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Inviscid diffusion of vorticity in low-temperature superfluid helium
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We numerically study the spatial spreading of quantized vortex lines in low-temperature liquid helium. The
vortex lines, initially concentrated in a small region, diffuse into the surrounding vortex-free helium, a situation
which is typical of many experiments. We find that this spreading, which occurs in the absence of viscosity,
emerges from the interactions between the vortex lines and can be interpreted as a diffusion process with effective
coefficient equal to approximately 0.5« where « is the quantum of circulation.
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I. INTRODUCTION

The work which we describe is driven by the comparison
[1] between turbulence in ordinary fluids (classical turbu-
lence) and turbulence in superfluid helium (quantum turbu-
lence). The main difference is the nature of the vorticity. In
ordinary fluids, vorticity is a continuous field, and vortices
have arbitrary shape and strength. In superfluid helium, quan-
tum mechanics constrains the vorticity to individual vortex
lines of atomic thickness (the vortex core radius is only
ap ~ 0.1 nm) and fixed circulation ¥ = h/m =~ 1077 m?/s
(where h is Planck’s constant and m is the mass of one “He
atom). In superfluid helium, turbulence thus takes the form
of a disordered tangle of interacting vortex lines. Moreover,
at temperatures below around 1 K, thermal excitations are
negligible and the vortex lines move in a perfect background
fluid without viscosity.

Most experimental, theoretical, and numerical studies have
addressed quantum turbulence in its simplest form: statisti-
cally steady, homogeneous, and isotropic. These studies have
revealed similarities and differences with respect to ordinary
turbulence, in terms of energy spectra [2—4], decay [5,6],
intermittency [7-9], and velocity statistics [10—12]. Much less
is known about turbulence which is inhomogeneous, in par-
ticular turbulence which is initially confined in a small region
of space and is free to spread out. A better understanding of
this diffusion problem would help to interpret many helium
experiments in which ultrasound [13], oscillating spheres
[14], wires, grids [15], and forks [16,17] create quantum tur-
bulence in helium at rest, and from which the turbulence may
spread and fill the experimental cell. Particularly important, as
already remarked, is the low-temperature limit, in which the
normal fluid is negligible and the dynamics of the vortex lines
is simpler, at least in principle.

In this article we report the results of numerical simulations
of the diffusion of a turbulent tangle of vortex lines which
is initially localized in a region at the center of the compu-
tational domain. In the related context of two-dimensional
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(2D) trapped Bose-Einstein condensates, using the Gross—
Pitaevskii equation (GPE) model, we found [18] that an
initial vortex cluster diffuses via two distinct mechanisms: the
evaporation of small vortex-antivortex pairs (vortex dipoles)
which quickly leave the vortex cluster, and the slower spread
of the cluster itself. The latter effect is like a classical diffusion
process with an effective viscosity v’ ~ «.

The natural question which we address here is whether
this effect holds true in three dimensions (3D) in the context
of superfluid helium. The extra dimension introduces effects
which are absent in 2D, such as vortex reconnections and
Kelvin waves. A pioneering numerical study by Tsubota et al.
[19] of the 3D diffusion of a vortex tangle reported a value of
V' smaller than what we found in 2D, albeit by a different
approach and different initial conditions. These differences
add further motivations to revisit the 3D diffusion problem.

II. METHODS

A. Evolution of the vortex tangle

To numerically simulate the evolution of a tangle of quan-
tized vortex lines, we use the vortex filament method (VFM)
of Schwarz [20], which is a more realistic model of turbulent
He II than the GPE (which gives a good quantitative descrip-
tion of low-temperature Bose—Einstein condensates [21]). The
VFM describes vortex lines as space curves s(&,¢) (where
t is time and & is arclength) which move according to the
Biot—Savart law:

ds K (s—r)xdr

dt  4rn
where the line integral extends over all vortex lines. Since
there are no boundaries, all vortex lines form closed loops.
Our VFM [11] uses a Lagrangian discretization along the
vortex lines, with discretization points continuously added
or removed to maintain the chosen spatial resolution of § =
0.015 cm. Vortex loops consisting of less than five discretiza-
tion points are removed, modeling the effects of the small
residual friction which is present even for T < 1 K. The
Biot—Savart integral is de-singularized in a standard way [20]
based on the vortex core cutoff ag. The procedure for vortex
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FIG. 1. Typical time evolution of the vortex tangle: (a) t =0 s,
(b) t =100 s, (c) + =200 s, and (d) r = 300 s. All panels show
the region —2.5 cm < x, y < 2.5 cm projected onto the z = 0 plane.
The computational domain is infinite (no boundaries). Note how the
vortex tangle spreads out. Vortex loops containing fewer than 200
points are shown in red, with the remaining vortices shown in black.

reconnections is implemented algorithmically [20,22]. The
resulting system of differential equations is integrated in time
by using a third-order Adams—Bashforth scheme with a time
step of 5 x 1073 s.

The typical initial condition, shown in Fig. 1(a), consists of
a set of randomly oriented vortex loops with radius 0.24 cm,
randomly and independently translated in the x, y, and z
directions according to a normal distribution with standard
deviation 1 cm. To explore the effect of changing the initial
vortex line density we perform two sets of simulations, one
initialized with 50 vortex loops, leading to an initial vortex
line density (vortex length per unit volume) of L ~ 70 cm ™2
at the center of the infinite computational domain, and one
using 100 vortex loops, with an initial vortex line density of
L~ 140 cm~2.

B. Determining the effective diffusion

We estimate the effective diffusion of the vortex tangle by
using two different techniques. The first technique follows
the work of Tsubota et al. [19], who determined v’ by using
the following modified Vinen equation for a space-dependent
vortex line density L(Xx, t):

oL K 5 I
o = 27_[)(ZL +V'V-L. 2)

The original Vinen equation [23] (see Appendix) balances
a generation term (proportional to the driving counterflow
velocity and L*?) against a decaying term (proportional to
L?). Equation (2) contains the same decaying term of the
original Vinen equation (proportional to L?) but lacks the

generation term (because it is concerned with decay at zero
temperature), and postulates the existence of a diffusion pro-
cess represented by the new term v'V2L; this new term turns
the original Vinen equation into a parabolic partial differential
equation. In writing Eq. (2), Tsubota et al. assumed that
V' depends on the temperature but is independent of the
vortex line density. To determine v/, they fit the computed
coarse-grained vortex line density to the numerical solution
of Eq. (2). The fit, however, requires knowledge of Vinen’s
parameter x,. Tsubota et al. estimated [24] that x, ~ 0.3
from separate numerical simulations at 7 = 0 performed by
using the local induction approximation to the exact Biot—
Savart law [Eq. (1)]. Physically, in this zero-temperature limit,
x2 models a sink of vortex lines due to the dissipation of
kinetic energy through both vortex reconnections and phonon
emission (induced by high-frequency Kelvin waves [25]).

It has been noted that x, depends on the local vortex
line density at finite temperatures [26]. We independently
estimate values of x; in the zero-temperature limit, using the
full Biot—Savart law of Eq. (1), for 13 values of L, finding
x2(L) ~ 0.07L%%; this is detailed further in the Appendix.
Assuming spherical symmetry, we then estimate L(r) (where
r is the radial distance from the center) by integrating over
the vortex lines within spherical shells, subdividing the line
segments for a more accurate measurement when they cross
between shells, and dividing by the volume of these shells.
We numerically solve the modified Vinen equation in a ra-
dially symmetric coordinate system, using fourth-order finite
difference methods for spatial derivatives, and a third-order
Adams—Bashforth time integration scheme with time step
At = 1072 s. We use a reflective boundary condition to en-
force dL/dr =0 at r =0, impose L =0 at r = 10 cm (far
from the region of interest), and use the initial vortex line
density as a function of r estimated from our VFM simulations
as the initial condition. The local value of y, is taken to be
x2(L) = 0.07L°* based on our estimates above.

The second technique is based on considering the deviation
in the trajectories of diffusing tracers of the flow [27], which in
our context is provided by the individual vortex discretization
points modelled by the VFM. We know that the diffusion
constant v of a scalar field F(x,y, z,¢) which satisfies the
diffusion equation

oF

— =vV?F, 3
o 3
is related to the root-mean-square (rms) deviation dyy,s(7) by
dz (1)
— Zms\") 4
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We define the rms deviation of our Ny(¢) vortex discretization
points from their initial positions as

No(r)
dmo(0) = | = D [ARO) + A} + A2, (5)
No(t) =
where  Ax;(1) = x;i(t) — x;(0), Ay;(t) = yi(t) — yi(0), and
Azi(1) = zi(t) — zi(0).
Using Eq. (4) we can define an effective 3D diffusion
coefficient V' representing the spatial spreading of the vortex
cluster.
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Because discretization points along vortex lines are contin-
ually removed and added to maintain the spatial resolution,
care must be taken in establishing their trajectories. In most
cases there is a direct link between a point at a given time and
the same point at the previous time (the ancestor). If a point is
newly inserted and thus lacks an ancestor at the previous time,
we consider the ancestors of the discretization points on either
side of the newly inserted point and store both these values as
ancestors of the new point, using the average initial position
of these ancestors as the initial position of the new point. This
process is iterative as ancestors are concatenated in successive
time steps. This second technique generalizes our previous 2D
work [18] to 3D.

III. RESULTS

The typical evolution of the initial vortex rings into a
turbulent vortex cluster is shown in Fig. 1. Before proceeding
with the calculation of v/, a natural question arises: what is
the character of this turbulence? Usually the answer is given in
terms of the energy spectrum, but in this case the turbulence is
neither steady nor homogeneous, and the interpretation of the
spectrum would be difficult. We proceed differently and cal-
culate the transverse velocity correlation function f, (r,t) =
(v (X, 1)y (x +ré ., 1))/(vi(x,1)?), and find that it rapidly
decreases with distance, meaning that the turbulent velocity
field is essentially random; at ¢ = 0, we find that f, (£/2, 0) ~
0.27 only, where £ is the intervortex spacing, indicative of
the Vinen (ultraquantum) regime of quantum turbulence [5],
characterized by the absence of an energy cascade [4]. Similar
turbulence and correlation functions have been predicted in
trapped atomic Bose—Einstein condensates [28].

‘We now consider how the turbulence spreads in space. The
initial vortex rings interact, become distorted, and undergo
vortex reconnections, generating small vortex loops; if these
small loops are in the outer part of the cluster and are
oriented outwards, they quickly leave the cluster, as seen in
the figure. This “vortex evaporation” [29] has been noticed in
experiments [30] and reported in other 2D and 3D numerical
simulations [18,31]. Here we concentrate on the slower spread
of the main vortex cluster.

We first follow the approach of Tsubota et al. [19] and
seek the solution of Eq. (2), estimating v’ by minimizing the
sum of square errors between the vortex line density estimated
from the VFM simulations and the numerical solution of
Eq. (2). We find that, using this method, our estimate of v’ is
very sensitive to the initial vortex line density, and possesses
considerable uncertainty. Taking x> = 0.07L%* gives v'/k =
0.28 £0.11 for the high-density simulations, and v'/x =
0.33 £ 0.20 for the low-density ones.

We now turn to the second approach, in which we infer
the diffusion coefficient from individual trajectories of dif-
fusing tracers from time-averaged deviations [27] defined in
Eq. (5). The typical temporal behavior of the rms deviation
of tracers from their initial positions, di,s Vs ¢, averaged over
10 simulations, is shown in Fig. 2. The figure shows that the
initially ballistic regime, dyms ~ , is followed by a dpys ~ 1172
diffusive regime.

The effective diffusion coefficient v’, obtained from
Eq. (4), is plotted as a function of time ¢ in Fig. 3(a)

FIG. 2. Typical temporal dependence of the rms deviation of
tracers from their initial position, d,s (in cm) vs ¢ (in s). Notice the
transition from ballistic (dms ~ ) to diffusive (dpys ~ t'/?) regimes,
indicated by the dashed and dot-dashed lines, respectively.

(low-density simulations) and in Fig. 3(b) (high-density sim-
ulations; solid blue line). It is apparent that the effective
diffusion settles down to the value v'/k ~ 0.5 in both sim-
ulation sets. More precisely, we obtain v'/k = 0.526 4 0.064
for low vortex line density and v/« = 0.530 = 0.065 for high
vortex line density.

It is important to appreciate that, unlike the approach of
Ref. [19], when we compute V' via dy,s, We do not include the
tracers which belong to evaporating vortex loops as they move

(a)

135
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FIG. 3. Effective diffusion in units of the quantum of circulation,
V' /K, vs time ¢ (in s) (solid blue line) for (a) low-density simulations
and (b) high-density simulations. Gray lines show the values of v'/«
found as the minimum size of loops included in our calculation of
dims 18 increased, from zero points (gray line which attains maximum
value earliest) to 200 points, for which the value of v'/«x found has
converged.
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FIG. 4. Typical large knotted vortex structures (black lines) from
simulations at (a) lower density [L(]x| = 0,7 = 0) ~ 70 cm~2] and
(b) higher density [L(0, 0) ~ 140 cm~2], at + = 50 s. The other
vortex lines are shown as red curves.

ballistically. The evaporating vortex loops, in fact, do not in-
teract strongly with the other vortices of the cluster any longer,
but move away with approximately constant speed determined
by their average curvature. We observed an analogous effect
in our previous 2D simulations [18], where vortex dipoles (the
2D analog of 3D vortex loops) ballistically evaporate from
the vortex cluster. In this previous work we used a numerical
procedure to identify and remove these fast moving dipoles
from the calculation of v’. Generalizing this 2D procedure to
3D, our analysis neglects fast evaporating vortex loops if they
contain less than a certain critical number of discretization
points N,; in this way, we effectively set a minimum size for
a vortex loop to be included in the calculation of d;ms and v'.
The critical number N, is empirically determined. In Fig. 3
the gray lines show the values of v/« found at increasing N,,
from N, = 0 (gray line which attains maximum value earliest)
to N, = 200 (solid blue line); note that for N, = 200 the value
of v'/k has converged. This distinction between evaporating
loops and the remaining vortex cluster is highlighted in Fig. 1,
where vortex loops containing fewer than 200 discretization
points (hence small compared with other loops) are shown in
red, while the remaining vortex lines are shown in black.

We note that most of these large loops forming the vor-
tex cluster and used in our analysis are not circular vortex
rings but complex, often knotted vortex structures. Two such
structures taken from two realizations are shown in Fig. 4 for
illustration purposes. The two objects account for more than
54% [Fig. 4(a)] and more than 67% [Fig. 4(b)] of the total
line length, and more than 80% [Fig. 4(a)] and more than
87% [Fig. 4(b)] of the total cluster line length retained in
our analysis. The distributions of the local radius of curvature
and local velocity of the loops retained in our analysis are
shown in Fig. 5. Note that the peak radius of curvature, at
around 0.025 cm, is considerably smaller than the radius of a
circular ring consisting of 200 points at our chosen resolution
(~0.64 cm), and the peak velocity is correspondingly higher.
The local behavior of these structures is like that of far
smaller vortex rings. Furthermore, if the collective behavior
were ballistic, as for a system of isolated loops, we could
expect vortices to drift by around 25 cm by 10% s, an order
of magnitude greater than the deviation seen in Fig. 5.

Note that if we remove the evaporating loops from the anal-
ysis based on the modified Vinen equation (which the authors

25 30
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FIG. 5. Probability density functions (PDFs) of (a) the radius of
curvature R and (b) velocity v of vortex filaments retained after disre-
garding loops containing fewer than 200 points. Red lines correspond
to the lower-density simulations, blues lines to the higher-density
simulations.

of Ref. [19] did not do), our estimate for v’ is (perhaps unsur-
prisingly) reduced. Indeed, without the evaporating loops, we
obtain v'/k = 0.19 £ 0.08 in the higher-density simulations,
and v'/k = 0.08 &= 0.08 in the lower-density ones.

IV. DISCUSSION

In conclusion, we have found that a cluster of turbulent
vortex lines, initially localized in a region of space, spreads
out driven by two effects: the evaporation of small vortex
loops which leave the cluster, and the slower spread of the
cluster itself. The latter effect can be modelled as a diffusion
process which apparently emerges in this inviscid fluid con-
text from the interaction between the vortex lines. By using
the standard approach based on rms deviations, we have found
that the effective diffusion coefficient, measured in units of
the quantum of circulation «, is v'/k ~ 0.5, independently
of the initial vortex line density. Our finding agrees quanti-
tatively with values in the range 0.3 < v'/k < 0.5 obtained
in a 2D trapped atomic Bose—Einstein condensate using the
GPE model [18], keeping in mind that in these confined
systems V' /k seems to be reduced by boundary effects (vor-
tex images). It must be stressed that in both 2D and 3D,
when determining the effective diffusion coefficient using
the rms technique, we do not include the evaporating vortex
loops because, unlike the vortices in the main cluster which
undergo continual collisions, they move freely at constant
speed.

Our results contrasts with the smaller value reported by
Tsubota et al. [19], v'/k = 0.1, which was obtained by fitting
the solution of a modified Vinen equation. If we analyze our
data with the modified Vinen equation we obtain a similar
lower estimate for v’ but with significant error bars and
sensitivity to the initial vortex line density; another drawback
of this technique is that it requires independent knowledge
of Vinen’s parameter x, as described in the Appendix. On
the contrary, the technique based on the rms deviations of
tracers’ trajectories determines v’ more accurately and con-
sistently and gives values comparable to previous findings
in 2D.

It is also worth commenting on the difference between our
initial conditions and the initial condition used in Ref. [19].
In Ref. [19], the vortex tangle was generated by a thermal
counterflow using the local induction approximation. This
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approximation in itself is known to be problematic in the
presence of counterflow [32]; moreover a counterflow tangle
is well known to be slightly anisotropic [32]. It seems plau-
sible that this initial anisotropy in the initial condition used
in Ref. [19] modifies the diffusion of the tangle. Indeed, a
study on the effect of anisotropy on the diffusion of quantum
vorticity could prove fruitful.

The theory of Nemirovskii [33] yields a value four times
larger than ours, v'/k = 2.2. This theory, as the modified
Vinen equation, assumes (rather than infers) the existence of
a diffusion process of vortex loops by postulating Brownian
character of the vortex loops’ dynamics. A superfluid’s effec-
tive viscosity is also discussed in the different but related prob-
lem of the decay of superfluid turbulence, with experimental
and numerical values [26,34-36] approximately in the range
0.01 < v'/k < 1 but more concentrated around 0.1.

Finally, we remark that the rms deviation method which we
have used to estimate V'/«, being Lagrangian, could be used
in future experimental studies of superfluid turbulence using
the newly developed visualization techniques based on excited
helium molecules [37-39].
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APPENDIX: DETERMINING x,

To estimate Vinen’s parameter x, at zero temperature and
its dependence on the vortex line density L, we perform
numerical simulations where identical vortex loops are con-
tinuously injected into a periodic box at random positions and
orientations, at a constant rate. This gives us a known rate Liy;
at which the vortex line length is injected. The simulation is
continued until a saturated value of L is achieved. When we
are in this regime, the usual Vinen equation [40], which is
usually written as

JaL K
., Xprn|vns|L3/2 - 5
2

L?,
9 X2

(AD)

where p, is the normal fluid density, v, is the counterflow
velocity, B is a mutual friction coefficient, and x; and y, are

0.8

0.3 : :
50 100 150 200

Llem 7]

FIG. 6. Line density vs x, calculated from steady-state simula-
tions (black circles) with error bars showing one standard deviation,
with fit in blue. Inset shows steady-state line density as a function of
the injection rate, with fit in blue.

two dimensionless parameters, reduces to

K 2
0=Lnj— z—xL", (A2)
2
as we have a (statistically) steady value for the line density,
and our loop injection replaces the usual finite-temperature
source term from the normal fluid interacting with the vortex

lines. This immediately gives x, = 212’2"" . Repeating this pro-
cedure for a range of injection rates allows us to construct the
plots shown in Fig. 6, from which we fit x, as a function of L,
finding x, &~ 0.07L%4.

In a recent paper [26] a similar method is employed to
estimate value of y, at finite temperatures, using thermal
counterflow as a source term. Values for x, at 1.4 K (the
lowest temperature reported) are reported as 2.10 &+ 0.34 for
L =(3.5940.34) x 10° cm~2,2.04 £ 0.19 for L = (6.54 &
0.30) x 10* cm™2,and 1.97 £ 0.13 for L = (10.00 & 0.27) x
10 cm~2. From our simulations we estimate y, = 2.17 for
L =359 x10% x2 =2.79 for L =6.54 x 103, x» = 3.33
for L =10.00 x 10°. Our values are consistent to an or-
der of magnitude, although slightly higher, possibly due to
dissipation arising from the numerics. We note that, for
small L, dissipation is dominated by Kelvin wave stimulated
emission of phonons rather than by reconnections, so the
assumption that dissipation scales as L? breaks down at some
point, and accordingly our estimate of x, for small L should
be treated with caution.
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