η

, (18b)

HASOC = gα (k) · sσzηz + gβ (k) · sηz, (18c)

Ĉk = (
cka1↑ cka1↓ cka2↑ cka2↓

ckb1↑ ckb1↓ ckb2↑ ckb2↓
)T

, (18d)

with

Ha =
(

ξ (k) ξ12(k)

ξ ∗
12(k) ξ (k)

)
σ

, (18e)

Hab =
(

v1(k) 0

0 v2(k)

)
σ

, (18f)

ξ (k) = 2t ′
1 cos kx + 2t2 cos ky + 2t3 cos kz − μ, (18g)

ξ12(k) = t1(1 + e−ikx ), (18h)

v1(k) = e−ikx (1 + e−iky )(tab + t ′
abeikz ), (18i)

v2(k) = eikz (1 + e−iky )(tab + t ′
abe−ikz ), (18j)

gα = α(− sin ky δα sin kx 0)T , (18k)

gβ = β(0 δβ sin kz sin ky)T . (18l)

Here, s’s, σ ’s, and η’s are the Pauli matrices acting on
the spin space, the sublattice space (1,2), and the sublattice
space (a, b), respectively. We define the matrix H0 := Hhop +
HASOC.

Since we are interested in topological superconductivity,
we consider the following BdG Hamiltonian:

Ĥsuper = (
Ĉ

†
k, Ĉ

T
−k

)
HBdG(k)

(
Ĉk

Ĉ
∗
−k

)
τ

, (19a)

HBdG(k) =
(

H0(k) �(k)

�†(k) − HT
0 (−k)

)
τ

, (19b)

with

Ĉ
∗
k :=

(
c†

ka1↑ c†
ka1↓ c†

ka2↑ c†
ka2↓

c†
kb1↑ c†

kb1↓ c†
kb2↑ c†

kb2↓
)T

. (19c)

We define τ ’s as the Pauli matrices acting on the Nambu
space. There are several cases of the pairing potential �(k)
allowed by the symmetry group of UCoGe, Pnma. Under this
symmetry, the four representations of odd-parity pairing are
allowed. The details are summarized in Table I [29,39].

B. Symmetry class and crystal symmetry

In order to see which topological indices characterize
topology of the system for each paring potential in Table I,
we discuss the symmetry class and the crystal symmetry of
the BdG Hamiltonian (19a).

Let us start with the local symmetry. Because the Hamil-
tonian preserves the time-reversal symmetry with �2 = −1
and the particle-hole symmetry with C2 = 1, the symmetry
class is DIII. Thus, the system can be characterized with the
three-dimensional winding number W3 [15,41] whose defini-
tion is given in Eq. (H1). The presence of the time-reversal
symmetry and the particle-hole symmetry can be seen as
follows.

(i) Time-reversal symmetry. The Hamiltonian (19a) satisfies
the time-reversal symmetry

�HBdG(k)�−1 = HBdG(−k), (20a)

with

� = isyσ0η0τ0K. (20b)

(ii) Particle-hole symmetry. The Hamiltonian (19a) satisfies
the particle-hole symmetry

CHBdG(k)C−1 = −HBdG(−k), (21a)

with

C = s0σ0η0τxK. (21b)

As well as the local symmetry, the BdG Hamiltonian
preserves the space group symmetry Pnma. In order to de-
scribe the spatial symmetry, let us consider the symmetry
transformation g acting on the Nambu space. When the BdG
Hamiltonian preserves the symmetry, it satisfies

U ′(g, k)HBdG(k)U ′†(g, k) = HBdG(gk), (22a)

with

U ′(g, k) =
(

U (g, k) 0
0 sgn(g)U ∗(g,−k)

)
τ

. (22b)
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Here U (g, k) is a unitary matrix satisfying

U (g, k)H0(k)U †(g, k) = H0(gk), (23a)

U (g, k)�(k)U T (g,−k) = sgn(g)�(gk), (23b)

where sgn(g) takes 1 for the even paring and takes −1 for the
odd paring. In Table I, we show sgn(g) for all the possible
pairing states for the point group D2h which is associated with
the space group Pnma. We have supposed that applying g
transforms the momentum k as gk. Now we discuss the details.

(iii) a-glide symmetry. The BdG Hamiltonian preserves the
a-glide symmetry (g = Gxy), which is described as

U (Gxy, k) = (−isz )

(
Ga

xy(k) 0
0 Gb

xy(k)

)
η

, (24a)

Ga
xy(k) = e−ikz

(
0 e−ikx

1 0

)
σ

, (24b)

Gb
xy(k) =

(
0 1

e−ikx 0

)
σ

. (24c)

Under the transformation, the momentum k is mapped to
Gxyk := (kx, ky,−kz ). Thus, the system has two a-glide in-
variant planes, kz = 0 and kz = π . If the paring potential is
a-glide-odd [sgn(Gxy) = −1], Eqs. (7d) and (7e) are satisfied
so that one can define Z4 indices, θa(0) and θa(π ). If the
paring potential is a-glide-even [sgn(Gxy) = 1], Eqs. (E1a)
and (E1b) are satisfied so that one can define Z2 indices,
νa

±(0) and νa
±(π ). Computation of the Z2 index is explained

in Appendix E.
(iv) n-glide symmetry. The BdG Hamiltonian preserves the

n-glide symmetry (g = Gyz), which is described as

U (Gyz, k) = (−isx )

(
0 Gab

yz (k)
e−iky−ikz Gab

yz (k′)† 0

)
η

, (25a)

Gab
yz (k) = e−iky

(
0 1

e−ikx 0

)
σ

. (25b)

Under the transformation, the momentum k is mapped to
k′ := (−kx, ky, kz ). Thus, the system has two n-glide invariant
planes, kx = 0 and kx = π . For n-glide-odd superconductivity
[sgn(Gyz ) = −1], one can define Z4 indices, θn(0) and θn(π ).
For n-glide-even superconductivity [sgn(Gyz ) = 1], one can
define Z2 indices, νn

±(0) and νn
±(π ).

(v) Reflection symmetry. The BdG Hamiltonian preserves
the reflection symmetry (g = Ry), which is described as

U (Ry, k) = −isyσ0

(
1 0
0 e−iky

)
η

. (26)

Under the transformation, the momentum k is mapped to
Ryk := (kx,−ky, kz ). We note that for reflection-even super-
conductivity [sgn(Ry) = 1], the winding number in three di-
mensions W3 is fixed to zero (see Appendix H).

(vi) Inversion symmetry. The BdG Hamiltonian preserves
the inversion symmetry (g = I), which is described as

U (I ) = s0σ0ηx. (27)

Under the transformation, the momentum k is mapped to
Ik := (−kx,−ky,−kz ). We note that for parity-odd supercon-

TABLE II. Topological indices for each case of pairing symme-
try. For our system, we have seen that Z2 indces, ν’s, take the same
value for the plus and the minus sector: νa

+(kz ) = νa
−(kz ) for kz = 0, π

and νn
+(kx ) = νn

−(kx ) for kx = 0, π .

Set of topological indices Topological indices

Au [W3, θ
a(0), θa(π ), θn(0), θn(π )] [0,2,2,0,2]

B1u [W3, θ
a(0), θa(π ), νn

+(0), νn
+(π )] [0,2,2,0,1]

B2u [W3, ν
a
+(0), νa

+(π ), νn
+(0), νn

+(π )] [0,1,1,0,1]
B3u [W3, ν

a
+(0), νa

+(π ), θn(0), θn(π )] [0,1,1,0,2]

ductivity [sgn(I ) = −1], the value (−1)W3 is governed by the
topology of Fermi surfaces [42].

C. Numerical results

We perform the numerical calculations with setting the
parameters as follows:

(t1 t2 t3 tab t ′
ab t ′

1 α δα β δβ )

= (1 0.2 0.1 0.5 0.1 0.1 0.3 0.5 0.3 0.5),

(28)

for the normal part and

(�x,�y,�z ) = (1, 1, 1), (29)

for the pairing potential. We note that for μ = 0.55 the model
imitates the cylindrical Fermi surfaces of UCoGe [43,44].

The obtained results for μ = 0.55 indicate that the topo-
logical superconductivity of the Au, B1u, or B3u representation
is characterized by the Z4 index with θ = 2, which is con-
sistent with the results obtained in Ref. [29]. Furthermore,
our analysis away from μ = 0.55 elucidates that Z4 indices
at the zone face and zone center predict novel gapless ex-
citations in the bulk. These gapless excitations are protected
by difference of two topological indices, as is the case for
Weyl superconductors [37] and line-nodal noncentrosymmet-
ric superconductors [45–48]. Interestingly, the nonsymmor-
phic glide symmetry plays a crucial role in the protection
of the gapless excitations, in contrast to the above familiar
examples protected by local symmetry.

In the following, we start with an overview of the obtained
results. After that, we move on to the details for each case of
pairing potentials.

1. Overview

We compute topological indices, W3, θ ’s, and ν’s for glide-
odd and glide-even superconductivity. The results for μ =
0.55 are summarized in Table II. In this table, one can see
that for the Au, B1u, or B3u representation, the system hosts
Möbius surface states characterized by the Z4 indices taking
the value 2. In the presence of a-glide symmetry, Z4 indices
θa(0) and θa(π ) take 2 for the Au or B1u representations. In
the presence of n-glide symmetry, the Z4 index θn(π ) takes 2
for the Au or B3u representation.

Based on the above results, we can extract strong and
weak topological indices with glide symmetry. The results
are summarized in Table III, which shows nice agreement
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TABLE III. Strong and weak topological indices.
(Z,Zstrong

2 ,Zweak
4 )o for glide-odd superconductivity and

(Zweak
2 ,Zstrong

2 ,Zweak
2 )e for glide-even superconductivity. Generators

of each group are summarized in Table IV. The data are obtained for
μ = 0.55 where the normal part of the effective model reproduces
the Fermi surface of UCoGe.

a-glide n-glide

Au (0, 0, 2)o (0, 1, 0)o

B1u (0, 0, 2)o (0, 1, 0)e

B2u (0, 0, 1)e (0, 1, 0)e

B3u (0, 0, 1)e (0, 1, 0)o

with the results obtained in Ref. [29]. First, we discuss a
generic topological classification of glide symmetric super-
conductivity in three dimensions. In Ref. [49], it has been
pointed out that topological superconductivity for given glide
symmetry forms an Abelian group; (Z,Zstrong

2 ,Zweak
4 )o for

glide-odd superconductivity and (Zweak
2 ,Zstrong

2 ,Zweak
2 )e for

glide-even superconductivity. The generators of these groups
are phases described by H1,o(e), H2,o(e), and H3,o(e) for the
glide-odd (glide-even) superconductivity, respectively. Here
Hi,o (i = 1, 2, 3) [Hi,e (i = 1, 2, 3)] describes fully gapped
superconducting phases with topological indices listed in the
top (bottom) panel of Table IV.

We note that topology of superconductivity described by
Hi,o(e) (i = 2, 3) is protected by glide symmetry. In particular,
topological surface states of H2,o or H2,e are protected by
the strong index while those of H3,o or H3,e are protected
by the weak index. Therefore, surface states of topological
superconductivity H2,o or H2,e are robust against disorder
if glide symmetry is preserved on average [50–53], while
those of H3,e are fragile. We note that the stability of weak
topological crystalline superconductivity is different between
Z2 and Z4 classifications. Namely, in the case of the glide-
odd superconductivity H3,o, the surface states survive because
hybridizing two subsystems of topological superconductivity
with θ = 1, which arise from the BZ face and the BZ center,
yields the superconductivity with θ = 2.

Following the above generic argument, we discuss
the strong topological superconductivity for UCoGe (see
Table III). Concerning n-glide-odd superconductivity, we can
see that the topological superconductivity of the Au or B3u rep-
resentation is characterized by (0, 1, 0)o in Table III, indicat-
ing that this superconductivity is topologically identical to the
strong topological superconductivity described by H2,o. Thus,
the Möbius surface states for the Au or B3u representation are
protected by the strong index and are robust against disorder
(for more details, see Sec. IV C 2). Concerning n-glide-even
superconductivity, Table III shows that surface states for the
B1u or B2u representation are protected by the strong index
and are robust against disorder. Table III indicates that a-glide
symmetry of UCoGe protects only topological properties
characterized by the weak index.

Now, let us briefly discuss the case away from μ = 0.55,
where the Z4 indices protect gapless excitations in the bulk.
The top panel of Table IV indicates that topological indices
of glide-odd superconductivity must satisfy the following

TABLE IV. (Top panel) Generators of Abelian groups formed
by glide-odd superconductivity. Z4 indices θ (0) and θ (π ) are de-
fined for a-glide or n-glide symmetry. (Bottom panel) Generators of
Abelian groups formed by glide-even superconductivity. Z2 indices
ν’s are defined for a-glide or n-glide symmetry. The topological
phase generated by H1,o, H2,o, or H2,e cannot be obtained by stack-
ing two-dimensional topological superconductors in the momentum
space, while the one generated by H3,o, H1,e, or H3,e can be obtained
by stacking two-dimensional topological superconductors.

W3 θ (0) θ (π ) Group structure

H1,o 1 1 0 Z
H2,o 0 0 2 Zstrong

2

H3,o 0 1 1 Zweak
4

ν+(0) ν−(0) ν+(π ) ν−(π ) Group structure

H1,e 1 0 1 0 Zweak
2

H2,e 0 0 1 1 Zstrong
2

H3,e 1 1 1 1 Zweak
2

condition when the system is fully gapped: θ (0) + θ (π ) = W3

(mod 2). In other words, topologically protected gapless ex-
citations appear in the bulk when the parities of two val-
ues, θ (0) + θ (π ) and W3, are incompatible with each other.
Topological indices as functions of μ for each case of paring
symmetry are summarized in Fig. 4. This result shows that
for the B1u or B3u representation, doping holes (decreasing
chemical potential) results in gapless excitations in the bulk
predicted by the Z4 indices (see Sec. IV C 2). The above
gapless excitations with glide symmetry can be regarded as
an extension of the excitations of Weyl superconductors in
the following sense. In both cases, gapless excitations are
protected by difference of two topological indices. Namely,
the Z4 indices protect the gapless excitations in our case,
while the Z indices protect the gapless excitations [54] in
Weyl [37] and line-nodal superconductors [45–48]. Further-
more, the glide symmetry plays a crucial role in protection of
gapless excitations for the former case in contrast to those for
the latter case [37,45–48].

In the following, we discuss the above results in details.
First, we discuss topology of superconductivity with the B3u

representation. After that, we address the other cases of paring
symmetry.

2. Topology for the B3u representation

The paring potential of B3u representation is even (odd)
under the a- (n-) glide transformation, respectively. Thus, we
discuss each case separately.

(i) n-glide symmetry. As seen in Table I, the pairing poten-
tial is odd under the n-glide transformation, meaning that the
topology protected by n-glide symmetry is completely charac-
terized by W3, θn(0), and θn(π ) [29,49]. The pairing potential
of the B3u representation is reflection even, which fixes the
winding number to zero (for details, see Appendix H).

Now, we discuss the computed Z4 indices, which are plot-
ted as functions of chemical potential μ in Fig. 5. The black
vertical lines denote the point μ = 0.55 where the normal part
mimics the cylindrical Fermi surfaces of UCoGe. The figure
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-1

 0

 1

-4 -3 -2 -1  0  1  2  3  4

UCoGe Au(i) 

μ/t

(-1)W W3

FIG. 4. Z4 and Z2 indices as functions of the chemical potential
for the Au representation [(a) and (b)], for the B1u representation
[(c) and (d)], for the B2u representation [(e) and (f)], and for the B3u

representation [(g) and (h)]. The black lines in these figures denote
the point μ = 0.55 where the effective model mimics the cylindrical
Fermi surfaces of UCoGe. The results at this parameter are listed
in Table II. The white lines denote the points where the indices are
ill-defined because of gap closing in the domain of integration in
the BZ. The data are obtained with a 120×120 k mesh. The panel
(i) represents the winding number W3 and its parity (−1)W3 . In the
following regions, W3 could not be obtained with sufficient accuracy
because the bulk gap is narrow: −2.5 < μ < −1.7, −0.8 < μ <

−0.4, −0.1 < μ < 0.1, 0.7 < μ < 2.2, and 3.8 < μ � 4. We note
that the parity (−1)W3 can be calculated only from data of normal
states for parity-odd superconductivity [42]. The winding number is
zero (W3 = 0) or is ill defined for B1u, B2u, and B3u representations.

shows that at this point, the Z4 indices take [θn(0), θn(π )] =
[0, 2]. By taking into account the vanishing winding number
(W3 = 0), we see that the topology in this case is char-
acterized with [W3, θ

n(0), θn(π )] = [0, 0, 2], meaning that
this topological phase is identical to the phase described
by nH1,o ⊕ mH2,o ⊕ lH3,o with (n, m, l )o = (0, 1, 0)o. Here,
nH1,o denotes n copies of a topological phase described
by the Hamiltonian H1,o. The direct sum denotes stacking
topological phases and introducing small perturbations which
do not change the topology. Because topology of the system
is characterized by the indices (0, 1, 0)o, the system hosts
the Möbuis surface states only for kx = π , preventing the
hybridization with the surface states at kx = 0. Thus, for
the B3u representation, the n-glide-odd superconductivity is
protected by the strong topological index. Namely, the strong
Möbius topological superconductivity is realized.

-1

 0

 1

 2

 3

-4 -3 -2 -1  0  1  2  3  4

UCoGe B3u, n-glide, kx=0(a)

μ/t

-1

 0

 1

 2

 3

-4 -3 -2 -1  0  1  2  3  4

UCoGe B3u, n-glide, kx=π(b)

μ/t

FIG. 5. Z4 index for the pairing potentials of the B3u representa-
tion. (Left panel) Z4 index at kx = 0. (Right panel) Z4 index at kx =
π . At kx = π , the gap closes for μ = −0.8, −0.4, 0.8, 1.6. At kx =
0, the gap closes for μ = −2.4, (−1.75), 0, 1.6, (2.55). Isolated dots
in the right panel are due to gap closing in the bulk.

Here, our systematic computation reveals that the differ-
ence of the Z4 indices requires the gapless excitations in
the bulk as the difference of the Chern number does for
Weyl superconductivity. In Fig. 5, we can see that doping
holes (decreasing the chemical potential) yields the phase
with [θn(0), θn(π )] = [−1, 2] for −0.8 < μ < 0, which can-
not be generated from fully gapped superconductivity H1,o,
H2,o, and H3,o due to incompatibility between the parity of
θn(0) + θn(π ) and that of the winding number W3. Therefore,
in this region, the Z4 indices protected by n-glide symmetry
require gapless excitations in the bulk BZ sandwiched by
planes at kz = 0 and π . Interestingly, the nonsymmorphic
glide symmetry plays an essential role in the protection of
these gapless excitations in contrast to well-known examples,
such as Weyl superconductivity and line-nodal superconduc-
tivity where crystal symmetry is not needed. The energy
spectrum for the bulk [Fig. 6(a)] supports this scenario where
one can observe gapless point nodes. Classification of pairing
potentials provides another insight into the gapless point-
nodal excitations protected with the glide symmetry. Suppose
that the paring potential is sufficiently small compared to
the energy difference of the bands for normal states. Then,
the gapless excitations appear at points on the Fermi surface
where the paring potential is forbidden by symmetry. Our
analysis summarized in Appendix G elucidates that the paring
potential of the B3u representation is forbidden along the line
for (ky, kz ) = (0, 0) illustrated by a dashed line in Fig. 6(a).
We note that similar gapless excitations in the bulk can be
observed for −2.4 < μ < −0.8 and for 1.6 < μ < 2.5.

(ii) a-glide symmetry. As seen in Table I, the system
can show a-glide-even superconductivity characterized by

-3-2-1  0  1  2  3 -3 -2 -1  0 1  2  3

-0.3
 0

 0.3

UCoGe B1u μ=-1.4 kx=0

ky kz

(b)

-3 -2 -1  0  1  2  3  0  1  2  3
-0.3

 0
 0.3

UCoGe B3u μ=-1.4 ky=0

kx
kz

(a)

FIG. 6. (a) Bulk energy spectrum of the BdG Hamiltonian in
the low-energy region for the B3u representation at ky = 0. (b) Bulk
energy spectrum of the BdG Hamiltonian in the low-energy region
for the B1u representation at kx = 0. The dashed lines denote high-
symmetry lines where the pairing potential is forbidden.
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νa
±(0) and νa

±(π ). Figure 4(g) indicates that for μ = 0.55 the
topological indices take νa

±(0) = νa
±(π ) = 1, meaning that the

system is characterized by (0, 0, 1)e. Therefore, for the B3u

representation, the system shows weak topological crystalline
superconductivity protected by a-glide symmetry.

3. Topology for the Au representation

As seen in Table I, the paring potential is odd under the a-
and n-glide transformations. Therefore, the topology is char-
acterized by the winding number and Z4 indices; W3, θa(n)(0)
and θa(n)(π ) for a- (n-) glide symmetry, respectively [29,49].

(i) a-glide symmetry. Figure 4(a) shows the μ dependence
of Z4 indices. This figure indicates that for μ = 0.55, the in-
dices take θa(0) = θa(π ) = 2. Besides, our direct calculation
shows W3 = 0 at this parameter [Fig. 4(i)]. These two facts in-
dicate that the system is characterized by [W, θa(0), θa(π )] =
[0, 2, 2], which can be represented as (0, 0, 2)o. Therefore,
for the Au representation, the system shows weak topological
crystalline superconductivity protected by a-glide symmetry.

Now we discuss the case away from μ = 0.55. We note
that the parity of the winding number is governed by the
Fermi surface [42] as the system of the Au representation is
parity-odd superconductivity. The computed parity, (−1)W3 ,
is plotted as a function of μ in Fig. 4(i). In contrast to the
glide-odd superconductivity with the B3u representation, the
parity of θa(0) + θa(π ) is compatible with that of the winding
number for −4 < μ < 4. Therefore, changing chemical po-
tential does not yield the topological gapless phases protected
with the glide symmetry.

(ii) n-glide symmetry. In a way similar to the previous case,
we discuss the topology protected by n-glide symmetry, which
is characterized by W3, θn(0), and θn(π ) as mentioned above.

Figure 4(b) indicates that for μ = 0.55, the system is
characterized by [W, θn(0), θn(π )] = [0, 0, 2] which can be
represented as (0, 1, 0)o. Therefore, for the Au representation,
the system shows strong topological crystalline superconduc-
tivity protected by n-glide symmetry.

As in the case of a-glide symmetry, changing chemical
potential does not yield the topological gapless phases.

4. Topology for the B1u representation

(i) a-glide symmetry. As seen in Table I, the paring potential
is odd under the a-glide transformation. Thus, topology pro-
tected by a-glide symmetry is characterized by the winding
number and Z4 indices, W3, θa(0), and θa(π ). We note that
the system shows reflection-even superconductivity, fixing the
winding number to zero (see Appendix (H3)).

Figure 4(c) indicates that Z4 indices take θa(0) = θa(π ) =
2 for μ = 0.55. Then, for μ = 0.55 the superconductivity is
characterized by [W, θa(0), θa(π )] = [0, 2, 2] which can be
represented as (0, 0, 2)o. Therefore, for the B1u representation,
the system shows weak topological crystalline superconduc-
tivity protected by a-glide symmetry.

Now we discuss the case away from μ = 0.55. Figure 4(c)
predicts that topological nodes protected by the glide sym-
metry emerge with doping holes. For −2.0 < μ < −0.8 or
1.6 < μ < 2.0, incompatibility between the parity of θa(0) +
θa(π ) and the vanishing winding number predicts gapless

excitations in the BZ sandwiched by the planes kz = 0 and
π . Direct calculation of the energy spectrum for μ = −1.4
confirms this fact [see Fig. 6(b)]. As is the case for the B3u

representation, classifying paring symmetry provides com-
plementary understanding which predicts that point nodes
emerge along the line (kx, ky) = (0, 0) (see Appendix G).

(ii) n-glide symmetry. Table I indicates that the paring
potential is even under the n-glide transformation. Thus, the
topology protected by n-glide symmetry is characterized by
the Z2 indices, νn

±(0) and νn
±(π ).

Figure 4(d) shows that for μ = 0.55, the topological in-
dices take νn

±(π ) = 1 and νn
±(0) = 0, meaning that the system

is characterized by (0, 1, 0)e. Therefore, for the B1u repre-
sentation, the system shows strong topological crystalline
superconductivity protected by n-glide symmetry.

5. Topology for the B2u representation

As seen in Table I, the superconductivity is even for a- and
n-glide transformations. Thus, the topology is characterized
by the Z2 indices, ν

a(n)
± (0) and ν

a(n)
± (π ), respectively. Based

on the K theory, it is pointed out that glide-even supercon-
ductivity is completely characterized with Z2 indices [49].
This result is consistent with the fact that for glide-even
superconductivity, the winding number W3 is fixed to zero
because glide symmetry plays a role similar to reflection
symmetry (see Appendix H).

(i) a-glide symmetry. Figure 4(e) indicates that for μ =
0.55, the topological indices take νa

±(0) = νa
±(π ) = 1, mean-

ing that the system is characterized by (0, 0, 1)e. Therefore,
for the B2u representation, the system shows weak topological
crystalline superconductivity protected by a-glide symmetry.

(ii) n-glide symmetry. Figure 4(f) indicates that for μ =
0.55, the topological indices take νn

±(0) = 0, and νn
±(π ) = 1,

meaning that the system is characterized by (0, 1, 0)e. There-
fore, for the B2u representation, the system shows strong
topological crystalline superconductivity protected by n-glide
symmetry.

V. SUMMARY

In this paper, we have proposed an efficient method to
compute the Z4 indices with glide symmetry which is ap-
plicable both for Möbius topological insulators and Möbius
topological superconductors. The former (latter) ones belong
to class AII (class DIII), respectively. The advantage of our
method over the existing method based on WCCs is that the
former one directly provides the Z4 indices while the latter
one requires careful observations of complicated momentum-
dependent WCCs. This advantage allows us to systematically
analyze the topology of systems.

As an application, we have performed systematic compu-
tation of the Z4 index for CeNiSn which is proposed as a
three-dimensional Möbius Kondo insulator of class AII. The
obtained phase diagram basically shows nice agreement with
the results obtained by the previous study. The difference from
the previous study is the following. Our efficient method has
elucidated that topological index for −35 < μc < −21 takes
the same value as that for −76 < μc < −60, even though the
number of surface Dirac cones is different between these two
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regions. This is because the topological state θ = 1 is identical
to the one with θ = −3 which hosts three Dirac cones at the
surface.

Furthermore, we have applied our method to superconduc-
tivity of UCoGe whose topology with glide symmetry had
not been fully characterized. Specifically, our direct com-
putation of Z4 indices both at the BZ center and at the
BZ face has elucidated that UCoGe shows strong Möbius
superconductivity of the Au or B3u representation. We stress
that our numerical method is applicable regardless of the
position in the BZ and the additional crystalline symmetry in
contrast to the analytic formula proposed in Ref. [29]. Thanks
to this advantage, the Z4 index for the BZ center is first
computed without any assumption. Furthermore, the obtained
phase diagrams discover novel gapless excitations in the bulk
which are topologically protected by the glide symmetry; the
difference of Z4 indices at the BZ face and the BZ center
requires the gapless excitations in the bulk as the difference
of the Chern number does for the Weyl superconductivity.
We have observed this type of gapless excitations with glide
symmetry by doping holes into the superconducting phase of
the B1u or B3u representation.
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APPENDIX A: INTEGRAL OF THE BERRY CONNECTION
FOR TIME-REVERSAL SYMMETRIC SYSTEMS

Consider one-dimensional systems with time-reversal
symmetry with �2 = −1. In this case, we obtain [55]∫ π

−π

dkxtrAI (kx ) =
∫ π

−π

dkx

2
trA(kx ), (A1a)

under the gauge choice

∣∣uI
n(−kx )

〉 = −�
∣∣uII

n (kx )
〉
, (A1b)∣∣uII

n (−kx )
〉 = −�

∣∣uI
n(kx )

〉
, (A1c)

for −π � −kx < 0. Superscript s = I, II labels Kramers
pairs. A(k) denotes the Berry connection of the occupied
bands, A(k) = AI (k) + AII (k).

In the following, we derive the above relation. With the
above gauge choice, we can obtain the following relation:∫ 0

−π

dkxtrAI (kx ) =
∫ π

0
dkxtrAI (−kx ),

=
∫ π

0
dkxtrAII (kx ). (A2)

Here we have used the relation:〈
uI

n(−kx )
∣∣∂−kx

∣∣uI
n(−kx )

〉 = 〈
�uII

n (kx )
∣∣(−∂kx )

∣∣�uII
n (kx )

〉
= 〈

�uII
n (kx )

∣∣�(−∂ky )uII
n (kx )

〉
= 〈

(−∂kx )uII
n (kx )

∣∣uII
n (kx )

〉
= 〈

uII
n (kx )

∣∣∂kx u
II
n (kx )

〉
. (A3)

Therefore, we obtain Eq. (A1).

APPENDIX B: COMPUTING THE INTEGRAL
OF BERRY CONNECTION MODULO 4π

Consider a one-dimensional subspace of the two- or three-
dimensional BZ −π � k < π where the following two con-
ditions are satisfied: The time-reversal symmetry is closed for
this subspace; the Hamiltonian can be block diagonalized with
the glide symmetry. Let H+(k) denote the Hamiltonian for
plus sector of the glide symmetry whose dimension satisfies
dim H+ ∈ 4Z.

In this case, we obtain∑
l

A+(kl ) =
∑

l

Ã+(kl ) + 4πn, (B1a)

under the following gauge choice: For −kl < 0,

|n(−kl )〉 = −�|n(kl )〉, (B1b)

and for kl = 0, π ,

|2n + 2(kl )〉 = �|2n + 1(kl )〉, (B1c)

where n is an arbitrary integer n ∈ Z. A+(kl ) is the lattice ver-
sion of the Berry connection defined with the occupied states
ψ (k) := (|1(k)〉, |2(k)〉, . . . , |2M(k)〉). The Berry connection
Ã+(kl ) is computed from ψ̃ which is obtained by applying
a unitary matrix to ψ [see Eq. (3)]. Here,

∑
l takes the

summation from l = 0, 1 . . . , N − 1. kl = −π + l (2π/N ). N
is an even integer.

Equation (B1a) means that the integration of the Berry
connection A+(k) along the one-dimensional line is evaluated
modulo 4. In the following, we derive Eq. (B1a).

First, we define a matrix M(kl ) as

M(kl )nm = 〈n(kl )|m(kl+1)〉. (B2)

This matrix satisfies the following relation

detM(kl ) = detM(kN−l−1), (B3)

for 0 � l � N/2.
The above relation results in∑

l=0,...,N−1

log detM(kl ) = 2
∑

l=N/2,...,N−1

log detM(kl ). (B4)

We note that under the gauge transformation ψ (kl )n =
ψ̃ (kl )mVmn, the following relation holds:

log detM(kl ) = log detM̃(kl ) − log detV (kl )

+ log detV (kl+1) + 2πn0, (B5)

where the matrix M̃(kl ) is defined by ψ̃ , and n0 takes an
integer.
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Therefore, by using Eq. (B4) we obtain∑
l=0,··· ,N−1

log detM(kl ) =
∑

l=0,··· ,N−1

log detM̃(kl ) + 4πn

− 2[log detV (kN/2) − log detV (k0)], (B6)

where n is an integer. Because the unitary matrix V (kl )
satisfies

detV (kl ) = 1, (B7)

for l = 0, N/2, we can see that Eq. (B1a) holds.
In the following subsections, we derive Eqs. (B3) and (B7).

1. Derivation of Eq. (B3)

For 0 < l < N/2, Eq. (B3) can be proven as follows. First,
we note that the following relation holds because of Eq. (B1b):
for 0 < l < N/2 (i.e., −π < kl < 0),

ψ (kl ) = −U�ψ∗(kN−l ), (B8)

where U� denotes the unitary part of the time-reversal oper-
ator satisfying �2 = −1, i.e., � := U�K. For ordinary time-
reversal invariant insulators, U� is given as U� = isy ⊗ 1l with
the Pauli matrix sy acting on the spin space and the identity
matrix 1l. By using the above relation, we have

M(kl )nm = [ψ†(kl )ψ (kl+1)]nm

= [ψT (kl+1)ψ∗(kl )]mn

= [{(−U�)ψ∗(kN−1−l )}T {(−U�)ψ∗(kN−1)}∗]mn

= [ψ†(kN−1−l )ψ (kN−l )]mn

= Mmn(kN−1−l ), (B9)

which results in Eq. (B3) for 0 < l < N/2.
For l = 0, N/2, Eq. (B3) can be proven as follows. First,

for l = 0, N/2, we can find

[U�ψ∗(kl )] j1m = [ψ (kl )iτ
y ⊗ 1l] j1m, (B10a)

with iτ y transforming the two states as follows:

(|2n + 1〉, |2n + 2〉)(iτ y) = (−|2n + 2〉, |2n + 1〉), (B10b)

with n = 0, 1, . . . , dimH+/4 − 1. The above relation holds
because of the gauge choice (B1c). By making use of
Eq. (B10a), we can prove Eq. (B3) for l = 0. A straightfor-
ward calculation yields

M(k0)nm = [ψ†(k0)ψ (k1)]nm

= [ψT (k1)ψ∗(k0)]mn

= [{−U�ψ∗(kN−1)}T {U †
�ψ (k0)(iτ y ⊗ 1l)}]mn

= [ψ†(kN−1)ψ (k0)(iτ y ⊗ 1l)]mn

= [M(kN−1)(iτ y ⊗ 1l)]mn, (B11)

which results in Eq. (B3) for l = 0.
In a similar way, we obtain

M(kN/2−1)nm = [ψ†(kN/2−1)ψ (kN/2)]nm

= [ψT (kN/2)ψ∗(kN/2−1)]mn

= [{U�ψ∗(kN/2)(−iτ y ⊗ 1l)}T

×{−U�ψ∗(kN/2+1)}∗]mn

= [(iτ y ⊗ 1l)ψ†(kN/2)ψ (kN/2+1)]mn

= [(iτ y ⊗ 1l)M(kN/2)]mn, (B12)

which results in Eq. (B3) for l = N/2. We note that det(iτ y ⊗
1l) = 1 holds. Therefore, we obtain Eq. (B3) for 0 � l � N/2.

2. Derivation of Eq. (B7)

Let {|a1(kl )〉, |a2(kl )〉 . . . } (l = 0, N/2) be a set of eigen-
states of the Hamiltonian, spanning dimH+/2-dimensional
Hilbert space. From this set, ψ (kl ) := (|1(kl )〉, |2(kl )〉 · · · ) is
obtained as

|2n + 1(kl )〉 = |a2n+1(kl )〉,
|2n + 2(kl )〉 = �|a2n+1(kl )〉, (B13)

with n = 0, 1, . . . , dimH+/4 − 1. Here, we consider another
set of eigenstates {|ã1(kl )〉, |ã2(kl )〉 . . . } defined as

(ã1(kl )〉, |ã2(kl )〉) = (|a1(kl )〉, |a2(kl )〉)U, (B14)

with a unitary matrix U . With this new set, one can define
ψ̃ (kl ) := (|1̃(kl )〉, |2̃(kl )〉 . . . ) as

| ˜(2n + 1)(kl )〉 = |ã2n+1(kl )〉,
| ˜(2n + 2)(kl )〉 = �|ã2n+1(kl )〉. (B15)

These sets of eigenstates of the Hamiltonian, ψ and ψ̃ span
the eigenspace of the Hamiltonian and thus, these are related
with a unitary matrix,

ψ̃ (kl ) = ψ (kl )V (kl ). (B16)

We here consider Pfaffian of the matrix

w(kl ) = ψ†(kl )(is
y ⊗ 1l)ψ∗(kl )

= iτ y ⊗ 1l, (B17)

leading to the relation

Pfw(kl ) = Pfw̃(kl ) = (−1)dimM . (B18)

We note the following mathematical formula

Pf(BT AB) = Pf(A)det(B), (B19)

for a skew-symmetric matrix A and an arbitrary matrix B. The
above two relations provide Eq. (B7), which means that the
third and fourth terms of the right-hand side of Eq. (B6) are
zero.

We finish this part with a comment on additional degen-
eracy at the time-reversal invariant momenta kl = 0, π . In the
presence of additional symmetry, the degeneracy of the energy
spectrum can be larger than two. In this case, we need to
employ the Gram-Schmidt orthogonalization in order to make
ψ (kl ) span the dimH+/4-dimensional Hilbert space.

APPENDIX C: QUANTIZATION OF THE INDEX θ3

Here we show that θ3 defined in Eq. (4) takes an integer,
θ3 ∈ Z.

First, we note the following relation holds:

logU1U2U3U4 =
∑

i=1,...,4

logUi (mod 2π ), (C1)

235105-12



EFFICIENT METHOD TO COMPUTE Z4 INDICES WITH … PHYSICAL REVIEW B 99, 235105 (2019)

with Ui ∈ C. By using this relation, we obtain

∑
0�kx�π,kz

F+zx (kx, π, kz )

= −
∑

kz

[A+z(π, π, kz ) − A+z(0, π, kz )] (mod 2π ),

(C2a)∑
0�kx�π,kz

F+zx (kx, 0, kz )

= −
∑

kz

[A+z(π, 0, kz ) − A+z(0, 0, kz )] (mod 2π ).

(C2b)

Thus, Eq. (4) is rewritten as

θ3 = i

π

∑
kz

[A+z(0, π, kz ) − A+z(0, 0, kz )]

− i

2π

∑
0�ky�π,kz

Fyz(0, ky, kz ) (mod 2). (C3)

We note that the minus sign in the right-hand side of
Eqs. (C2a) and (C2b) is necessary because we have defined
the Berry curvature as Eq. (5b).

Applying the time-reversal operator maps states in the
Hilbert space labeled with g+ to those in the space labeled
with g− for kx = 0. Namely, for kx = 0, a state in the plus
sector forms a Kramers pair with the corresponding state in
the minus sector. Keeping this fact in mind, we can see that
the right-hand side of Eq. (C3) corresponds to the Fu-Kane
Z2 index [25,55]. Therefore, Eq. (C3) takes an integer.

APPENDIX D: QUANTIZATION OF THE INDEX θ

Here we show that θ defined in Eq. (10) takes an integer,
θ ∈ Z.

By using Eq. (C1), we obtain

θ = i

π

∑
ky

A+y(0, ky) (mod 2). (D1)

Here, the summation is taken for −π � ky < π . We note
that the left-hand side of the above equation corresponds to
the lattice version of Z2 index for one-dimensional super-
conductivity of class D [4,5]. The quantization of this term
can be seen as follows. We note that because of particle-hole
symmetry, the following relation holds:

ψ†(−k)ψ (−k + �ky) = ϕ†(k − �ky)ϕ(k), (D2)

where ϕ(k) := Cψ (−k) is the set of eigenvectors for unoccu-
pied states. C denotes the particle-hole operator.

Thus, we have

2i
∑

ky

A+y(0, ky)

= −2Im
∑

kx=0,ky

log det[ψ†(k)ψ (k + �ky)]

= −Im
∑

kx=0,ky

{log det[ψ†(k)ψ (k + �ky)]

+ log det[ϕ†(k − �ky)ϕ(k)]}

= −Im
∑

kx=0,ky

log det[�†(k)�(k + �ky)] + 2πN, (D3)

with N ∈ Z. �(k) is defined as �(k) := [ψ (k), ϕ(k)], satisfy-
ing �(k)�†(k) = 1l. The summation in the above equation is
taken for the closed path, which results in an integer multiple
of 2π .

Therefore, we can see quantization of the index θ to an
integer.

APPENDIX E: Z2 INDEX FOR GLIDE-EVEN
SUPERCONDUCTIVITY

Consider glide-even superconductivity whose BdG Hamil-
tonian satisfies Eqs. (7a)–(7c) and the following relations:

�G(k) = G(−k)�, (E1a)

CG(k) = G(−k)C. (E1b)

The topological structure of this phase is characterized by the
Z2 index defined as [25]

ν± = i

π

∫ 2π

0
dkytrAI

±y(kx = π, ky) (mod 2), (E2)

which is identical to the Z2 index for one-dimensional topo-
logical superconductivity of class DIII. This topological index
can be computed in a similar way as the case of Z4 index. The
lattice version of this index is defined as

ν± = i

2π

∑
ky

trA±y(kx = π, ky) (mod 2), (E3)

with the gauge choice, Eq. (12). By employing the lattice
version of the Z2 index, we have obtained ν± shown in Fig. 4.

When the glide sector preserves the inversion symmetry
and the pairing potential is parity odd, the topological struc-
ture is governed by the dispersion relation εα of the normal
state:

(−1)ν± =
∏
α

sgnε2α (π, 0)sgnε2α (π, π ). (E4)

Here (kx, ky ) = (π, 0) and (π, π ) are time-reversal invariant
momenta. At these points, we can observe Kramers degener-
acy ε2α = ε2α+1. The symbol

∏
2α denotes taking product for

one of each Kramers pair.
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APPENDIX F: COMPUTATION OF Z4 INDEX
BASED ON WCCS

In this section, by computing WCCs, we show that the Z4

index takes θ = 1 for the topological Kondo insulator (13a) at
μc = −30. Since the glide symmetry defined in Eq. (16) maps
kz → −kz, the Z4 index is defined as

θ3 = − i

2π

∫ π

0
dkz

∫ π

−π

dkyFyz(0, ky, kz )

− i

π

∫ π

0
dkx

∫ π

−π

dkyF+xy(kx, ky, 0)

+2i

π

∫ π

−π

dkyAI
+y(π, ky, 0)

+ i

π

∫ π

0
dkx

∫ π

−π

dkyF+xy(kx, ky, π )

−2i

π

∫ π

−π

dkyAI
+y(π, ky, π ) (mod 4). (F1)

We note that the glide operator does not flip the momentum for
kz = 0, π , and thus the Hamiltonian can be block diagonalized
into the plus and the minus sector of the glide operator.
The WCC corresponds to polarization of each orbital and is
represented as the integral of the corresponding Berry connec-
tion (see below) [35,36]. Thus, by observing the momentum
dependence, we can read off the contribution from integral of
the Berry connection and the Berry curvature. The latter can
be rewritten with the Berry connection by using the Stokes
theorem.

Now, we evaluate the Z4 index by examining momentum
dependence of the WCCs. In Fig. 7, the momentum depen-
dence of WCCs is plotted. We note that the WCCs in this
figure are obtained by integrating the Berry connection along
the ky direction [36]

ȳn = i

2π

∫ π

−π

dky〈un(k)|∂ky |un(k)〉. (F2)

We plot WCCs with blue dots for the plus sector of the
Hamiltonian H+ in the region between X and � and between
Z and M. The red dots represent WCCs obtained from the
Hamiltonian H including the plus and the minus sector. By
sweeping kx along � → X, we can evaluate the contribution
of the second and the third terms of Eq. (F1). Along this path,
we can see that one of the WCCs shows a jump from −0.5
to 0.5, resulting in the contribution −2 to θ3. By sweeping kx

along Z → M, we can evaluate the contribution of the fourth
and the fifth terms of Eq. (F1). At the Z point, we can see
that summing up the WCCs for the plus sector yields 0.5,
resulting in the contribution −1 to θ3. We can see that the
contribution from the other region is zero. Thus, in total, we
obtain θ = −3, which is consistent with θ = 1 (mod 4).

In a similar way, we obtain θ = 1 for μc = −70. By
sweeping kx along � → X, we can evaluate the contribution
of the second and the third terms of Eq. (F1). At the � point,
the one of WCCs takes 0.5, resulting in the contribution of 1.
We can see that contribution from the other region is zero.

Therefore, we can conclude that for μc = −30 or −70, the
topological index takes θ = 1, which is consistent with the

-0.5

-0.25

 0

 0.25

 0.5

W
C

C

μc =-30

X Γ Z M

-0.5

-0.25

 0

 0.25

 0.5

W
C

C

μc =-70

X Γ Z M

FIG. 7. Momentum dependence of the Wannier charge centers
(WCCs). Here, X, �, Z, and M points represent (kx, kz ) = (π, 0),
(0,0), (0, π ), and (π, π ), respectively. For kz = 0, π , the Hamilto-
nian can be block diagonalized with the glide symmetry. In these
regions, the blue dots represent the data obtained for the plus sector
of the glide, while the red dots represent the data obtained for the
full Hamiltonian without the block diagonalization. These data are
obtained for 160×160×160 k mesh. For coarser k mesh, the fine
structure along the �-Z line cannot be captured.

results obtained by the lattice version of the Z4 index (4) (see
Fig. 2).

APPENDIX G: CLASSIFICATION OF PARING
POTENTIALS AT GLIDE INVARIANT LINES

In Secs. IV C 2 and IV C 4, we have seen the appearance
of robust point nodes protected by topological properties. As
briefly explained in those sections, one can complementarily
understand the emergence of the topological gapless points
by analyzing possible paring symmetry of Cooper pairs for a
high-symmetry line or plane of the BZ. For instance, suppose
that the Cooper pairs of the B3u representation are forbidden
along a high-symmetry line. In this case, the bulk gap, whose
paring potential is the B3u representation, should become zero,
resulting in robust gapless excitations. These gapless modes
are nothing but the ones discussed in Sec. IV C 2.

In the following, we see the details by performing classifi-
cation of possible paring potentials along high-symmetry lines
of the BZ. The results are summarized in Table V.

1. Classification scheme

The classification of paring potentials along a high-
symmetry line is carried out in the following steps [56,57]:

(1) Obtain the little group Mk mapping the momentum as
k → gk = k for the high-symmetry line.
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TABLE V. Character table of Cooper pairs Pk and IR decomposition. E denotes the identity transformation. 2x(y,z) denotes the twofold
rotation along x (y, z) axis, respectively. σ x , σ y, and σ z denote the reflection mapping (x, y, z) → (−x, y, z), (x, y, z) → (x,−y, z), and
(x, y, z) → (x, y, −z), respectively. I denotes the inversion. The reflection and π rotation also act on the spin space.

(kx, ky ) E 2z 2y 2x I σ z σ y σ x Decomposition

(0,0) 4 0 2 2 −2 2 0 0 Ag + Au + B2u + B3u

(π, 0) 16 0 4 −4 −4 −4 0 0 Ag + B1g + 3B2g + B3g + 3Au + 3B1u + 3B2u + B3u

(0, π ) 4 0 −2 2 −2 2 4 0 Ag + B1u + 2B3u

(π, π ) 4 4 −2 −2 −2 −2 4 4 Ag + 3B1u

(ky, kz ) E 2z 2y 2x I σ z σ y σ x Decomposition
(0,0) 4 2 2 0 −2 0 0 2 Ag + Au + B1u + B2u

(π, 0) 16 4 −4 0 −4 0 0 −4 Ag + 3B1g + B2g + B3g + 3Au + 3B1u + B2u + 3B3u

(0, π ) 16 −4 4 0 −4 0 0 −4 Ag + B1g + 3B2g + B3g + 3Au + B1u + 3B2u + 3B3u

(π, π ) 16 −4 −4 0 −4 0 0 4 Ag + B1g + B2g + 3B3g + Au + 3B1u + 3B2u + 3B3u

(kz, kx ) E 2z 2y 2x I σ z σ y σ x Decomposition
(0,0) 4 2 0 2 −2 0 2 0 Ag + Au + B1u + B3u

(π, 0) 4 −2 0 2 −2 4 2 0 Ag + B2u + 2B3u

(0, π ) 4 2 0 −2 −2 0 2 4 Ag + 2B1u + B2u

(π, π ) 16 −4 0 −4 −4 0 4 0 Ag + B1g + 3B2g + B3g + Au + 3B1u + 3B2u + 3B3u

(2) Calculate the irreducible representation (IR) of the
Bloch state γk by using Wigner’s criterion [58,59] (see below).

(3) With Mackey-Bradley theorem [60] (see below), cal-
culate the character of Cooper pairs χ [Pk] for each transfor-
mation. Here, Pk denotes the representation of the Cooper pair
composed of Bloch states located at k and −k.

(4) With comparing the set of χ [Pk] and the character table
of IRs, decompose Pk into irreducible representations.

Here, we summarize the Wigner’s criterion [58,59]. Con-
sider a symmetry group defined as M := G + a0G. Here G is
a unitary group. a0 denotes an antiunitary transformation. Let
� be the IR of G. Then, the irreducible representation of M is
obtained as follows:

∑
a∈M

χ [�(a2)] =
∑
u∈G

χ [�((a0u)2)] =
⎧⎨
⎩

g (a)
−g (b),
0 (c)

(G1a)

where g denotes order of the group G. χ [�(a)] denotes
the character (i.e., trace) of the representation. For the case
(a), where

∑
a∈M χ [�(a2)] = g holds, the representation is

written as

γ (u) = �(u), (G1b)

γ (a0) = U . (G1c)

For the case (b) the representation is written as

γ (u) =
(

�(u) 0
0 �(u)

)
, (G1d)

γ (a0) =
(

0 −U
U 0

)
. (G1e)

For the case (c), the representation is written as

γ (u) =
(

�(u) 0

0 �∗(a−1
0 ua0

)
)

, (G1f)

γ (a0) =
(

0 �
(
a2

0

)
1 0

)
. (G1g)

Here, U is a unitary matrix satisfying �∗(a−1
0 ua0) =

U −1�(u)U .
The Mackey-Bradley theorem provides the relation be-

tween the character χ [Pk(m)] and χ [γk(m)], where m is an
element of the little group Mk [60]. Consider the Cooper pair
composed of Bloch states located at k and −k. In this case,
the representation Pk can be written as the antisymmetrized
Kronecker square of induced representation in

M̃k := Mk + IMk. (G2)

With the Mackey-Bradley theorem, the character of Pk is
obtained as

χ [Pk(m)] = χ [γk(m)]χ [γk(ImI )], (G3a)

χ [Pk(Im)] = −χ [γk(ImIm)], (G3b)

with m ∈ Mk.

2. Classification for the line (ky, kz ) = (0, 0)

We apply the above classification scheme for the symmetry
group Pnma along a line (ky, kz ) = (0, 0) in the BZ.

First, we obtain the little group Mk. For this line, the little
group Mk is written as

Mk = Gk + {�I|0}Gk, (G4a)

Gk = {E |0}T + {2x|t0}T + {σy|ty}T + {σz|tx + t z}T .

(G4b)

Here we have used the Seitz notation, and 2x denotes the π

rotation for the x axis. σy(z) denotes the reflection for the
plane perpendicular to the y (z) axis. E is the identity trans-
formation. I represents inversion. � denotes the time-reversal
transformation for spin-half electrons. t’s are vectors of half-
translation defined as t0 = (1/2, 1/2, 1/2), ty = (0, 1/2, 0),
and t z = (0, 0, 1/2). Second, we obtain the IR of the little
group Mk. The IR of Gk is written as

�k(E ) = ρ0, (G5a)

�k({2x|t0}) = ieikx/2ρx, (G5b)
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TABLE VI. Character table for (ky, kz ) = (0, 0) (First row) Char-
acter table of Cooper pairs χ [Pk]. (Remainder) Character table of
each IR.

E 2z 2y 2x I σ z σ y σ x

χ [Pk] 4 0 2 2 −2 2 0 0
Ag 1 1 1 1 1 1 1 1
B1g 1 1 −1 −1 1 1 −1 −1
B2g 1 −1 −1 1 1 −1 1 −1
B3g 1 −1 1 −1 1 −1 −1 1

Au 1 1 1 1 −1 −1 −1 −1
B1u 1 1 −1 −1 −1 −1 1 1
B2u 1 −1 −1 1 −1 1 −1 1
B3u 1 −1 1 −1 −1 1 1 −1

�k({σy|ty}) = iρy, (G5c)

�k({σz|tx + t z}) = ieikx/2ρz, (G5d)

with the Pauli matrices ρ’s. By making use of the Wigner’s
criterion, we obtain the IR of the little group Mk. Namely,
because ∑

a∈Mk

χ [�((�Iu)2)] = 4, (G6)

we obtain the representation as

γk(u) = �k(u), (G7a)

γk(�I ) = ρy, (G7b)

with u ∈ Gk.
Third, we calculate the character of Pk. With Mackey-

Bradley theorem [Eq. (G3)], we obtain the character of each
symmetry operation summarized as Table VI.

Comparing the first row and the remainder of Table VI,
we obtain the decomposition Ag + Au + B1u + B2u. Therefore,

the paring potential of the B3u representation is forbidden
along the line of (ky, kz ) = (0, 0), which results in the gapless
nodes along this line in the bulk BZ.

APPENDIX H: THREE-DIMENSIONAL WINDING
NUMBER FOR REFLECTION-EVEN

SUPERCONDUCTIVITY

In this section, we show that the three-dimensional winding
number is fixed to zero for the reflection-even superconduc-
tivity of UCoGe. In order to see this, let us start with the
definition of the winding number.

For class DIII, the following three-dimensional winding
number [41] characterizes the topology of the systems de-
scribed by the Hamiltonian H :

W3 := εabc

3!2(2π )2

∫
BZ

d3ktr[�H−1(k)∂ka H (k)H−1(k)∂kbH (k)

× H−1(k)∂kc H (k)], (H1)

where � is defined by product of the time-reversal and the
particle-hole operators. εabc is the antisymmetric tensor satis-
fying εxyz = 1. In the case of UCoGe, the Hamiltonian and the
matrix � are written as H (k) := HBdG(k) and � := syσ0η0τx.
[For definition of the time-reversal and the particle-hole oper-
ators, see Eqs. (20) and (21).]

Now, we show that the winding number is fixed to zero
for the reflection-even superconductivity of UCoGe. First, we
note that for reflection-even superconductivity, U ′(Ry, k) is
written as U ′(Ry, k) = U (Ry, k)τ0, which results in

[�,U ′(Ry)] = 0. (H2)

By using this relation, we can see that the three-dimensional
winding number W3 satisfies

W3 = εabc

3!2(2π )2

∫
BZ

d3ktr[�H−1(k)∂ka H (k)H−1(k)∂kbH (k)H−1(k)∂kc H (k)]

= εabc

3!(2π )2

∫
BZ

d3ktr[�H−1(Ryk′)∂ka H (Ryk′)H−1(Ryk′)∂kbH (Ryk′)H−1(Ryk′)∂kc H (Ryk′)]

= − εabc

3!(2π )2

∫
BZ

d3k′tr[�H−1(Ryk′)∂k′
a
H (Ryk′)H−1(Ryk′)∂k′

b
H (Ryk′)H−1(Ryk′)∂k′

c
H (Ryk′)]

= − εabc

3!(2π )2

∫
BZ

d3k′tr[U ′−1(Ry, k′)�U ′(Ry, k′)H−1(k′)∂k′
a
H (k′)H−1(k′)∂k′

b
H (k′)H−1(k′)∂k′

c
H (k′)]

= −W3, (H3)

with (k := Ryk′),
∫

BZ dk := ∫ π

−π
dkx

∫ π

−π
dky

∫ π

−π
dkz. From the third to the fourth lines, we have used

∂k′
y
H (Ryk′) = ∂k′

y
U ′(k′)H (k′)U ′−1(k′) + U ′(k′)∂k′

y
H (k′)U ′−1(k′) + U ′(k′)H (k′)∂k′

y
U ′−1(k′)

= U ′(k′)([Cy, H (k′)] + ∂k′
y
H (k′))U ′−1(k′), (H4a)

with

U (k′) := U (Ry, k′), (H4b)

Cy := U ′−1(k′)∂k′
y
U ′(k′) = −is0σ0

(
0 0
0 1

)
η

τ0. (H4c)
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We note that an additional integrand arises from the first term in the last line of Eq. (H4a). This additional term, however, does
not contribute to the winding number because the additional term results in boundary terms which are zero due to periodicity of
the BZ. This can be seen by the following straightforward calculation. Up to the prefactor, the additional term is written as

εybc
∫

dk′tr(�H−1[Cy, H]H−1∂bHH−1∂cH ) = εybc
∫

dk′[−tr(�Cy∂bHH−1(∂cH )H−1) − tr(�CyH−1∂bHH−1∂cH )]

= εybc
∫

dk′[tr(�Cy∂bH∂cH−1) + tr(�Cy∂bH−1∂cH )]

= εybc
∫

dk′[∂btr(�CyH∂cH−1) + ∂btr(�CyH−1∂cH )]

= 0, (H5)

with H := H (k′). Here we have used the relation {�, H} = 0.
Therefore, we can see that Eq. (H3) holds, indicating that W3 is fixed to zero. In a similar way, we can show that the winding

number W3 is fixed to zero for the glide-even superconductivity.
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