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We reveal that due to the presence of disorder oscillations of the order parameter amplitude called the Higgs
mode can be effectively excited by the external electromagnetic radiation in usual BCS superconductors. This
mechanism works for superconductors with both isotropic s-wave and anisotropic, such as d-wave, pairings. The
nonlinear response in the presence of impurities is captured by the quasiclassical formalism. We demonstrate that
analytical solutions of the Eilenberger equation with impurity collision integral and external field drive coincide
with the exact summation of ladder impurity diagrams. Using the developed formalism we show that resonant
third-harmonic signal observed in recent experiments is naturally explained by the excitation of Higgs mode
mediated by impurity scattering.
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I. INTRODUCTION

Nonlinear electromagnetic responses are ubiquitous in su-
perconducting systems and have attracted interest for many
years [1–4]. External field with the frequency � produces
several important second-order corrections to the supercon-
ducting order parameter �. The zero-frequency change of
� leads to the critical temperature and critical current en-
hancements [5–7] known as the microwave stimulation of the
superconducting state.

The time-dependent corrections to � at the frequency 2 �

produce the current oscillating with frequency [1] 3 �. This
effect called the third harmonic generation (THG) has been
observed experimentally in microwaves and explained with
the help of the time-dependent Ginzburg-Landau theory [3].

Recently the terahertz (THz) spectroscopy of the super-
conducting state has become experimentally available [8–13].
This range of frequencies is especially interesting since it
overlaps with the typical gap sizes in low-temperature super-
conductors like NbN. Thus measuring nonlinear responses in
the THz domain allows for probing dynamics of the order
parameter amplitude [11,12] predicted to feature oscillations
with an eigenfrequency 2�(T ) where �(T ) is the gap at a
given temperature [14–17]. By analogy with the Higgs boson
[18] in particle physics this type of collective excitation in
condensed matter systems is called the Higgs mode [19–23].

The order parameter amplitude oscillations excited by the
short optical pulses have been observed in several pump-
probe experiments [11,12]. Recent measurements report the
evidence of resonant Higgs mode excitation in the THG com-
ponent of the THz signal transmitted through the supercon-
ducting plate [12,24]. Earlier the amplitude modes have been
observed by Raman scattering in superconductors with charge
density wave order [25–28] and by the nuclear magnetic
resonance in superfluid 3He [29–31].

Despite the significant experimental advances, theoreti-
cal understanding of high-frequency nonlinear properties in
superconductors is still lacking. Numerical simulations pre-

sented in several works consider strongly nonequilibrium
regimes without any disorder [32–34] and have to attribute
a rather large wave vector to the radiation field in order to
obtain the sizable coupling with the order parameter. At the
same time perturbative calculations of nonlinear responses
reveal several important limitations imposed by the absence
of impurity scattering. The order parameter modulation by
the external radiation was studied in the pioneering work
of Gor’kov and Eliashberg [2] who considered the electron-
photon coupling linear by the vector potential A�. The con-
tribution of such terms to the order parameter modulation
�2� at the frequency 2� is described by the second-order
diagram in Fig. 1(a). Here current vertices • describe the lin-
ear coupling to the external field. This contribution disappears
the absence of impurity scattering [2,35,36]. One can think
of this as a consequence of the Galilean invariance featured
by the superconducting condensate. Indeed switching to the
moving frame can eliminate the condensate velocity induced
by external field. In the moving frame the order parameter
amplitude remains unaffected thus coinciding with that of the
stationary condensate. Therefore, in order to perturb the am-
plitude through the linear electron-photon coupling terms the
Galilean invariance should be broken either by the spatially-
inhomogeneous field or the inhomogeneous potential which
can naturally relate to the presence of impurities.

Based on these arguments at zero or negligibly small wave
vectors the Higgs mode excitation [35] and nonlinear response
[36] in the absence of impurities are possible only through
the electron density modulation generated by the term ∝A2

�

in the Hamiltonian. The corresponding density vertices ©
are similar to those which determine Raman scattering in
superconductors [25,37–40]. The perturbation of the order
parameter due to such coupling is shown by the diagram in
Fig. 1(b). However, this contribution to �2� vanishes within
the Bardeen-Cooper-Schrieffer (BCS) model of superconduc-
tivity and becomes nonzero only due to the various extensions
[24,35,36].
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FIG. 1. Two possible processes contributing to the order param-
eter excitation at the double frequency of external field described
by the vector potential A�. (a) The second-order diagram with two
current vertices • corresponding to the light-matter coupling linear
by the external field A�. The impurity ladder insertion is shown by
the shaded gray area. (b) The first-order diagram with momentum-
independent density vertex. The order parameter vertex D0 is defined
below in Eq. (6).

The prediction of negligible Higgs mode generation in
BCS superconductors [36] has been in contrast both to the
recent THz probes [8–12,24,41] and earlier microwave ex-
periments [3] where significant radiation-induced oscillation
�2� has been observed. Here we resolve this controversy
and show that previous theoretical conclusions about the
nonlinear response of superconductors are drastically altered
in the presence of disorder. We consider the arbitrary amount
of impurity scattering treated within the self-consistent Born
approximation. The calculations are implemented using both
the diagrammatic technique and quasiclassical Eilenberger
theory formalism [42] and the agreement between these two
approaches is demonstrated. We show that in the presence of
disorder the nonlinear process shown in Fig. 1(a) provides
quite an effective generation of the Higgs mode which shows
up through the resonant THG in agreement with several recent
experiments.

In the diffusive limit typical for the superconducting thin
films our findings confirm that the resonant third-harmonic
generation at the frequency � = �(T ) observed in Ref. [12]
is determined solely by the Higgs-mode generation. This
result is in sharp contrast with the system without impuri-
ties where the Higgs-mode generation is negligible and the
resonant contribution comes from the other source [36,43].
It agrees qualitatively with the studies of linear Higgs-
mode generation in diffusive current-carrying superconductor
[44,45].

Nonlinear responses of superconductors with impurities
have been addressed previously in Refs. [2,4–6]. Those works
considered mostly the dirty limit, small frequencies, and
temperatures close to the critical one.

More recently, the high-frequency domain has been consid-
ered where the generation of Higgs mode becomes essential.
In this regime nonlinear responses have been obtained in
the dirty limit [44,46,47]. We demonstrate explicitly that
our general calculation yields the correct dirty limit results
in accordance with previous works. In Ref. [46] diagrams
for calculating nonlinear responses with vertex corrections
were given but general expressions for the THG current and
Higgs-mode amplitude have not been obtained. In Ref. [48]
the calculation of Higgs-mode excitation has been performed
assuming that the impurity-assisted light-matter interaction
term is similar to the one used in the linear response theory.
This approach has certain limitations. For example it does not

provide the correct transition to the static limit � → 0. Indeed
it yields that without impurities the static order parameter
amplitude is not affected by the condensate velocity. This
is correct only in the zero-temperature limit that is in the
absence of quasiparticles. Besides that THG current in the
work in Ref. [48] has been calculated only in the dirty limit.
The excitation of Higgs mode through current vertices shown
in Fig. 1(a) has also been considered numerically in the
paper Ref. [49]. It has been obtained that impurity scattering
enhances Higgs mode amplitude but it is nonzero also in the
absence of impurities. This conclusion is different from that of
several previous works [2,35,36] and also of the present paper
since we obtain that in the absence of impurities and at � �= 0
the diagram in Fig. 1(a) is zero.

Despite the previous efforts mentioned above general ex-
pressions for the THG current and the Higgs-mode generation
by the electromagnetic field have not been obtained before.
In the present paper we find these expressions valid for BCS
superconductors at arbitrary impurity scattering rate, temper-
atures, and frequencies. This enables us to analyze crossover
between the dirty and clean limits. Therefore we establish
connections between the results obtained previously in these
two limiting cases [2,5,6,35,36]. Moreover, we demonstrate
that the solutions of Eilenberger equations with impurity
collision integral are equivalent to the summation of diagrams
with impurity ladders for nonlinear responses to the external
field. Therefore, Eilenberger theory can be used for studying
superconductors in arbitrary strong fields. The suggested it-
eration scheme of solving these equations can be continued
to calculate all higher-order corrections to the current and the
order parameter.

II. FORMALISM

A. General approach

We describe the interaction of electrons with electromag-
netic field using the following Hamiltonian which contains
two qualitatively different terms [38–40]

Ĥp = V̂1 + V̂2 (1)

V̂1 = −e

c
(vA) (2)

V̂2 = τ̂3
e2

2mc2
A2, (3)

where v = ∂Ep/∂ p is the band velocity, and m and e are
the electron mass and charge. Here we introduce the no-
tation τ̂0,1,2,3 for the Pauli matrices in Nambu particle-hole
space. In the diagrammatic representation the perturbation
term V̂1 linear in the external field amplitude is described
by the current vertex with attached single external field line.
Such current vertices determine diagrams of the type shown
in Fig. 1(a). The term V̂2 quadratic by the external field
produces radiation-induced electronic density modulation.
Thus light-matter coupling is described by diagrams with
density vertices ∝τ̂3 such as shown by the open circles in
Fig. 1(b).
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The charge current and order parameter as functions of the
at imaginary time τ at the interval [0, β] are given by

j(τ ) = e
∫

d3 p
(2π )3

(
v − τ3

e

c
m̂−1A(τ )

)
Ĝ(p, τ1,2 = τ ) (4)

�̂(τ ) = λ̃

∫
d3 p

(2π )3
P̂[Ĝ](p, τ1,2 = τ ), (5)

where Ĝ(p, τ1,2) is the imaginary time Green’s function (GF),
λ̃ is the pairing constant, and P̂[Ĝ] = τ̂1Tr(τ̂1Ĝ) + τ̂2Tr(τ̂2Ĝ)
is the projection operator.

It will be convenient to use also the frequency
representation which can be defined as Ĝ(ω,�) =∫

dτ1dτ2Ĝ(τ1, τ2)eiω(τ1−τ2 )+i�(τ1+τ2 ). In this representation
the self-consistency relation can be written as �2� = D̂0[Ĝ],
where D̂0 is the order parameter vertex which appears first
in the diagrams in Fig. 1. The algebraical expression for D̂0

reads

D̂0[Ĝ] = λ̃T
∑

ω

∫
d3 p

(2π )3
P̂[Ĝ](ω,�, p). (6)

The stationary propagators depend only on the frequency
corresponding to the relative time Ĝ = Ĝ0(ω, p). In disor-
dered superconductors with an arbitrary amount of pointlike
impurity scatterers treated within the self-consistent Born
approximation propagators are given by [50]

Ĝ0(ω, p) = �̃τ̂1 − iω̃τ̂0 − ξpτ̂3

�̃2 + ω̃2 + ξ 2
p

(7)

ω̃ = ω
s̃(ω)

s(ω)
; �̃ = �

s̃(ω)

s(ω)
, (8)

where ξp = p2/2m − μ is the deviation of the kinetic energy
from the chemical potential μ and τ̂1,2,3 are the Pauli ma-
trices in Nambu space. We denote s = √

ω2 + �2 and s̃ =
s + 1/2τimp.

The propagator (7) is averaged over the randomly disor-
dered point scatterers configurations. It is parametrized by the
scattering time τ−1

imp = 2πνnu2, where ν is the normal metal
density of states at the Fermi level, u is the impurity potential
strength, and n is the density of impurities.

We are interested in the nonlinear contribution to the
current determined by the diagrams in Fig. 2 where the
coupling to the electromagnetic field is determined by the
vector current-type vertices. Such diagrams are generated by
the perturbation potential V̂1 given by Eq. (2). As we see below
the contribution of such diagrams to the measurable quantities
is captured by the quasiclassical Eilenberger equations [42].
We assume here that all external field lines have the same time
dependence A�ei�t , so that diagrams in Fig. 2 yield the third
harmonic response of the current ( jAAA + jH )e3i�t .

The diagrams shown in Fig. 2(a) determine the current jAAA

generated by the direct coupling to the external field through
the current vertices. Dashed lines correspond to impurity
scattering averaged over the random disorder configuration.
Analytically one should integrate over the input/output mo-
mentum the content between the dashed line start and end
points as well as multiply the result by the factor 1/(2πτimp).

FIG. 2. Diagrams with current vertices • = ev/c contributing to
nonlinear response. (a) Direct third-order coupling to the external
field A�. The dashed lines show impurity scattering correction in
Born approximation averaged by Gaussian disorder. Shaded regions
show impurity ladders. (b) Coupling to the external field through
the excitation of the order parameter oscillation �2� shown by
the dash-dotted line and the corresponding vertex is � = τ̂1. The
filled triangle corresponds to the order parameter vertex modified
by the polarization bubble insertions which yield the Higgs mode
excitation.

The shaded regions show impurity ladders discussed in detail
in Sec. IV B.

Besides the direct coupling to external field equally im-
portant is the third-harmonic generation by the current jH
determined by the order parameter modulation �2�ei2�τ . Tak-
ing into account that �2� is generated by an external source
according to the diagram in Fig. 1(a) the current jH can be rep-
resented by the third-order response diagram in Fig. 2(b). This
contribution is of special interest since as we will demonstrate
its frequency dependence contains the information about the
Higgs mode, that is the resonant enhancement of the order
parameter oscillations amplitude at � = �. Technically the
resonant Higgs mode contribution is determined by the po-
larization operator which modifies the gap function vertex
shown by the filled triangle in Fig. 2(b). This vertex yields
the order parameter coupling to the external source such as
the second-order correction of the GF by the electromagnetic
field discussed above. The diagrammatic representation of the
order parameter vertex with polarization bubble insertions is
shown in Fig. 3. Note that it contains impurity scattering
corrections, both as the self-energies modifying individual
propagator lines and the ladder dressing the � = τ̂1 vertex.

Previously, it has been shown that in the absence of im-
purities τimp = ∞ the contribution of diagrams with current
vertices • to the order parameter modulation �2� disappears
[2,12,35,36]. In this case the only nonzero contribution is
given by the diagrams with density vertices © shown in
Fig. 4. Below we compare the contributions of these diagrams

FIG. 3. Order parameter vertex D (filled triangle) corrected by
the polarization operator insertions. � = τ̂1, � = D̂0, dashed region
corresponds to the impurity ladder insertion.
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FIG. 4. Diagram contributing to the THG current response
through the density modulation due to the direct coupling to the
vector potential A� denoted by wavy lines. Density vertices © =
τ̂3(e2/2mc2 ) are the same as in Fig. 1(b).

to obtain the threshold impurity concentration when the para-
magnetic diagrams start to dominate.

B. Quasiclassical theory

In general it is believed that the quasiclassical approxi-
mation introduced by Eilenberger [42] takes into account all
diagrams with current vertices shown in Fig. 2 but neglects the
ones with density vertices. Technically this happens because
the τ̂3A2 terms in the Hamiltonian generically drop out from
the quasiclassical equations. However, previously there has
been done no direct comparison of the results given by quasi-
classical theory with those obtained from diagrams describing
coupling to the external field in the presence of impurity
scattering. We will implement this check and demonstrate
the summation of diagrams with impurity ladders give the
same results as the quasiclassical calculation implemented
according to the formalism described below.

The quasiclassical propagator is defined as

ĝ = i

π

∫
dξpτ̂3Ĝ. (9)

In the imaginary time domain ĝ = ĝ(τ1, τ2, r, vF ) is deter-
mined by the Eilenberger equation [42]

ie

c
vF [τ̂3A, ĝ]τ

= −i{τ̂3∂τ , ĝ}τ + i[τ̂3�̂, ĝ]τ + 1

2τimp
[〈ĝ〉◦, ĝ]. (10)

Here we denote the commutators [X, g]τ = X (τ1)g(τ1, τ2) −
g(τ1, τ2)X (τ2) and the convolution is given by 〈ĝ〉 ◦ ĝ =∫ β

0 dτ 〈ĝ〉(τ1, τ )ĝ(τ, τ2). The angle averaging over the Fermi
surface is given by 〈g〉.

The current and order parameter are given by

j(τ ) = −iπeνTr[τ̂3〈vF ĝ(τ, τ )〉] (11)

�̂(τ ) = −iλP̂[τ̂3〈ĝ(τ, τ )〉], (12)

where λ = πνλ̃ and vF = v(p = pF ) is the Fermi velocity
which is the band velocity at the momentum equal to the
Fermi momentum pF . The quasiclassical equations are sup-
plemented by the normalization condition ĝ ◦ ĝ = 1.

1. Dirty limit: Usadel theory

In the dirty limit τimpTc � 1 the calculations can be signif-
icantly simplified using the Usadel equation formalism [51].
The key idea of this approximation is to represent the GF as

the superposition of isotropic 〈ĝ〉 and anisotropic ĝan ∝ (vF A)
parts. For the validity of Usadel theory it is required that
the anisotropic part is small ĝan � 〈ĝ〉 which is satisfied in
the diffusive limit. Then using the normalization condition
〈ĝ〉 ◦ ĝan + ĝan ◦ 〈ĝ〉 = 0 one gets the Usadel equation for
the isotropic component 〈ĝ〉 which reads (we omit angular
brackets)

− i{τ̂3∂τ , ĝ}τ + i[τ̂3�̂, ĝ]τ = �̂em ◦ ĝ − ĝ ◦ �̂em (13)

�̂em(τ1, τ2) = De2

c2
A(τ1)τ̂3ĝ(τ1, τ2)τ̂3A(τ2) (14)

j(τ ) = π
σ

c
Tr[τ̂3ĝ(τ, τ1) ◦ (ĝ(τ1, τ )A(τ )τ̂3

− τ̂3A(τ1)ĝ(τ1, τ ))], (15)

where the self-energy �̂em describes coupling to the electro-
magnetic field, the diffusion coefficient is D = τimpv

2
F /3, and

conductivity is σ = e2νD.

III. QUASICLASSICAL CALCULATIONS

First, we obtain time-dependent perturbations of the or-
der parameter and the third-order current response using the
Eilenberger theory for quasiclassical propagators. In Sec. IV
these results will be confirmed by the direct summation of im-
purity ladder diagrams with current-type vertices describing
the light-matter interaction.

A. Nonlinear response: Direct light-matter interaction

We start with calculating corrections generated directly by
the time-dependent vector potential. Corrections due to the
order parameter oscillations which contain the Higgs mode
contribution are considered below in Sec. III B. In the pres-
ence of the oscillating external field A�ei�τ we can find the
solution of Eilenberger equation (10) in the form of expansion
by the orders of A�:

ĝ(τ1, τ2) = T
∑

ω

eiω1τ1 [ĝ0(1)e−iω1τ2 + ĝA(12)e−iω2τ2

+ ĝAA(13)e−iω3τ2 + ĝAAA(14)e−iω4τ2 ], (16)

where we introduce the shortened notation to define the
frequency dependence such as ĝA(i j) = ĝA(ωi, ω j ) and the
shifted Matsubara frequencies ω1 = ω + 2�, ω2 = ω + �,
ω = ω, ω4 = ω − �. The zeroth-order solution given by the
unperturbed propagator given from Eqs. (7) and (9)

ĝ0(ω) = τ̂3ω − τ̂2�

s(ω)
, (17)

where s(ω) = √
ω2 + �2.

The expansion terms in Eq. (16) can be found in the form
where momentum direction dependence is explicitly defined

ĝA = α cos χ ĝ1a(ω) (18)

ĝAA = α2(cos2 χ − 1/3)ĝ2a + α2ĝ2s/3 (19)

ĝAAA = α3 cos χ [(cos2 χ − 1/3)ĝ3a + ĝ3s/3], (20)
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where we denote cos χ = vF A�/vF A� and α = evF A/c.
The impurity collision integral [〈ĝ〉, ĝ] disappears for the
isotropic parts of the propagator, so that we have in the first-
order [〈ĝ〉, ĝ](1) = [ĝ0, ĝA], in the second-order [〈ĝ〉, ĝ](2) =
α2(cos2 χ − 1/3)[ĝ0, ĝ2a], and for the third-order correction
[〈ĝ〉, ĝ](3) = [ĝ0, ĝ3] + [ĝ2s, ĝA]/3. Then we obtain a chain
of equations to determine corrections driven by the direct
coupling to the vector potential. The equation for the first-
order correction reads

i[τ̂3ĝ0(3) − ĝ0(2)τ̂3] = s̃2ĝ0(2)ĝ1a(23) − s̃3ĝ1a(23)ĝ0(3),

(21)

where we introduce the notation si = s(ωi ) and s̃i = si +
1/2τimp. The equation for second-order correction ĝ2s is

i[τ̂3ĝ1a(34) − ĝ1a(23)τ̂3]

= s2ĝ0(2)ĝ2s(234) − s4ĝ2s(234)ĝ0(4). (22)

The equation for ĝ2a has the similar form with the replace-
ments s2,4 → s̃2,4 in the right hand side. Finally the equation
for the third-order correction is

[
iτ̂3 + ĝ1a(12)

2τimp

]
ĝ2s(234) − ĝ2s(123)

[
iτ̂3 + ĝ1a(34)

2τimp

]

= s̃1ĝ0(1)ĝ3s − s̃4ĝ3sĝ0(4), (23)

i[τ̂3ĝ2a(234) − ĝ2a(123)τ̂3] = s̃1ĝ0(1)ĝ3a − s̃4ĝ3aĝ0(4).
(24)

The solution of the above equations reads as follows. The first-
order correction is given by

ĝ1a(12) = i
ĝ0(1)τ̂3ĝ0(2) − τ̂3

s1 + s2 + τ−1
imp

. (25)

Substituting this solution to the expression for current density
(11) and implementing analytical continuation to real frequen-
cies one recovers linear-response conductivity for arbitrary
impurity scattering [52–55].

The isotropic second-order correction ĝ2s is given by

ĝ2s(234) = i
s2ĝ0(2)X̂ (234) + s4X̂ (234)ĝ0(4)

s2
2 − s2

4

, (26)

X̂ (234) = τ̂3ĝ1a(34) − ĝ1a(23)τ3 (27)

and the anisotropic part ĝ2a is obtained by the replacements
s2,4 → s̃2,4 in the right hand side of Eq. (26). Finally, the third-
order correction is given by

ĝ3s,3a = i
s̃1ĝ0(1)Ŷs,a + s̃4Ŷs,aĝ0(4)

(s1 − s4)
(
s1 + s4 + τ−1

imp

) , (28)

Ŷs =
[
τ̂3 − iĝ1a(12)

2τimp

]
ĝ2s(234)

− ĝ2s(123)

[
τ̂3 − iĝ1a(34)

2τimp

]
, (29)

Ŷa = τ̂3ĝ2a(234) − ĝ2a(123)τ̂3. (30)

As discussed below in Sec. III D in order to use solutions
(28) for the numerical calculation it is necessary to convert

them into the form which does not have the factor s1 − s4

in the denominators. This can be done with the help of
normalization condition ĝ ◦ ĝ = 1 which yields the following
relations for the corrections

ĝ0(1)ĝ1a(13) + ĝ1a(13)ĝ0(3) = 0 (31)

ĝ0(1)ĝ2s(123) + ĝ2s(123)ĝ0(3) + ĝ1a(12)ĝ1a(23) = 0 (32)

ĝ0(1)ĝ3s + ĝ3sĝ0(4) + ĝ1a(12)ĝ2s(234)

+ ĝ2s(123)ĝ1a(34) = 0. (33)

The commutation relations for ĝ2a and ĝ3a are obtained by
substituting these functions instead of ĝ2s and ĝ3s to the
relations (32) and (33), respectively. As the consistency check,
one can prove by the direct calculation that the solutions (26)
and (28) satisfy Eqs. (32) and (33). With the help of these
relations one can rewrite Eq. (28) in the form suitable for
numerics as described in Appendix A. Using this form it is
also possible to derive the diffusive limit consistent with the
results given directly by the Usadel equations as discussed in
Sec. V D and in Appendix B.

B. Higgs mode contribution to the nonlinear response

Besides corrections to the GF induced directly by the
coupling to vector potential we need to take into account
the nonlinear current induced through order parameter oscil-
lations. This process is depicted by the diagrams shown in
Fig. 2(a).

First, let us calculate the current generated by the vector
potential A�ei�τ combined with the order parameter oscillat-
ing with the frequency 2� which we denote as τ̂1�2�e2i�τ .
We can find the corresponding solutions of Eilenberger equa-
tion in the form

ĝ(τ1, τ2) = ĝ�(τ1, τ2) + ĝ�A(τ1, τ2) (34)

ĝ�(τ1, τ2) = T
∑

ω

ĝ�(13)eiω1τ1−iω3τ2 (35)

ĝ�A(τ1, τ2) = α cos χT
∑

ω

ĝ�A(1234)eiω1τ1−iω4τ2 . (36)

We use a similar approach to solve the chain of equations for
corrections as in the previous section. Then the obtained first-
and second-order solutions read

ĝ�(13) = �2�

ĝ0(1)τ̂2ĝ0(3) − τ̂2

s1 + s3
(37)

ĝA� = i
s̃1ĝ0(1)(Ŷ� − iŶA) + s̃4(Ŷ� − iŶA)ĝ0(4)

(s1 − s4)
(
s1 + s4 + τ−1

imp

) (38)

ŶA = �2�[τ̂2ĝ1a(34) − ĝ1a(12)τ̂2] (39)

Ŷ� =
[
τ̂3 − iĝ1a(12)

2τimp

]
ĝ�(24)

− ĝ�(13)

[
τ̂3 − iĝ1a(34)

2τimp

]
, (40)

where the first-order correction due to the vector potential ĝ1a

is given by Eq. (25).
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Note that the correction ĝ� induced by the order parameter
oscillations is completely isotropic and therefore is not af-
fected by the impurity scattering collision integral. From this
one can immediately conclude that the polarization operator
which determines the Higgs mode is not sensitive to the
disorder.

As discussed below in Sec. III D in order to use the solution
(38) for the numerical calculation of the analytical continua-
tion it is necessary to convert it into the form which does not
have the factor s1 − s4 in the denominator. This can be done
with the help of normalization condition of the quasiclassical
GF. For the corrections it yields

ĝ0(1)ĝ�(13) + ĝ�(13)ĝ0(3) = 0 (41)

ĝ0(1)ĝA� + ĝA�ĝ0(4) + ĝ1a(12)ĝ�(24)

+ ĝ�(13)ĝ1a(34) = 0. (42)

One can check by the direct calculation with the certain
analytical effort that the solutions (37) and (38) satisfy the
conditions (41) and (42). Then, using these relations it is
possible to convert (42) to the required form as described in
Appendix A.

The correction ĝA� is the basic building block to calculate
the Higgs mode-related current jH according to the diagram
in Fig. 2(b). In order to obtain jH as the third-order response
to the external field we need to calculate the order parameter
amplitude �2� excited in the second order by A� as shown
by the diagram in Fig. 1(a). This can be done in two steps
described below.

1. External perturbation of the order parameter

First, from the diagram in Fig. 1(a) we find the source,
that is the time-dependent order parameter induced directly
by the external field. The amplitude F� can be found using
the isotropic second-order correction for the GF ĝ2s calculated
above (26)

F�(2�) = −λα2

3
T

∑
ω

Tr[τ̂2ĝ2s]. (43)

2. Polarization operator

Second, to find the order parameter amplitude �2� driven
by the external source F� we need to take into account
the polarization corrections given by the diagrammatic series
shown in Fig. 3. Thus the renormalized order parameter vertex
D̂ denoted in Fig. 3 by the filled triangle is related to the bare
one D̂0 as D̂ = D̂0/[1 − �(2�)]. Here � is the polarization
operator given by the single bubble in Fig. 3. Thus the total
order parameter perturbation is related to the external source
F� as

�2� = F�

1 − �(2�)
. (44)

Previously, the polarization operator has been calculated
in the clean limit [35,36]. In the presence of impurities the
diagram summation becomes more complicated because be-
sides the modification of propagator lines we need also to take
into account the impurity ladders. However, as shown below

in result the expression for � remains the same as in the clean
limit.

Instead of the direct diagram summation it is much faster to
calculate the polarization operator in the presence of disorder
within the quasiclassical formalism. Let us assume that there
is an external driving term in the gap function given by
e2i�τ F�τ̂1. Then in the Eilenberger equation we have the
source iτ̂3τ̂1e2i�τ F� = −τ̂2e2i�τ F�. Besides that there is a
response of the order parameter which we denote e2i�τ�2�τ̂1.
Then the amplitude of the total off-diagonal driving term
in the Eilenberger equation is �2� + F�. Then we can use
this amplitude instead of �2� in the expression (37) for the
corresponding correction to the propagator.

The self-consistency equation �2� = −λT
∑

ω

Trτ̂2ĝ�(13) yields

�(�) = 1 + λT
∑

ω

(
s1s3 − �2 + ω1ω3

s1s3(s1 + s3)
− 1

s1

)
, (45)

where we denote as before s1 =
√

ω2
1 + �2 and s3 =√

ω2
3 + �2 . Taking into account that

∑
ω(s−1

3 − s−1
3 ) = 0 the

expression for polarization operator (45) can be transformed
to

�(2�) = 1 + λT
∑

ω

�2 + �2

s(ω2 − �2)
. (46)

The analytical continuation of this expression to real fre-
quencies as explained in Sec. III D yields the result coin-
ciding with the one obtained previously in the clean limit
[14,15,26,35,36]. Note, however, that here we have demon-
strated that this expression is valid for arbitrary impurity
scattering time.

C. Total current

Finally we collect expressions for the current j = jAAA +
jH given by the diagrams shown in Fig. 2

jAAA(�) = −iπνevF
α3

9
T

∑
ω

Tr[τ̂3(ĝ3s + 4ĝ3a/5)], (47)

jH (�) = −iπνevF
α

3
T

∑
ω

Tr[τ̂3ĝ�A]. (48)

In order to find the current at real frequency we need to make
analytical continuation of Eqs. (47) and (48) as described in
Sec. III D. In general, this procedure leads to the expressions
which can be handled only numerically and in Sec. VI we
show the characteristic dependencies of THG current on var-
ious parameters. However, in a number of limiting cases it
is possible to treat these expressions analytically which we
discuss in Sec. V. In Sec. VI we prove that the results of
quasiclassical calculations of the nonlinear response coincide
with those obtained by the summation of diagrams with
current vertices in the presence of impurity self-energy and
ladders.

D. Analytical continuation

In order to find the real-frequency response we need to
implement the analytical continuation of Eqs. (47) and (48).
These third-order responses are obtained by the summation
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of expressions which depend on the four shifted fermionic
frequencies such as g = g(ω1, ω2, ω3, ω4). The analytical con-
tinuation of the sum by Matsubara frequencies is determined
according to the general rule [56]

T
∑

ω

g(ω1, ω2, ω3, ω4) →
4∑

l=1

∫
dε

4π i
n0(εl )

[
g
(
...,−iεR

l , ...
)

− g
(
...,−iεA

l , ...
)]

, (49)

where n0(ε) = tanh(ε/2T ) is the equilibrium distribution
function. In the r.h.s. of (49) we substitute in each term
ωk<l = −iεR

k and ωk>l = −iεA
k for k = 1, 2, 3, 4, denote εk =

ε + (3 − k)� and εR = ε + i�, εA = ε − i�. Here the term
with � > 0 is added to shift of the integration contour into
the corresponding half-plane. At the same time, � can be
used as the Dynes parameter [57] to describe the effect of
different depairing mechanisms on spectral functions in the
superconductor. We implement the analytical continuation in
such a way that s(−iεR,A) = −i

√
(εR,A)2 − �2 assuming that

the branch cuts run from (�,∞) and (−∞,−�).
Special care should be given to the differences si − s j in

the denominators of Eqs. (26), (28), and (38) for the second-
and third-order responses. When analytically continued to the
real energies and frequencies these combinations become zero
for certain energies. Indeed, e.g., for i = 1, j = 4 we have
ε − 2� = −(ε + �) for ε = �/2 so that sA

1 = sR
4 for such

energy. Thus, the numerical integration of the expressions that
contain combinations like sA

1 − sR
4 in the denominators is not

possible. Fortunately, the expressions (26), (28), and (38) with
certain analytical effort can be written in the form which does
not contain si − s j combinations in the denominators. The
procedure of how this can be done using the commutation
relations (31, 32, 33) and (41, 42) for the second-order cor-
rections ĝ2s,2a and third-order correction ĝ3s,3a, ĝA� is given
in Appendix A.

IV. DIAGRAM SUMMATION

It is the goal of this section to demonstrate that corrections
given by the diagrams with current vertices can be calculated
using quasiclassical approximation introduced in the previ-
ous section. For this purpose we consider impurity ladder
diagrams for corrections up to the third order in external
field and use them to derive equations for the corresponding
momentum-integrated propagators introduced according to
Eq. (9).

A. First-order corrections

Let us start with the simplest diagrams for the first-order
corrections induced by the interaction with external field
A�ei�τ through the current-type vertex and by the order
parameter modulation �2�e2i�τ as shown in Fig. 5. We aim to
demonstrate the general approach for deriving equation for the
momentum-integrated propagators using the simplest diagram
shown in Fig. 5(a).

Let us introduce the notation

ĝA = i

π

∫
dξpτ̂3ĜA. (50)

FIG. 5. Diagrammatic representation of the first-order correc-
tions due to (a) interaction with external field A� through the current
vertex and (b) interaction with the order parameter perturbation �2�

through the order parameter vertex dressed by the impurity ladder
shown by the dashed region. (c) Diagrammatic equation for the
correction (b).

The key idea of the derivation of the simplified equation
for ĝA(12) is to use the following trick. Let us multiply the
function ĜA(12) by Ĝ−1

0 (1) from the left and by Ĝ−1
0 (2) from

the right, subtract the results, and integrate by ξp.
We use that Eq. (7) yields the relations Ĝ−1

0 ( j) = �̃ j τ̂1 +
iω̃ j τ̂0 + ξpτ̂3 and �̃ j τ̂1 + iω̃ j τ̂0 = i(s j + 1/2τimp)ĝ0(ω j )τ̂3,

where s j =
√

ω2
j + �2. Then we eliminate off-shell contribu-

tions in the momentum integrals to express the result through
quasiclassical propagators∫

dξp

π

[
Ĝ−1

0 (1)ĜA(12) − τ̂3ĜA(12)Ĝ−1
0 (2)τ̂3

]
= s̃1ĝ0(1)ĝA − s̃2ĝAĝ0(2), (51)

where we introduce the notation s̃ j = s j + 1/2τimp. The ob-
tained expression coincides with the r.h.s. of the Eilenberger
Eq. (21) for the correction ĝA.

Next let us derive the l.h.s. of the equation for ĝA.
Using the diagram Fig. 5(a) we get that Ĝ−1

0 (1)ĜA(12) −
τ̂3ĜA(12)Ĝ−1

0 (2)τ̂3 = α cos χ [Ĝ0(2) − τ̂3Ĝ0(1)τ̂3]. Then, in-
tegrating by ξp we obtain the equation to determine ĝA(12)
coinciding with Eqs. (18) and (21).

Let us now consider the momentum integrated correction

ĝ� = i

π

∫
dξpτ̂3Ĝ�, (52)

where Ĝ� is given by the more complicated diagram Fig. 5(b)
with ladder insertion. Following the procedure described
above we get the r.h.s. of the equation for ĝ�(13) in the
form similar to (51). To obtain the l.h.s one needs to use the
diagrammatic equation Fig. 5(c). Using the fact that Ĝ� does
not depend on the momentum direction we write this equation
in the algebraic form as follows

Ĝ�(13) = Ĝ0(1)�̂2�Ĝ0(3) + Ĝ0(1)
ĝ�τ̂3

2iτimp
Ĝ0(3). (53)

From these equations we obtain Ĝ−1
0 (1)Ĝ�(13) −

τ̂3ĜA(13)Ĝ−1
0 (3)τ̂3 = (�̂2� − iĝ�τ̂3/2τimp)Ĝ0(3) − τ̂3Ĝ0(1)

(�̂2�τ̂3 − iĝ�/2τimp). Then terms with impurity scattering in
the l.h.s. and r.h.s. appear to be exactly the same. In result we
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FIG. 6. (a) The second-order correction GAA due to the direct
coupling to vector potential A� through current vertices, ωk =
ω + (3 − k)�. (b) Diagrammatic equation to determine the second-
order correction for the propagator with current vertices modified
by impurity scattering in ladder approximation. (c) The third-order
correction GAAA. (d) Correction that is generated by the combined
order parameter and vector potential perturbations.

recover the quasiclassical equation for ĝ� with the solution
Eq. (37) which is not sensitive to impurity scattering.

B. Second-order correction

In this section we calculate the basic element of the
nonlinear response diagrams Fig. 2, that is the second-order
correction ĜAA modified by the impurity ladder as shown
in Fig. 6(a). We denote the frequencies ω1 = ω + 2�, ω2 =
ω + �, ω3 = ω, ω4 = ω − �.

The correction ĜAA can be thought of as a result of the
second-order electron-photon interaction process. It is deter-
mined by the equation shown diagrammatically in Fig. 6(b).
Due to the presence of two current vertices the angle average
associated with the dashed impurity line produces nonzero
result. The corresponding integral equation for ĜAA reads

ĜAA(123) = α2 cos2 χĜ0(1)Ĝ0(2)Ĝ0(3)

+ Ĝ0(1)
〈ĝAA(123)〉χ

2iτimp
τ̂3G0(3), (54)

where we denote the angular average 〈 f 〉χ =∫ π

0 dχ sin χ f (χ ) and the momentum-integrated GF
ĝAA = iπ−1

∫
dξpĜAA. From Eq. (54) we can obtain the

equation for the momentum-integrated GF ĝAA. Using the
same method as described above in Sec. IV A we get

the equation for ĝAA = ĝAA(123) which reads as

iα2 cos2 χ [ĝ1a(12)τ̂3 − τ̂3ĝ1a(23)]

= s̃1ĝ0(1)ĝAA − s̃3ĝAAĝ0(3) + 〈ĝAA〉χ ĝ0(3) − ĝ0(1)〈ĝAA〉χ
2τimp

.

(55)

Using the ansatz (19) we get from here Eq. (26) for the
components ĝ2s and ĝ2a.

C. Third-order correction

The third-order correction to the GF is determined by the
diagram shown in Fig. 6(c). The corresponding analytical
expression reads

ĜAAA = −α3 cos3 χĜ0(1)Ĝ0(2)Ĝ0(3)Ĝ0(4)

− α cos χ

2iτimp
[Ĝ0(1)〈ĝAA(123)〉χ τ̂3Ĝ0(3)Ĝ0(4)

+ Ĝ0(1)Ĝ0(2)〈ĝAA(123)〉χ τ̂3Ĝ0(4)]. (56)

The straightforward calculation of ĜAAA is rather lengthy.
However, it is possible to show that the momentum-
integrated function ĝAAA = iπ−1

∫
dξpτ̂3ĜAAA satisfies Eilen-

berger Eqs. (23) and (24). The key idea of this derivation is to
use the same trick as introduced above in Sec. IV A to rewrite
the diagrammatic equation in terms of the quasiclassical prop-
agators. First, we multiply Eq. (56) from the left by Ĝ−1

0 (1),
from the right by Ĝ−1

0 (4), and then subtract the results in the
same way as given by the Eq. (51) to obtain the r.h.s. of the
Eilenberger equation in the form

∫
dξp

π

[
Ĝ−1

0 (1)ĜAAA − τ̂3ĜAAAĜ−1
0 (4)τ̂3

]
= s̃1ĝ0(1)ĝAAA − s̃4ĝAAAĝ0(4). (57)

The l.h.s. of the resulting equation can be expressed in terms
of the quasiclassical propagators directly from Eq. (56). In this
way we obtain

iα cos χ [Ŷa/3 + (cos2 χ − 1/3)Ŷs]

= s̃1ĝ0(1)ĝAAA − s̃4ĝAAAĝ0(4), (58)

where Ŷs,a are given by Eqs. (29) and (30). Using the ansatz
(20) we get from Eq. (58) the solutions for components (28).

D. Corrections due to the Higgs mode

Correction to the GF ĜA� generated by the combined
action of the vector potential and the time-dependent or-
der parameter is given by the diagram in Fig. 6(d). This
perturbation determines the nonlinear current jH which is
sensitive to the excitation of the Higgs mode as shown by
the diagram in Fig. 2(b). As before we are interested in
the momentum-integrated function ĝA� = iπ−1

∫
dξpτ̂3ĜA�

because it determines the correction to the current. Treating
the diagram Fig. 6(d) using exactly the same procedure as
above we arrive at the equation for ĝA� obtained directly from
the Eilenbeger formalism. Its solution is given by the Eq. (38).
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V. LIMITING CASES AND ESTIMATIONS

A. Normal state or very high frequencies � � �

First, let us check that in the normal state the third-
harmonic response disappears. This can be seen from the
analytical continuations of Eq. (47) for jAAA because the
Higgs mode-related part jH does not exist in the nor-
mal state. Let us introduce the condensed notation, e.g.,
g(−iε1,−iε2,−iε3,−iε4) = g(1R, 2R, 3R, 4R). In the normal
state ĝ0(−iεR,A) = ±τ̂3. Besides that we have s(−iεR

k ) =
−i[ε + (k − 3)�] and s(−iεA

k ) = i[ε + (k − 3)�] so that the
sum s(−iεR

k ) + s(−iεA
n ) = i(n − k)�, that this combination

does not depend on energy.
Then for the third-order corrections given by Eqs. (28)

one can see that ĝ3a(1R, 2R, 3R, 4R) = ĝ3s(1A, 2A, 3A, 4A) =
0. Moreover, ĝ3a(1A, 2A, 3R, 4R) = −2ĝ3a(1A, 2R, 3R, 4R) =
−2ĝ3a(1A, 2A, 3A, 4R). The same relations are true for ĝ3s. Due
to these relations, the contributions from different branch cuts
(49) in the expression for the normal state current jAAA cancel
identically.

Note that for the frequencies � � � the effect of su-
perconducting correlations disappears, so one can consider
the system as normal metal. Hence the nonlinear response
vanishes in this high-frequency limit. This is the reason why
diagrams with current vertices corresponding to the intraband
transitions can be neglected when the frequencies associated
with single external filed lines are large as in the Raman
response.

B. Absence of impurities τimp = ∞
Previously it has been noted that in the clean limit, in the

spatially homogeneous case and finite frequency the order
parameter amplitude is not affected by the irradiation [2]. In
that work by Gor’kov and Eliashber only the contribution of
diagrams with current vertices has been taken into account.
Under the same assumptions nonlinear current response also
disappears. Here we check our general results for consistency
against this limiting case of τimp = ∞.

1. Order parameter perturbation

First, let us look at the second-order corrections which
determine perturbation of the order parameter F� according
to the diagram Fig. 1(a). In the limit τimp = ∞ the solutions
isotropic second-order correction to GF (26) yields (see Ap-
pendix C for details)

Tr[τ̂2ĝ2s(123)] = − �

2�2

(
2s−1

2 − s−1
1 − s−1

3

)
. (59)

Therefore in Eq. (43) the sum over frequencies disappears so
that

F�(2�) = λα2 �

2�2
T

∑
ω

(
2s−1

2 − s−1
1 − s−1

3

) = 0. (60)

Now let us consider the contribution of the diagram with
density modulation Fig. 1(b). In this case we obtain

F (d )
� = λ̃

e2A2

2mc2
tr[τ̂1Ĝ0(1)τ̂3Ĝ0(3)], (61)

where tr[X̂ ] = T
∑

ω

∫
d3 p/(2π )3Tr[X̂ ]. The momentum in-

tegral in (61) disappears due to the particle-hole symme-
try [35,36] which holds up to the corrections of the order
Tc/EF � 1. The same conclusion holds in the presence of im-
purity scattering which modifies propagators and the density
vertex as shown in Fig. 1(b) by the shaded region.

Thus, the contribution of density modulation to the Higgs
mode excitation always vanishes due to the particle-hole
symmetry. Therefore it has been claimed that the Higgs mode
does not contribute to the third harmonic generation [36,43].
Below we show that in the presence of impurities the nonzero
F� is obtained within the quasiclassical approximation and
does not contain small prefactors.

2. THG current response

Let us now consider the expression for the current jAAA

which in the absence of impurities is determined by the
third-order correction ĝAAA given by Eqs. (20). The expression
which determined the current can be written as

Tr[τ̂3ĝ3] = i

6�2
[ f (123) − f (234)], (62)

where f (123) = f (ω1, ω2, ω3) is the function which ex-
act form is rather lengthy and not particularly important.
Then due to Eq. (62) the sum over Matsubara frequen-
cies in Eq. (47) for current disappears since

∑
ω f (123) =∑

ω f (234).

C. Transition to the clean limit τimpTc � 1

As shown above in Sec. V B the finite-frequency contri-
bution of diagrams with current vertices Fig. 1(a) disappears
in the absence of impurity scattering and other relaxation
mechanisms. The contribution of diagram with density ver-
tices Fig. 1(b) is zero with the accuracy of the particle-hole
symmetry near the Fermi level. So that the contribution of
Higgs mode excitation to the THG signal is expected to
have the negligible amplitude [36,43] as compared to the
direct coupling described by the diagram in Fig. 4. Thus the
polarization dependence of the THG signal is expected to be
sensitive to the lattice anisotropy.

Here we show that the above conclusions can be drastically
altered in the presence of rather small impurity concentrations,
typical for all realistic superconducting samples, especially in
thin film geometries. Our goal is to find the threshold value of
impurity scattering when the diagrams with current vertices
become dominant so that the quasiclassical theory described
in Sec. II B is applicable for calculating nonlinear properties.

To understand the magnitude of this threshold in this
subsection let us analyze the amplitudes in the regime of low
frequencies, impurity scattering rates, and small temperatures
as compared to the critical temperature T,�, τ−1

imp � Tc. In
Sec. VI the numerical results with broad range frequency and
scattering rate dependencies are presented.

1. Order parameter perturbation

First, let us estimate the magnitude of the external order
parameter perturbation in the presence of weak disorder. The
contribution of diagrams with current vertices Fig. 1(a) to
the order parameter perturbation F� can be obtained using
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solution (26) expanded in the regime �, τ−1
imp � Tc

Tr[τ̂2ĝ2s] = �

6

[
�2 − 2ω2

(�2 + ω2)5/2
+ ω2 − �2

τimp(�2 + ω2)3

]
. (63)

Then at small temperatures T � Tc the first term here
vanishes upon the integration over ω while the second term
yields the leading order expansion by the scattering rate

F� = λ

144

α2

�τimp
. (64)

Thus the Higgs mode amplitude perturbation driven by the
linear electron-photon coupling terms in the Hamiltonian is
nonzero for the finite concentration of impurities.

2. THG current response

At nonzero frequencies the current jAAA given by diagrams
with current vertices Fig. 2 disappears without impurity scat-
tering and other relaxation mechanisms. At the same time the
current j (d )

AAA determined by diagrams with density vertices in
Fig. 4 remains nonzero. Let us find the threshold value of
impurity scattering when the latter contribution j (d )

AAA can be
neglected.

It is convenient to introduce dimensionless amplitudes
IAAA, IH of the currents (47),(48) determined by the diagrams
with current vertices as well as I (d )

AAA determined by the density
modulation. The natural normalization scale is

j0 = vF
eν

T 2
c

(
vF eA

c

)3

. (65)

The contribution of the density modulation current diagram in
Fig. 4 can be written in terms of the dimensionless amplitude
I (d )
AAA = − j (d )

AAA/ j0 as follows

I (d )
AAA(�) =

(
Tc

2EF

)2
�2

8�
πT

∑
ω

s1 − s3

s1s3(ω1 + ω3)
, (66)

where EF = mv2
F /2 is the Fermi energy.

This expression has small prefactor (Tc/EF )2 � 1 which
is typically (Tc/EF )2 ∼ 10−6 by the order of magnitude.
Therefore in general IAAA � I (d )

AAA and IH � I (d )
AAA except of the

superclean regimes with very small impurity concentration.
To understand the magnitude of threshold impurity scatter-

ing we analyze different current contributions in the regime of
low frequencies, impurity scattering rates, and small temper-
atures as compared to the critical temperature T,�, τ−1

imp �
Tc. Under the above assumption one can obtain the analyt-
ical expression for the density modulation-induced ampli-
tude I (d )

AAA. For small � we can replace �−1(s−1
3 − s−1

1 ) =
−2ds−1

3 /dω = ω(ω2 + �2)−3/2 so that the current amplitude
becomes just I (d )

AAA = T 2
c /8E2

F .
The calculation of quasiclassical contribution is more in-

volved. Let us implement the Taylor expansion in terms of the
frequency � and the scattering rate τ−1

imp of Eqs. (26) and (28).

In this way we obtain the leading-order terms

ĝ3a = − i

2

�4 − 4�2ω2

(�2 + ω2)7/2
+ 3i

4τimp

�4 − 4�2ω2

(�2 + ω2)4
(67)

ĝ3s = − i

2

�4 − 4�2ω2

(�2 + ω2)7/2
+ i

τimp

�4 − 2�2ω2

(�2 + ω2)4
. (68)

Since we consider low temperatures, when calculating
contributions to the current the frequency summation has to be
replaced by the integral, e.g., 2πT

∑
ω ĝ3a = ∫

ĝ3adω. Then
the first terms in the r.h.s. of expansions (67), (68) disappears
so we end up with the result

−iT
∑

ω

ĝ3s = −4iT
∑

ω

ĝ3a = 3

32�3
. (69)

Thus we get the leading-order contribution to the quasi-
classical current amplitude

IAAA ≈ 10−3

τimpTc
, (70)

where we took into account the relation � = 1.76Tc. Thus
we get the ratio of the density- modulation and quasiclassical
currents given by

j (d )
AAA

jAAA
≈ 103(τimpTc)

(
Tc

EF

)2

. (71)

Note that Eqs. (70) and (71) are valid at small frequencies
� � � and they also agree with the static limit when � = 0.
Indeed, in the static limit jAAA + jH determines nonlinear
correction to the Meisser current. This correction can be
shown to vanish at T = 0 in the absence of disorder τimp = ∞
in agreement with Eq. (70).

Based on the estimation (71) the contribution of diagram
with density vertex becomes dominating in the limit deter-
mined by the condition

τimpTc > 10−3

(
EF

Tc

)2

. (72)

Taking into account that in usual superconductors like NbN
with Tc ≈ 10 K and EF ≈ 104 K the above condition yields
τimpTc > 103. This criterion means that the superconductor
should be in the superclean regime [58,59] defined as τimpTc >

EF /Tc ≈ 103. Up to now the only known system where this
regime is realized [59,60] is the superfluid He3 which generi-
cally does not contain any impurities.

In solid state systems the certain amount of disorder is
always present. Besides that in thin films the scattering time is
bounded from above by the time of flight of electrons between
interfaces. Taking into account that in the clean limit the
coherence length is ξ = Tc/vF the above criterion means that
the film should be thicker than 100ξ which is much larger than
what has been used in experiments [12,41,45]. Besides that,
typical materials used in THz spectroscopy experiments like
NbN superconductors usually have strong intrinsic disorder so
the dirty limit τimpTc < 1 is realized there even without taking
into account the interface scattering.

Another interesting tendency characteristic for the transi-
tion to the clean limit τimpTc � 1 is that the Higgs mode-
related current is suppressed much strongly than the other
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component so that jH � jAAA. This can be understood from
the expansion b small parameter (τimpTc)−1 � 1 of the GF
correction ĝA� which determine jH according to Eq. (48).
In this case the amplitude of the order parameter external
perturbation is given by (64), that is it already contains the
small parameter (τimpTc)−1 � 1. Besides that expanding ĝA�

given by Eqs. (37), (38), and (40) we get

ĝA� = i��2�

[
(�2 − 2ω2)

(�2 + ω2)5/2
− �2 − ω2

τimp(�2 + ω2)3

]
. (73)

The first term here vanishes as usual upon the integration
by ω while the second term together with Eqs. (64) and (44)
yields the amplitude of the current jH . Here we need to take
into account the low-frequency asymptotic of the polarization
operator which follows from Eq. (45) �(� � �) = 1 − λ.
The we get the nonlinear current generated due to the Higgs
mode excitation with the dimensionless amplitude given by

|IH | ≈ 2 × 10−3

(
Tc

�

)4 1

(τimpTc)2
, (74)

where at low temperatures (Tc/�)4 ≈ 0.1.
Thus one can see that the suppression of IH (τimp) in the

transition to the clean case is determined by the second order
of the small parameter (τimpTc)−1 � 1. Therefore in this limit
IH � IAAA except of the vicinity if the Higgs mode resonance
at � = � where the amplitude IH is enhanced by the factor√

�/�, where � is the Dynes parameter. However, if the
impurity scattering is sufficiently weak (τimpTc)−1 <

√
�/�

the direct contribution to nonlinear current IAAA dominates for
all frequencies. These different regimes are illustrated by the
numerical results below in Sec. VI.

Estimations that we provided above rule out the necessity
to consider the contribution of density-vertex diagrams to
describe the nonlinear properties of known superconducting
materials. Besides that the thin-film samples used for the
nonlinear response studies in the THz regime are generically
in the dirty regime, because the mean free path is bounded
from above by thickness because the surface scattering of
electrons mimics impurity scattering.

Therefore in realistic superconducting samples where the
impurity scattering rate is always above the superclean limit
the nonlinear response is determined only by the diagrams
with current vertices Fig. 2. As shown above this means
that one can use the quasiclassical approximation with im-
purity collision integrals which yields major simplification
as compared to the direct summation of diagrammatic series.
Besides that usually the low-temperature superconductors are
in the dirty regime τimpTc � 1 which can be treated within
even simpler Usadel theory as discussed in the next section.
However, the general solutions we obtain can be applied with
some modifications to calculate nonlinear responses in clean
materials like the d-wave high temperature superconductors
[41] or iron-based superconductors which are in the regime
τimpTc > 1.

D. Dirty limit τimpTc � 1

Previously, nonlinear electromagnetic properties of super-
conductors have been studied mostly in the diffusive system

using the Usadel formalism [1,2,4–7,44]. The general case
with arbitrary impurity concentration has been discussed in
the linear response regime [55].

Here we present calculations of the nonlinear responses
with arbitrary impurity scattering time. Therefore it is im-
portant to establish connection with the Usadel theory results
which should be obtained from our general expressions in the
limit τimpTc � 1. That is, the isotropic second-order correc-
tion ĝ2s which determines the order parameter perturbation
and the expression for nonlinear current response can be ob-
tained directly from Eqs. (13) and (14) as (α2D/v2

F )g2(123).
Similarly, the correction determined by the order parameter
perturbation is calculated according to Eqs. (43) and (44) in
the form (α2D/v2

F )g�(13). Then Eq. (15) yields the current

g2(123) = τ̂3ĝ0(2)τ̂3 − ĝ0(1)τ̂3ĝ0(2)τ̂3ĝ0(3)

s1 + s3
(75)

jAAA

j0D
= πT

∑
ω

Trτ̂3[ĝ0(1)τ̂3ĝ2(234) + ĝ0(4)τ̂3ĝ2(123)]

(76)
jH
j0D

= πT
∑

ω

Trτ̂3[ĝ0(1)τ̂3ĝ�(24) + ĝ0(4)τ̂3ĝ�(13)]. (77)

Here we normalize the current by the amplitude j0D =
e2(A�/c)3Dσ which is related to the general THG current nor-
malization scale (65) as j0D = j0(τimpTc/3)2. In Appendix B
we demonstrate that the same expressions follow from the
general Eqs. (26) and (47) as the leading term expansions by
the small parameter τimpTc � 1.

VI. NUMERICAL RESULTS AND DISCUSSION

Analytical estimations in the previous section are obtained
at small frequencies � � �. To understand the full frequency
dependencies we implement the numerical calculation using
the analytical continuation procedure explained in Sec. III D.
At first, our aim is to compare the dimensionless ampli-
tudes of the three contributions to the current IAAA, IH , and
I (d )
AAA for different values of the parameters. The results are

presented in Fig. 7 for different values of the scattering
rate varying between the clean and dirty regimes. Here we
consider the regime of small temperatures T = 0.1Tc and the
Dynes parameter is � = 0.01. These plots confirm qualitative
conclusions made above. In the clean case (τimpTc)−1 = 0.5
[Fig. 7(a)] the Higgs contribution is much smaller than the
direct coupling one IH � IAAA. This is despite the fact that
Higgs mode contribution is resonant and its maximal value
scales like

√
�/�.

The IAAA contribution also has peaks both at � = � and
� = 2�/3 although their amplitudes do not diverge with
� → 0. At these frequencies the two-photon and three-photon
absorption processes switch on, respectively. That means
above the threshold frequency � > 3�/2 the energy of three
photons 3� is enough to destroy the Cooper pair with binding
energy 2� and create two quasiparticles which contribute to
the THG current density. At the threshold frequency � =
3�/2 this process has maximal amplitude because the created
quasiparticles have energies close to the gap edge � where
the density of states is strongly enhanced due to the BCS
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FIG. 7. (a),(b),(d),(e) Absolute values of the THG current amplitudes |IAAA|, |IH |, and |I (d )
AAA| as functions of � for different values of

the impurity scattering rates (τimpTc )−1 varying between the clean and dirty regimes. (c),(f) Dependencies of |IAAA| and |IH | on the external
frequency and scattering rate. The Dynes parameter � = 0.01 and T = 0.1Tc for all plots.

singularity. Technically this peak arises from the expression
for the third-order correction (28) since at � = 2�/3 and ε =
−�/3 we have s1 = s4 = 0 so that the vicinity of this energy
yields large contribution to the integral in (49). The same
arguments apply also to the two-photon absorption processes
which start to break Cooper pairs at � = �.

Note the important difference of THG response and the
linear response current determined by Eq. (25) which also
has a small denominator at the absorption threshold � = �

where s1 = s2 = 0 at ε = −�. Under these conditions the
enumerator in Eq. (25) goes to zero removing the singu-
larity. Therefore there is no pronounced peak in the lin-
ear response conductivity at � = �. Physically it means
that the quasiparticles created at the energy � have zero
charge and therefore do not contribute to current. This is
not the case for nonlinear response because quasiparticle
states are modified by the field and always contribute to the
current.

With increased scattering rate the general amplitude of
the Higgs mode contribution rises so that its maximal value
becomes much larger than the direct contribution. For the
considered value of Dynes parameter � = 0.01 this happens at
rather large scattering (τimpTc)−1 ≈ 10 as shown in Figs. 7(d)
and 7(e). At such parameters IH ≈ 10−3I (d )

AAA which means
that jH � j (d )

AAA if one recalls the overall factor (Tc/EF )2 ≈
10−6 in front of the density modulation current (66). The

nonresonant peak in IAAA at � = � remains although the
one at � = 2�/3 is eliminated by the impurity scattering.
The overall dependencies of IAAA and IH on frequency and
scattering rates are shown in Figs. 7(c) and 7(f). One can
see that first they increase with (τimpTc)−1 but then start to
decrease. We discuss the regime with a large scattering rate
below using the diffusive limit approach.

In thin-film NbN samples used for the nonlinear response
measurement the amount of scattering is typically rather large.
Therefore we consider the diffusive limit below using the
Usadel theory results from Sec. V D to calculate nonlinear
currents. Besides that since NbN has strong electron-phonon
coupling [24] resulting in the enhanced inelastic relaxation we
use larger value of Dynes parameter � = 0.1 as compared to
the previous example.

The results for temperature and frequency dependence of
currents jAAA and jH are shown in Fig. 8. As one can see in
Figs. 8(a) and 8(b) both currents jAAA and jH have peaks at
� = �(T ).

However, the peak value of Higgs contribution is several
times larger. It occurs when the denominator in Eq. (44)
reaches its minimal value of 1 − �(2�) ≈ √

�/�. So the
Higgs-mode related part of nonlinear current has the same
maximal amplitude jH (� = �) ∝ j3�

√
�/� as compared to

the jAAA(� = �) ∝ j3� part. These estimations agree with the
numerical result in Figs. 8(c) and 8(d).
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FIG. 8. Absolute values of the THG current components jAAA,
jH as functions of T, �, the Dynes parameter � = 0.1. Left panels
(a),(c),(e): the contribution of jAAA current. Right panels (b),(d),(f):
the contribution of jH current. In (c) and (d) the curves correspond to
different values of temperature. In (e) and (f) the curves correspond
to the different frequencies. The currents are normalized by the
amplitude j0D, see Eqs. (76) and (77).

For higher values of the Dynes parameter which can
mimic the enhanced inelastic relaxation in superconductors
with strong electron-phonon interaction like NbN [24] the
resonant Higgs peak broadens and decreases. This tendency
is illustrated in Fig. 8. The broadened peaks featured by
the temperature dependencies of jH (T ) at fixed frequencies
[Fig. 8(f)] are similar to those obtained in the experiment [12].
At the same time the dependencies of jAAA(T )in Fig. 8(e)
show no peaks at all.

As we discussed above, the presence of impurities triggers
the nonlinear response and Higgs mode generation. However,
as one can see from the sequence of the plots in Figs. 7(c) and
7(f) above certain threshold scattering rate the amplitudes IH

and IAAA start to decrease with decreasing τimp. This agrees
with the diffusive limit results Eqs. (76) and (77) where
the currents are determined by the amplitude j0D which has
an additional small parameter (τimpTc)2 as compared to the
general current scale (65). At the same time the density
modulation-related current j (d )

AAA is not sensitive for disorder
and therefore should dominate in the very dirty system as
well as in the very clean one. Thus comparing j0D with the

prefactor in Eq. (66) we obtain that in the diffusive limit j (d )
AAA

is negligible as long as τimpEF � 1 and starts to dominate in
the opposite case that is close to the localization threshold.

The technique developed in the present work for the
arbitrary scattering rates can be applied as well to study
Higgs mode generation in nontrivial superconductors like
those with the d-wave symmetry of the order parameter [41].
Within quasiclassical formalism such states are described
with the help of the anisotropic pairing constant λd (θ, θ ′) =
λ sin(2θ ) sin(2θ ′). Here θ and θ ′ are the angles corresponding
to the momenta of interacting electrons. Correspondingly
the order parameter acquires momentum dependence �(θ ) ∝
sin(2θ ) which should be taking into account when solving the
Eilenbeger equation in d-wave superconductor. With that one
can see that in the absence of impurities the same limitations
on the nonlinear response pertain as for the s-wave supercon-
ductor. That is, in the completely pure system the second-
order electron-photon coupling through the linear terms V1

in the Hamiltonian (2) does not excite Higgs mode and does
not produce any THG signal. The presence of impurities
certainly helps the situation although their effect is a bit more
tricky than in the isotropic s-wave considered here. However
since d-wave pairing can be found only in the clean regime
(Tcτimp)−1 � 1 one can expect that the amplitude of Higgs
mode contribution should be strongly suppressed according to
Fig. 7(a). However, to figure out the resulting amplitude it is
necessary to figure out the value of the Dynes parameter which
can be much smaller than in low-temperature superconductors
thus allowing for large IH peaks even in the clean system.
At the same time we don’t expect the direct coupling current
jAAA to feature pronounced peaks because of the lack of the
density of states singularities in the d-wave superconductor.
Thus the influence of impurities on the collective modes in
superconductors with nontrivial pairing is potentially very
interesting although its detailed study is beyond the scope of
the present paper.

Another interesting direction which can be addressed using
the formalism developed by us is the nonlinear response and
generation of collective modes in multiband superconductors
like MgB2 and iron-pnictide compounds. Here in addition to
the impurity scattering important effects can be related to
the interband tunneling of quasiparticles and Cooper pairs
which should significantly affect nonlinear response. With
that we can address recent experimental results on the THz
pump-probe experiments with MgB2 [13].

VII. CONCLUSIONS

We have studied the nonlinear electromagnet response of
superconductors with the amount of disorder varying between
the completely pure limit and the dirty regime. The impact of
our study is threefold.

First, it it demonstrated that the quasiclassical approxima-
tion allows for the correct description of the nonlinear effects
in superconductors coupled to the external electromagnetic
field. Propagators obtained by solving quasiclassical Eilen-
berger equation with the impurity collision integral coincide
with those obtained by the direct summation of diagrams with
current vertices taking into account the impurity self-energies
and ladders.
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Second, we demonstrated that effective Higgs mode excita-
tion is possible in usual BCS superconductors without any ex-
tensions of the model suggested in previous works. We show
that the contribution of diagrams with current vertices start
to dominate over the density-modulation related processes for
the level of disorder above the extremely weak superclean
threshold. Since the superclean regime is hardly realizable
in experiments our results provide the basis for the analysis
of nonlinear responses in realistic superconducting samples
to describe the pump-probe or the THG generation experi-
ments in the broad range of frequencies. The same conclusion
holds for compounds with unconventional pairing such as the
d-wave cuprates [41] or multiband superconductors [61]. The-
ory suggested in the present paper can be applied to analyze
the recent data on the Higgs mode in a d-wave superconductor
[41] and the collective mode in MgB2 [13]. In general the
impurity scattering determines collective mode excitation in
superconductors with both the s-wave and nontrivial pairings
and should modify the Higgs mode spectroscopy approach
which has been suggested recently [34].

Third, we have demonstrated that in the diffusive regime
which is typical for thin-film superconducting samples used
for recent THz measurements the resonant contribution to
THG signal is determined by the Higgs mode excitation
thus providing the natural explanation of recent experiments
[12,24]. The amplitude of this peak is bounded from above
by the Dynes parameter which describes the quasiparticle
recombination rate due to the electron-phonon interaction.
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APPENDIX A: REMOVING SINGULARITIES
IN EQS. (26), (28), (38)

Equation (26) for the second- and for the third-order
[(28),(38)] corrections contain the differences si − s j in the
denominators. When analytically continued this difference
becomes zero for certain energy. Therefore these equations
cannot be used directly for the numerical integration along the
real energy axis. In order to make them suitable for numerics
the equations should be written in such a way to eliminate
singular (si − s j ) combinations in the denominators.

First, we note that one can simplify the expression for the
second-order corrections as follows. Substituting the equation
for the first-order correction g1a into Eqs. (26), (28), and (29)
we can rewrite them as follows

Zs(234)ĝ2s(234)

= (
s3 + τ−1

imp

)
τ̂3ĝ0(3)τ̂3 + s2ĝ0(2) + s4ĝ0(4)

− (
s2 + s3 + s4 + τ−1

imp

)
ĝ0(2)τ̂3ĝ0(3)τ̂3ĝ0(4) (A1)

Za(234)ĝ2a(234)

= s̃3τ̂3ĝ0(3)τ̂3 + s̃2ĝ0(2) + s̃4ĝ0(4)

− (s̃2 + s̃3 + s̃4)ĝ0(2)τ̂3ĝ0(3)τ̂3ĝ0(4), (A2)

where we denote

Za(123) = (s̃2 + s̃1)(s̃3 + s̃2)(s̃3 + s̃1) (A3)

Zs(123) = (s̃2 + s̃1)(s̃3 + s̃2)(s3 + s1). (A4)

With the third order it requires more effort to get rid of the
differences s1 − s4 in denominators. First, let us demonstrate
how this can be done for the correction ĝ�A that determines
the Higgs mode contribution to the current (38). We rewrite it
as follows ĝ�A = ĝ(1)

�A + ĝ(2)
�A, where

ĝ(1)
A� = i

ĝ0(1)ŶA� − ŶA�ĝ0(4)

2
(
s1 + s4 + τ−1

imp

) (A5)

ĝ(2)
A� = iĝ0(1)

ŶA� + ĝ0(1)ŶA�ĝ0(4)

2(s1 − s4)
(A6)

where ŶA� = Ŷ� − IŶA. Now we need to treat only the term
ĝA�2. In order to do that we note the relation

ĝ0(1)ĝA� + ĝA�ĝ0(4) = i
YA� + ĝ0(1)YA�ĝ0(4)

s1 − s4
. (A7)

Using the commutation relations (41) and (42) we obtain then
the expression for ĝ(2)

A� without singularity

ĝ(2)
A� = −ĝ1[ĝ1a(12)ĝ�(24) + ĝ�(13)ĝ1a(34)]/2. (A8)

Now let us apply the same trick to the corrections ĝ3s,3a.
We write them as the superposition of two parts, e.g., ĝ3s =
ĝ(1)

3s + ĝ(2)
3s

ĝ(1)
3s = i

ĝ0(1)Ŷs − Ŷsĝ0(4)

2
(
s1 + s4 + τ−1

imp

) (A9)

ĝ(2)
3s = iĝ0(1)

Ŷs − ĝ0(1)Ŷsĝ0(4)

2(s1 − s4)
. (A10)

Using commutation relations (31), (32), and (33) we rewrite
the expression for ĝ(2)

3s in the following form

ĝ(2)
3s = −ĝ0(1)[ĝ1a(12)ĝ2s(234) + ĝ2s(123)ĝ1a(34)] (A11)

that does not have singularities. Expressions for the
anisotropic part ĝ3a = ĝ(1)

3a + ĝ(2)
3a are similar to Eqs. (A9) and

(A11) with the change of ĝ2s by ĝ2s and Ŷs by Ŷa.

APPENDIX B: DERIVATION OF THE RESPONSE
IN THE DIFFUSIVE LIMIT

First, in the dirty limit we can find corrections to the propa-
gators directly from the Usadel equation which is a simplified
version of the Eilenberger equation. In the frequency domain

ĝ2(τ1, τ2) = T
∑

ω

(
α2D

v2
F

)
ĝ2(123)eiω1τ1−iω3τ2

we get from Eqs. (13)–(15)

s1ĝ0(1)ĝ2 − s3ĝ2ĝ0(3) = ĝ0(1)τ̂3ĝ0(2)τ̂3 − τ̂3ĝ0(2)τ̂3ĝ0(3),

(B1)

where we denote again ω1 = ω + 2�, ω2 = ω + �, ω3 = ω,
ω4 = ω − �.
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The solution can be written as (75)

g2(123) = τ̂3ĝ0(2)τ̂3 − ĝ0(1)τ̂3ĝ0(2)τ̂3ĝ0(3)

s1 + s3
. (B2)

Taking into account the diffusion coefficient D = v2
F τimp/3

the solution for ĝ2 coincides with ĝ2s obtained from the
general expression (26) up to the leading term in τ−1

imp.
Within the Usadel theory the current can be calculated

using general expression (15) to have the form (76), (77)

jAAA = πDσα3

ev3
F

T
∑

ω

Trτ̂3[ĝ0(1)τ̂3ĝ2(234)

+ ĝ0(4)τ̂3ĝ2(123)] (B3)

jH = πDσα3

ev3
F

T
∑

ω

Trτ̂3[ĝ0(1)τ̂3ĝ�(24)

+ ĝ0(4)τ̂3ĝ�(13)]. (B4)

Taking the dirty limit for general Eq. (47) that determines
the current is more tricky. The leading-order correction in the
limit τimp → 0 is given by (28). First, from Eq. (25) we find
for the first-order corrects in the limit τimp → 0 given by

ĝ1a(12) = iτimp[ĝ0(1)τ̂3ĝ0(2) − τ̂3]. (B5)

Using this relation and the commutation relations
ĝ2s(234)ĝ0(4) = −ĝ0(2)ĝ2s(234) we obtain

2Ŷsĝ0(4) = −2ĝ0(1)Ŷs

= −[τ̂3ĝ0(2) + ĝ0(1)τ̂3]ĝ2s(234)

− ĝ2s(123)[τ̂3ĝ0(4) + ĝ0(3)τ̂3].

Thus from Eq. (28) and Eqs. (A9) and (A11) we get

ĝ(1)
3s = iτimp

2
{[ĝ0(1)τ̂3 + τ̂3ĝ0(2)]ĝ2s(234)

+ ĝ2s(123)[τ̂3ĝ0(4) + ĝ0(3)τ̂3]} (B6)

ĝ(2)
3s = iτimp

2
{[ĝ0(1)τ̂3 − τ̂3ĝ0(2)]ĝ2s(234)

+ ĝ2s(123)[τ̂3ĝ0(4) − ĝ0(3)τ̂3]}. (B7)

We substitute the results (B6) and (B7) into the expression
for current (47) and use the summation

∑
ω ĝ0(2)ĝ2s(234) =

−∑
ω ĝ2s(123)ĝ0(3) to get the expression for the current

which is equal to Eq. (76).
The dirty limit for Higgs mode-related part of the current

can be obtained from Eqs. (48), (37), (38), and (40) in
the similar way as above. Using the relation ĝ�(24)ĝ0(4) =
−ĝ0(2)ĝ�(24) we obtain

2Ŷ�ĝ0(4) = −2ĝ0(1)Ŷ�

= −[τ̂3ĝ0(2) + ĝ0(1)τ̂3]ĝ�(24)

− ĝ�(13)[τ̂3ĝ0(4) + ĝ0(3)τ̂3]. (B8)

Thus from Eq. (38) and Eqs. (A5) and (A8) we get

ĝ(1)
A� = iτimp

2
{[ĝ0(1)τ̂3 + τ̂3ĝ0(2)]ĝ�(24)

+ ĝ�(13)[τ̂3ĝ0(4) + ĝ0(3)τ̂3]} (B9)

ĝ(2)
A� = iτimp

2
{[ĝ0(1)τ̂3 − τ̂3ĝ0(2)]ĝ�(24)

+ ĝ�(13)[τ̂3ĝ0(4) − ĝ0(3)τ̂3]}. (B10)

Using the summation
∑

ω ĝ0(2)ĝ�(24) = −∑
ω ĝ�(13)ĝ0(3)

and the expression for current (48) we get the dirty limit
expression for the current (B4).

APPENDIX C: ABSENCE OF THE HIGGS MODE
GENERATION WITHOUT IMPURITIES

Without disorder we get from Eq. (A1) the expression
which according to Eq. (43) determines the order parameter
(A1)

Tr[τ̂2ĝ2s(123)]

= − �

s1s2s3(s1 + s2)(s1 + s3)(s2 + s3)

× [(s1 + s2 + s3)(�2 − ω1ω3 − ω2ω3 − ω1ω2)

+ s1s2s3]. (C1)

Using the relations

(s1 + s2 + s3)(s1 − s3)(s1 − s2)(s2 − s3)

= s1s2
(
ω2

1 − ω2
2

) + s2s3
(
ω2

2 − ω2
3

) + s1s3
(
ω2

3 − ω2
1

)
,

�2 − ω1ω3 − ω2ω3 − ω1ω2

= s2
1 − (ω1 + ω2)(ω1 + ω3) = s2

2 − (ω1 + ω2)(ω2 + ω3)

= s2
3 − (ω1 + ω3)(ω2 + ω3) (C2)

we get

(s1 + s2 + s3)(�2 − ω1ω3 − ω2ω3 − ω1ω2)

s1s2s3(s1 + s2)(s1 + s3)(s2 + s3)
(C3)

= 1

s2(ω1 − ω2)(ω2 − ω3)
− 1

s1(ω1 − ω3)(ω1 − ω2)

− 1

s3(ω1 − ω3)(ω2 − ω3)
+ s3(

ω2
1 − ω2

3

)(
ω2

2 − ω2
3

)
+ s1(

ω2
1 − ω2

3

)(
ω2

1 − ω2
2

) − s2(
ω2

1 − ω2
2

)(
ω2

2 − ω2
3

)

= 1

2�2

(
2

s2
− 1

s1
− 1

s3

)
− 1

(s1 + s2)(s1 + s3)(s2 + s3)
.

(C4)

Substituting this result into Eq. (C1) we get as required by
Eq. (59)

Tr[τ̂2ĝ2s(123)] = − �

2�2

(
2

s2
− 1

s1
− 1

s3

)
. (C5)

As explained in the main text since the summation by Mat-
subara frequencies of this expression yields zero, it yields no
perturbation of the order parameter amplitude.
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