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In this paper, we study a two-band model of a superconductor in a square lattice. One band is narrow in
energy and includes local Coulomb correlations between its quasiparticles. Pairing occurs in this band due to
nearest-neighbor attractive interactions. Extended s-wave as well as d-wave symmetries of the superconducting
order parameter are considered. The correlated electrons hybridize with those in another wide conduction band
through a k-dependent mixing with even or odd parity depending on the nature of the orbitals. The many-body
problem is treated within a slave-boson approach that has proved adequate to deal with the strong electronic
correlations that are assumed here. Since applied pressure changes mostly the ratio between hybridization and
bandwidths, we can use this ratio as a control parameter to obtain the phase diagrams of the model. We find
that, for a wide range of parameters, the critical temperature increases as a function of hybridization (pressure)
with a region of first-order transitions. When frustration is introduced, it gives rise to a stable superconducting
phase. We find that superconductivity can be suppressed for specific values of band filling due to the Coulomb
repulsion. We show how pressure, composition, and strength of correlations affect the superconductivity for
different symmetries of the order parameter and the hybridization.
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I. INTRODUCTION

Many superconducting materials of current interest are
multiband systems with electrons from different atomic or-
bitals coexisting at a common Fermi surface. This is the case
of heavy fermions and high-Tc superconductors either based
on Cu or based on Fe. Therefore, to take into account the
multiband character seems to be essential to understand the
physical properties of these superconductors.

In the materials we are interested, we can distinguish two
different types of electronic quasiparticles. One is associated
with nearly localized electrons in a narrow band, and another
consists of conduction electrons in a wide band [1–4]. The
admixture between these distinct quasiparticles is responsible
for many of the properties of multiband systems, such as their
magnetism and response functions.

A model to describe these materials must consider these
features and take into account the local Coulomb repulsion
among the electrons in the narrow d (cuprates, pnictides) or
f (heavy fermions) bands. The most favorable conditions for
the appearance of superconductivity involve an attractive in-
teraction that pairs quasiparticles of the narrow band in neigh-
boring sites avoiding in this way the strong on-site Coulomb
repulsion. This type of pairing entails different symmetries
of the superconducting order parameter. Experimentally, it is
well known that, in the case of the cuprates, they adopt a
d-wave symmetry, and on-site pairing vanishes.

An interesting experimental fact observed in multiband
superconductors is the existence of a quantum phase transition
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associated with a superconducting quantum critical point
[5–7]. Varying an external control parameter, such as doping
or pressure, these systems can be driven to a nonsupercon-
ducting metallic state or even to an insulator [8]. Note that the
ratio between hybridization and bandwidth, which depends
on the overlap of different wave functions, is sensitive to
these external parameters. Consequently, theoretical phase
diagrams [8–14] obtained as a function of this ratio have
a direct resemblance to those obtained experimentally when
pressure or doping is varied [5–7,15–17]. It turns out that, in
realistic cases, the parity of the hybridization is very impor-
tant. In multiband systems, we have, in general, to consider
the mixing of s-p, s- f , p-d, p- f , and d- f orbitals, which
hybridize with different parities [18,19].

The motivation of this paper is to investigate how quanti-
ties, such as the critical temperature vary as a function of the
different parameters of the model. Specifically, we consider
the intensity and symmetry of the hybridization, the occupa-
tion of the bands, and the strength of the local repulsion.

We will apply the slave-boson (SB) mean-field approach to
solve the many-body problem. This is a well-known technique
to deal with the type and magnitude of the electronic cor-
relation that we are interested. We perform a self-consistent
numerical solution of a set of coupled equations to obtain the
finite-temperature phase diagrams. These present regions of
metastability, i.e., of first-order transitions that mainly occur
whenever the critical temperature increases as a function of
hybridization. We show that, if frustration effects are taken
into account, the superconducting phase can be stabilized in
these regions. We find that Coulomb interactions can suppress
superconductivity for specific values of band filling.
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We point out that our approach does not aim to describe any
specific material but to provide a general guide for expecta-
tions of how different control parameters affect the properties
of multiband superconductors when different symmetries of
the hybridization and order parameter are considered.

The paper is organized as follows: In Sec. II, we present the
model with its main features required to describe a multiband
superconductor with a narrow band of strongly correlated
electrons. We also introduce in this section the SB formalism
used to treat the many-body problem. In Sec. III, we show
and discuss our results for both zero- and finite-temperature
phase diagrams as a function of hybridization, band filling,
and Coulomb repulsion. Finally, in Sec. IV, we point out the
main results.

II. THE MODEL

We consider a two-dimensional two-band lattice model
with intersite attractive interactions and local Coulomb repul-
sion between electrons in the narrow band, which we refer to
generically as f electrons. These can be either d electrons as
for the Cu or Fe superconductors or f electrons as for the
actinides and rare-earth heavy fermions. This narrow band
hybridizes with a conduction band of c electrons through a
k-dependent hybridization that can have different symmetries.

The Hamiltonian of the model is given by [8]

H =
∑
k,σ

εc
k c†

k,σ
ck,σ +

∑
k,σ

ε
f
k f †

k,σ
fk,σ

+
∑
k,σ

(Vkc†
k,σ

fk,σ + H.c.) + U
∑

i

f †
i,↑ fi,↑ f †

i,↓ fi,↓

+ 1

2

∑
〈i j〉,σ

Ji j f †
j,σ f j,−σ f †

i,−σ fi,σ , (2.1)

where c†
k,σ

(ck,σ ) and f †
k,σ

( fk,σ ) are creation (annihilation)
operators related to conduction and f electrons with spin
σ in the wide uncorrelated band and in the narrow band,
respectively.

These bands are described by the dispersion relations εc
k

and ε
f
k for c and f electrons in an obvious notation. Since

we do not consider magnetic solutions, these dispersions
are independent of the spin σ. U is the on-site repulsive
interaction (U > 0) among the f electrons. The two types of
electrons are hybridized with a k-dependent matrix element Vk

[14]. The last term describes an effective attraction between
f electrons in neighboring sites (Ji j < 0) and is responsible
for superconductivity [20]. It takes into account experimental
results for the specific heat in multiband superconductors
that show unequivocally that f electrons are involved in the
pairing [21]. Note that this term also describes antiferromag-
netic xy-type exchange interactions between these electrons
such that magnetic and superconducting ground states are
in competition. In this paper, we are only interested in the
latter. We have also neglected in this interaction an Ising term
that when decoupled in the superconducting channel leads to
p-wave pairing that is not considered here.

It is worth pointing out that all terms in Eq. (2.1) can vary
substantially from one specific class of systems to another.
In particular, the interactions Ji j should be small for the

case of rare-earth heavy fermions due to the localization
of the f orbitals in these systems. We have glossed over
interband attractive interactions among the c and f electrons
and intraband attractive interactions between c electrons since
they do not affect the superconducting order parameter in
a drastic way [20]. Also interband pair hopping [22] that
arises in second order in the hybridization when applying
a Schrieffer-Wolff transformation for the Anderson lattice
model is ruled out since it gives rise not only to ground states
with finite q-pairing states, but also to anisotropic s-wave
superconductivity [23].

The Hamiltonian Eq. (2.1) represents a model that con-
siders the basic features of a multiband superconductor with
a narrow band of strongly correlated electrons. It reflects
a difficult many-body problem and has been treated using
different approximations. Several approaches have been used
depending on the different aspects of the problem that one
wants to emphasize. This includes, competition between dif-
ferent ground states [24], superconducting properties at zero
or finite temperature [25,26], c- f pairing [23], or the nature
of the phase diagram as a function of the occupation of the
bands.

In this paper, we approach this complicated many-body
problem using the mean-field slave-boson formalism [27–29],
which has been shown to be suitable for studying coexistence
between superconductivity and magnetism [25], crossover
from BCS type to local pairing [30], magnetic instabili-
ties [31–33], and the effect of infinite [11,34,35] and finite
[8,20,36] Coulomb repulsion in narrow bands. It has also been
shown to be in remarkable agreement with more elaborate nu-
merical Monte Carlo results over a wide range of interactions
and particle densities [37].

Considering a finite on-site Coulomb repulsion U in the SB
formalism, each lattice site can have four physical states: the
empty state |0〉, the states where there is one f electron with a
given spin |↑〉 and |↓〉, and the doubly occupied configuration
|↑↓〉 such that the total number of f electrons per site, n f can
be n f = n f

i↑ + n f
i↓ = 0, 1 or 2. In order to describe all these

states that f electrons can occupy, four bosons e, d, p↑, and
p↓ are introduced, where e and d are associated with empty
and doubly occupied sites, respectively, and the boson p↑ (p↓)
with a singly occupied site with spin component ↑ (↓) [29].

For the purpose of establishing a one-to-one correspon-
dence between the original Fock space and the enlarged
one that contains the bosonic states, the constraints e†

i ei +
p†

i,↑ pi,↑ + p†
i,↓ pi,↓ + d†

i di = 1 for the completeness of the

bosonic operators and f †
iσ fiσ = p†

iσ piσ + d†
i di for the local

particle (boson + fermion) conservation at the f sites must
be satisfied. Such constraints are imposed in each site by the
Lagrange multipliers λi and αi,σ , respectively.

In the physical subspace, the operators fi,σ are
mapped such that fi,σ → fi,σ Zi,σ where Zi,σ =

(e†
i pi,−σ +p†

i,σ di )√
(1−d†

i di−p†
i,σ pi,σ )(1−e†

i ei−p†
i,−σ pi,−σ )

and where the square-root

term ensures that the mapping becomes trivial at the
mean-field level in the noninteracting limit (U → 0). The
usual procedure consists of taking a mean-field approach
where we assume the slave bosons are condensed [8,20,32].
Then, all boson operators are replaced by their expectation
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values as Z = 〈Z†
i,σ 〉 = 〈Zi,σ 〉 = Zσ , e = 〈ei〉 = 〈e†

i 〉, pσ =
〈pi,σ 〉 = 〈p†

i,σ 〉, d = 〈di〉 = 〈d†
i 〉, and, consequently, λ = λi

and α = αi,σ . Due to translation invariance, these expectation
values take the same value on all sites.

Using this approximation, the Hamiltonian Eq. (2.1) can be
written as

Heff =
∑
k,σ

(
εc

k − μ
)
c†

k,σ
ck,σ +

∑
k,σ

(
ε̃

f
k − μ

)
f †
k,σ

fk,σ

+
∑
k,σ

ZVk (c†
k,σ

fk,σ + H.c.)

+Z2

2

∑
k,σ

(�ηk f †
k,σ

f †
−k,−σ

+ H.c.) − N
|�|2

J

+ λ
∑

k

(p2
↑ + p2

↓) − α
∑
k,σ

(
p2

σ + d2
)

+ Nλ(e2 + d2 − 1) + NUd2, (2.2)

where N is the number of lattice sites and � =
Z2J
N

∑
k ηk〈 f−k,−σ fk,σ 〉 represents the superconducting order

parameter for extended s- or d-wave symmetries [38,39] since
the strong Coulomb repulsion prevents local s-wave pairing
between f electrons. ηk denotes any of the possible pairing
symmetries cos kx + cos ky and cos kx − cos ky for s and d
waves, respectively.

It is worth pointing out that we obtain for both symmetries
stable superconducting states in different parameter regions,
whereas most of the authors have studied only d-wave su-
perconductivity in the presence of strong local repulsive in-
teractions [40,41]. We also have added in the Hamiltonian
Eq. (2.1), the chemical potential μ that has to be adjusted
when we fix the total band-filling n = nc + n f at different
values. We assume a nearest-neighbor constant attractive in-
teraction Ji j = J . For simplicity, we consider a square lattice
with εc

k = −2t (cos kx + cos ky) and ε
f
k = ε

f
0 + γ εc

k , where
γ = t f /t (γ < 1) is the ratio of hopping terms of the quasi-
particles in different bands and ε

f
0 is the bare f -band center.

Furthermore, we introduce ε̃
f
k = ε

f
k + α as the renormalized

dispersion of the f band. We took the lattice parameter a = 1.
We use the Green’s function method [8,39] such that the

excitations in the superconducting phase are given by the
poles of these Green’s functions, which, in turn, are obtained
from their equations of motion. These excitations have ener-
gies given by ±ω1,2, where

ω1,2(k) =
√

Ak ± √
Bk (2.3)

Ak = εc
k

2 + ε
f
k

2

2
+ Ṽk

2 + (�̃ηk )2

2
,

Bk =
(

εc
k

2 − ε
f
k

2

2

)2

+ Ṽk
2(

εc
k + ε

f
k

)2 + (�̃ηk )4

4

− (�̃ηk )2

2

(
εc

k
2 − ε

f
k

2) + (�̃ηkṼk )2, (2.4)

with Ṽk = ZVk, �̃ = Z2�, εc
k = εc

k − μ, and ε
f
k = ε̃

f
k − μ.

The effect of the hybridization’s parity on the super-
conducting properties [42,43] is considered assuming an
odd-parity hybridization Ṽ−k = −Ṽk with Ṽk = iZV (sin kx +
sin ky) and an even-parity hybridization such that Ṽ−k = Ṽk

with Ṽk = ZV (cos kx + cos ky). The former case is relevant
when the orbitals involved in the mixing have angular mo-
menta differing by an odd number as p-d or d- f , whereas
the latter case is considered when the difference in angular
momenta is even [18]. For completeness, we also consider a
constant k-independent hybridization. In all cases, V repre-
sents the intensity of the hybridization.

Following the slave-boson mean-field approximation, the
parameters e, p, d, α and λ, are obtained from the minimiza-
tion of the Hamiltonian, given by Eq. (2.2) [8] with respect to
the different slave-boson parameters. This procedure yields a
set of coupled equations that has to be solved self-consistently
together with the number and gap equations. The last two are
given by

n = 1 + 1

N

∑
k

∑
�=1,2

(−1)�

2
√

Bk

1

2ω�

{(
εc

k + ε
f
k

)

×(
ω2

� + Ṽk
2 − εc

kε
f
k

) − �̃2η2
kε

c
k

}
tanh

(
βω�

2

)
,

1

J
= Z4

N

∑
k

∑
�=1,2

η2
k (−1)�

2
√

Bk

(
ω2

� − εc
k

2

2ω�

)
tanh

(
βω�

2

)
,

(2.5)

respectively. In these equations β = 1/kBT , where kB is the
Boltzmann constant and T is the absolute temperature.

The self-consistent numerical solution of the set of coupled
equations described above, allows us to obtain the critical su-
perconducting temperature Tc for different occupations of the
bands and types of hybridization. Assuming that the intensity
of the latter can be controlled by external pressure, we obtain
the pressure dependence of Tc for different symmetries and
electronic occupations.

III. ANALYSIS OF RESULTS

The numerical solution of the self-consistent coupled
equations allows us to obtain both the zero- and the finite-
temperature phase diagrams of the model for different cases
[8]. We consider the influence of the parity of the hybridiza-
tion for both extended s-wave and d-wave symmetries of
the superconducting order parameter, which are referred to
as �s or the s wave and �d , respectively. In all figures
below, we take ε

f
0 = 0 and the ratio of the effective masses

γ = 0.1. For this choice of ε
f
0 = 0 and before turning on

the interactions and hybridizations, the half-filled band case
corresponds to μ = 0. Furthermore, we renormalize all the
physical parameters by the c-band hopping term t = 1, and
we take kB = 1.

A. Zero-temperature results

The zero-temperature density plots for the extended s-
wave order parameter are shown in Fig. 1 as a function
of the intensity of hybridization for different band fillings.
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FIG. 1. Density plots of �s varying n and V , for fixed values of
attractive interaction J = −2.0 and a Coulomb repulsion U = 1.0.
(a)–(c) are sketched considering a constant [8], odd-, and even-parity
hybridizations, respectively.

Figures 1(a)–1(c) consider the cases of constant (V = V0),
odd-, and even-parity hybridizations, respectively.

Figure 2 shows the same density plots, but now for the
case of a d-wave order parameter as a function of the intensity
of hybridization and different band fillings. Figures 2(a)–2(c)
consider constant [8], odd-, and even-parity hybridizations,
respectively.

The influence of the symmetry of the hybridization is
notable in the figures for both cases of d- and extended s-wave
superconductivities. For an extended s wave, it is remarkable,
in the case of even hybridization, the existence of a criti-
cal value of hybridization that suppresses superconductivity.
Also, the regions of superconductivity are almost symmetric
with respect to the half-filling n = 2.0, independent of the
parity of the hybridization, which is not the case for d-wave
superconductivity. For the d wave and odd hybridization, the
phase diagram Fig. 2(b) is very similar to that of Ref. [44]
obtained using a full variational Gutzwiller wave function
incorporating nonlocal effects of the on-site interaction. Then,
despite the very different approaches, the results they yield are
in qualitative agreement.
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FIG. 2. Density plots of �d varying n and V for fixed values of
attractive interaction J = −2.0 and a Coulomb repulsion U = 1.0.
(a)–(c) are sketched considering a constant [8], odd-, and even-parity
hybridizations, respectively.

B. Finite temperatures

Next, we consider the temperature dependence of the
self-consistent equations and solve for the superconducting
critical temperature (Tc) of the model as a function of different
parameters. Since Tc is the most accessible experimental
quantity and many of the model parameters can be tuned, the
calculation of Tc provides a direct test of the results. Besides,
since we are studying a nontrivial two-band model in which
superconductivity coexists with strong local correlations and
competes with the hybridization between the bands, the study
of the effect of each of these features in Tc turns out to be
very important. Therefore, in this section, we investigate the
dependence of the critical temperature Tc on the parity of the
hybridization, band filling, and the repulsive interaction for
each specific symmetry of the superconducting (SC) order
parameter.

1. The critical temperature as a function of the hybridization

First, we show the results for Tc as a function of hybridiza-
tion for different band fillings and parities of the mixing. We
consider both cases of extended s-wave (Fig. 3) and d-wave
(Fig. 4) symmetries of the superconducting order parameter.

224514-4



INFLUENCE OF THE SYMMETRY OF HYBRIDIZATION ON … PHYSICAL REVIEW B 99, 224514 (2019)

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4
0.0

0.1

0.2

0.3

0.4

Tc

V

(c) s wave V even

Tc

(b) s wave V odd
n = 0.5 no SC

Tc

n = 0.5
n = 1.0
n = 1.5
n = 2.0
n = 2.5
n = 3.0
n = 3.5

(a) s wave V0

n = 0.5 no SC

FIG. 3. Tc as a function of different V symmetries considering
an extended s-wave SC order parameter for fixed values of attractive
interaction J = −2.0 and Coulomb repulsion U = 1.0. (a)–(c) are
sketched for several values of the band-filling n, considering a
constant, odd-, and even-parity hybridizations, respectively (see the
text).

For consistency, we check our results with those for the
case of constant hybridization and extended s-wave symmetry
[Fig. 3(a)] that have been calculated previously [20]. The be-
havior of Tc that we obtain agrees qualitatively with that in the
literature [20,45]. In Figs. 3(b) and 3(c) as well as in Figs. 4(b)
and 4(c), we show our results for the critical temperature for
different parities of the mixing between the bands and several
occupations. Figure 3 shows the behavior of the critical tem-
perature for a s-wave superconducting order parameter as a
function of the parity of the hybridization and different band
fillings. Figure 4 shows the same results for Tc but now for
a d-wave superconducting order parameter. It is interesting
that even for a rather dilute case n = 0.5, superconductivity
arises for large values of an even hybridization (V > 2.0), see
Fig. 3(c). For larger band fillings, the superconducting phase
appears for all V symmetries and remains for occupations up
to n ≈ 3.5.

One can see from Figs. 3 and 4 that, except for n ≈ 0.5
and n ≈ 3.5, there is a region in the phase diagrams where
the critical temperatures increase with increasing the intensity
of hybridization from small V . This type of behavior has been

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4
0.0

0.1

0.2

0.3

0.4

Tc

V

(c) d wave V even
n = 0.5 no SC

Tc

(b) d wave V odd
n = 0.5 no SC

Tc

n = 1.0
n = 1.5
n = 2.0
n = 2.5
n = 3.0
n = 3.5

(a) d wave V0

n = 0.5 no SC

FIG. 4. Tc as a function of different V symmetries considering a
d-wave SC order parameter for fixed values of attractive interaction
J = −2.0 and Coulomb repulsion U = 1.0. (a)–(c) are sketched for
several values of the band-filling n, considering a constant, odd-, and
even-parity hybridizations, respectively (see the text).

seen in previous works [20]. In order to understand the physics
behind this increase, we have studied the behavior of the free-
energy density [30,46] as a function of the superconducting
order parameter in the regions of the phase diagrams where
this enhancement of Tc is observed. The free-energy density
(F) in the SB mean-field approximation is given by

F = 1

N

∑
k

∑
�=1,2

{−2T ln[1 + exp(−βω�)] − ω�}

+ 1

N

∑
k

(
εc

k + ε
f
k

) + λ(e2 + d2 + 2p2 − 1)

− 2α(p2 + d2) + Ud2 − |�|2
J

+ μn, (3.1)

where the parameters above were defined previously.
Figure 5 shows the free-energy density as a function of the

extended s-wave order parameter �s for a fixed temperature
T = 0.25 and n = 1.5, varying the intensity of the even
hybridization from V = 0.1 to V = 1.2 [see also Fig. 3(c)].
One can see the presence of minima (arrow) located at zero
and finite �s that exchange stability as the intensity of the
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FIG. 5. Free-energy density variation for different values of
�s. The minimum (arrow) can be seen floating abruptly and then
smoothly when we fix T = 0.25, n = 1.5, and we vary V (see the
text).

even-parity hybridization increases. For small values of V , the
stable phase is the normal metal with �s = 0, although one
can already note the presence of two metastable minima for
finite �s. As V reaches V ≈ 0.4, the three minima become
degenerate, and the system enters in the superconducting
phase through a first-order transition.

First-order transitions between normal and superconduct-
ing states have already been obtained in strongly correlated
systems [43] using a Kondo lattice approach. Here, we obtain
coexistence between these states in a two-band model. Exper-
imentally, first-order transitions have been reported in com-
pounds that present spin-triplet superconductivity [47,48] and
in pnictides where structural and magnetic first-order phase
transitions occur for a characteristic temperature [49,50].

For V ≈ 0.4, there is an exchange of stability between the
normal and the superconducting phases. A further increase in
the value of V takes the system smoothly through a second-
order transition to the normal phase. In general, we can
conclude that, in the regions of the phase diagram that Tc

increases with V , the system is metastable and presents a
first-order phase transition and coexistence of phases.

The actual phase diagram obtained from an analysis of the
free-energy density as a function of the superconducting order
parameter is shown in Fig. 6. The shaded region represents the
place of coexistence.

This kind of behavior, i.e., first-order transitions for small
V , up to the maxima in the Tc versus V curves will be present
for all symmetries. However, another notable feature worth
emphasizing is that the first-order region, associated with the
existence of maxima in the Tc versus V curve, is suppressed
for small and large band fillings. In fact, for n � 0.5 and
n � 3.5, we no longer observe maxima in Tc as a function
of V for any symmetry (see Figs. 3 and 4), and, consequently,
we have only second-order transitions. Our numerical results
show that the local Coulomb repulsion decreases the region
in the phase diagram where the system presents first-order
transitions but does not suppress it. In practice, we observe
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0.0 0.5 1.0 1.5 2.0

Tc

V

first order instability
n = 1.5, s wave, V even

0.0

0.1

0.2

0.3

0.0 0.5 1.0 1.5 2.0

FIG. 6. Phase diagram showing Tc as a function of even-parity
hybridization for the extended s-wave SC order parameter. The
curves are obtained from plots of the free-energy density as in Fig. 5.
The shaded area represents the region of phase coexistence.

that the maxima in the Tc versus V curves shift to smaller
values of V with increasing Coulomb repulsion. It is worth
noting, in Fig. 3(c) for V even and large band fillings (n=3.5),
the presence of two superconducting domes as a function of V ,
unlike for constant [Fig. 3(a)] or odd- [Fig. 3(b)] parity of the
hybridization.

Finally, we remark that, for d-wave symmetry, Fig. 4, we
observe a different behavior from that of the extended s-wave
case. First, for n = 0.5, there is no SC for any parity of
the hybridization; and second, we find no evidence of two
superconducting domes for V even and large occupations as
in the previous case of extended s-wave superconductivity. On
the other hand, the first-order transitions remain present for
small V associated with a region of the phase diagram where
Tc increases with V , the intensity of hybridization. Once again,
this instability region is suppressed as n increases. The effect
of increasing the local U is similar to the extended s-wave case
and independent of the parity of V , i.e., the instability region
decreases but is not suppressed.

The model investigated here also supports antiferromag-
netic solutions for similar values of the parameters [25]. This
magnetic phase competes with superconductivity in the same
region of the phase diagram. In multiband systems as heavy
fermions, superconductivity arises in proximity to an anti-
ferromagnetic quantum critical point [51]. In order to verify
whether these two phases actually compete or antiferromag-
netic fluctuations enhance superconductivity, we introduced
frustration in our model [42]. This is performed by including
a constant hybridization V0 = 1.0 and a nearest-neighbor sym-
metric mixing V (cos kx + cos ky) of varying intensity (see
Fig. 7).

We find that increasing frustration enhances and stabilizes
superconductivity, at least, for small V as expected if this
is in competition with antiferromagnetism. Figure 7 shows
Tc for a band-filling n = 2.1 in the cases of a pure even
hybridization (no frustration) (continuous line) of intensity V
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Tc

V

V even
V frust

s wave n = 2.1

FIG. 7. Tc as a function of hybridization for the cases of no
frustration (continuous line) and increasing frustration (dashed line)
for a band filling of n = 2.1 and extended s-wave pairing and fixed
values of attractive interaction J = −2.0 and Coulomb repulsion
U = 1.0 (see the text).

and when this competes with a constant one of unit intensity
V0 = 1.0 (dashed line). In the former case, the transition to
the superconducting state is first order below the maximum as
shown by an analysis of the free-energy density (see Fig. 6).
As frustration is included, Tc increases, and the transition
becomes second order such that frustration stabilizes the
superconducting state [42].

2. The critical temperature as a function of the band filling

Next, we show our results for the critical temperature as
a function of band filling for different intensities and parities
of the hybridization and distinct symmetries of the order pa-
rameter. Our results agree qualitatively, when available, with
those obtained previously [20]. In Figs. 8 and 9, we show the
finite-temperature phase diagrams for different symmetries of
the order parameter as a function of band filling for different
parities of the hybridization. The Coulomb repulsion is kept
fixed at U = 1.0. The phase diagrams for each symmetry
depend strongly on the parity of Ṽk . In general, superconduc-
tivity does not occur for a small number of particles or holes.
In some cases, the critical temperature is a maximum for half-
filled bands, whereas for others, it is suppressed in this case.

An analysis of the free-energy density curves as a function
of the band-filling n shows that for small values of the
intensity of the hybridization V � 1.0, independent of its
parity and symmetry of the superconducting order parameter,
superconductivity becomes metastable for 1.0 � n � 3.0. For
V � 1.0, the coexistence of phases disappears, and supercon-
ductivity is stable when Tc is finite.

The results of Fig. 8 for extended s-wave symmetry of
the order parameter are closely related to those of Fig. 1. In
particular, we remark that, for odd-parity hybridization, i.e.,
Fig. 8(b), the critical temperature attains a maximum for band-
filling n = 2.0, whereas for V even, it is mostly suppressed
for this occupation even giving rise to two separate regions
of superconductivity, see Fig. 8(c). It is a general feature in
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0.2

0.3

0.4
0.0

0.1

0.2

0.3

0.4

Tc

n

(c) s wave, V even

Tc

(b) s wave, V odd

Tc

V = 0.5
V = 1.0
V = 2.0
V = 3.0
V = 4.0

(a) s wave, V0

FIG. 8. Tc as a function of band-filling n considering an extended
s-wave SC order parameter. This plot is shown for fixed values
of attractive interaction J = −2.0 and Coulomb repulsion U = 1.0.
(a)–(c) are sketched for several values of intensity of V , considering
a constant, odd-, and even-parity hybridizations, respectively (see the
text).

Fig. 8 that increasing the intensity of hybridization shrinks the
region of superconductivity in the phase diagram.

The results for d-wave symmetry of the order parameter
are shown in Fig. 9 and are closely associated with those of
Fig. 2. In this case, we note that the phase diagram is, in
general, asymmetric with respect to half-occupation of the
bands (n = 2.0), specially for large V . For n < 2.0 and in
both cases of even and odd parities, high intensities of the
hybridization suppress superconductivity as can be seen in
Figs. 9(c) and 9(b), respectively. The values of Tc in this
case are significantly higher for even-parity hybridization. For
large k-independent V , we see again the presence of two
superconducting domes.

3. The critical temperature as a function
of the Coulomb correlation

Finally, we discuss the effect of the local Coulomb corre-
lation U on superconductivity. We start with the case of an
extended s-wave superconductor where the critical tempera-
tures as a function of U are shown in Fig. 10 for fixed intensity
of hybridization (V = 1.0). In general, the critical temperature
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FIG. 9. Tc as a function of band-filling n considering a d-wave
SC order parameter. This plot is shown for fixed values of attractive
interaction J = −2.0 and Coulomb repulsion U = 1.0. (a)–(c) are
sketched for several values of intensity of V , considering a constant,
odd-, and even-parity hybridizations, respectively (see the text).

decreases smoothly with increasing local Coulomb repulsion.
Remarkably, this is not always the case. For large band
fillings, the critical temperature may increase with U and then
be strongly suppressed with a further increase giving rise to a
superconducting quantum critical point.

Our numerical results for constant k-independent hy-
bridization are in qualitative agreement with those obtained
previously [20] for extended s-wave symmetry and large
U . Here, we extend the calculations for a larger range of
band fillings, for different parities of the hybridization, and
different symmetries of the superconducting order parameter.
Also, we consider the case of small U that has not been
studied before. This is probably the most interesting since
it can give rise to an increase in Tc for sufficiently large
occupations.

We further remark in Fig. 10 that, for small band-filling
n = 0.5, there is no SC order and for n = 1.0 with V constant,
see Fig. 10(a). As we increase n, the finite critical temperature
decreases with increasing U but remains finite for large U for
specific values of band-filling (n � 2.0). However, for large
band-filling n = 3.0, we see a very different behavior, i.e., Tc

increases and then is suppressed with increasing U . Note that
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(c) s wave V even
n = 0.5 no SC

Tc

(b) s wave V odd
n = 0.5 no SC

Tc

n = 1.0
n = 1.5
n = 2.0
n = 2.5
n = 3.0

(a) s wave V0

n = 0.5, 1.0 no SC

FIG. 10. Tc as a function of U considering an extended s-wave
SC order parameter. This plot is shown for fixed values of attractive
interaction J = −2.0 and V = 1.0. (a)–(c) are sketched for several
values of n, considering a constant, odd-, and even-parity hybridiza-
tions, respectively (see the text).

Tc for even-parity V , Fig. 10(c), is rather lower than for the
other cases.

For d-wave symmetry, Fig. 11 shows results not very
different from the extended s-wave case. For small band-
filling n = 0.5, there is no SC order for any parity of V . As
we increase n, the SC order appears, and Tc decreases but
remains finite for large U only for specific values of band
filling. In contrast with extended s-wave symmetry, now the
higher Tc is obtained for V even. Here, we also observe an
increase in Tc with band filling, but there is no longer any Tc

dome for the same range of parameters. Finally, we point out
that a stability analysis of the free-energy density shows that
superconductivity, depicted in Figs. 10 and 11 as a function of
increasing local repulsion and for V � 1.0, is always stable.
The phase transitions shown in these figures are continuous
second-order transitions.

IV. CONCLUSIONS

In this paper, we have studied a two-band model for a
superconductor in a square lattice. Electronic correlations in
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FIG. 11. Tc as a function of U considering a d-wave SC order
parameter. This plot is shown for fixed values of attractive interac-
tion J = −2.0 and V = 1.0. (a)–(c) are sketched for several values
of n, considering a constant, odd-, and even-parity hybridizations,
respectively (see the text).

the narrow band were treated using a slave-boson approach.
We have obtained the superconducting order parameter and
the critical temperature of the model as a function of the
band filling, hybridization, and Coulomb repulsion for both

extended s-wave and d-wave symmetries. We considered the
cases of even and odd hybridizations with respect to inversion
symmetry. A superconducting phase is found for all cases, and
in some of them, a superconducting quantum critical point is
obtained.

For band fillings between n ≈ [1.0:3.0], the critical tem-
perature increases as hybridization increases, reaching a max-
imum and then decreases. This initial increase for small V is
generally associated with a metastable character of the super-
conducting state and the presence of first-order transitions in
this region of the phase diagram. When frustration effects are
included, the critical temperature no longer increases, and the
superconducting phase is stabilized.

We found that the critical temperature is strongly depen-
dent on the band filling. For instance, for n ≈ 0.5 as well as
n ≈ 3.5 and even symmetry of hybridization, two supercon-
ducting regions are obtained: one with the usual initial de-
crease in the superconducting critical temperature with V and
a second with a dome for higher values of hybridization. The
Coulomb repulsion is also an important ingredient affecting
superconductivity: For certain values of band filling, it can
lead to a suppression of the superconducting phase, instead
of a continuous asymptotic decrease as reported in previous
works [8,20].

We expect that our results can be useful as a guide to
expectations for the finite-temperature properties of multiband
superconductors. The behavior of the critical temperature with
external parameters that can be controlled experimentally
together with the theoretical insights that we have obtained
can provide a useful criterion to distinguish between different
symmetries of the order parameter and the nature of the
orbitals involved in the superconductivity.
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