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Quasidegenerate ice manifold in a purely two-dimensional square array of nanomagnets
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We investigate numerically the low-energy properties of an artificial square spin system in which the
nanomagnets are physically connected at the lattice vertex sites. Micromagnetic simulations performed on a
single square vertex reveal that type-II vertices always have the lowest energy, in sharp contrast with what is
found in lattices made of disconnected nanomagnets, for which type-I vertices are the ground-state configuration.
The micromagnetic simulations also show that the energy stored at the vertex sites strongly depends on
the type of magnetic domain wall formed by the four connected nanomagnets. Interestingly, the energy gap
between type-I and type-II vertices can be drastically reduced by varying the geometrical parameters of the
nanomagnets, such as their width and thickness. For typical widths and thicknesses achievable experimentally,
we find that this energy gap is small enough to consider type-I and type-II vertices as quasidegenerate.
Based on the vertex energies provided by the micromagnetic simulations, we compute the thermodynamic
properties of the corresponding spin model using Monte Carlo simulations. In some cases, these properties
are hardly distinguishable from those of the celebrated square ice model. Our findings then suggest that an ice
physics, characterized by a massively degenerate ground-state manifold at low temperature, may be observed
experimentally in a simple square lattice of connected magnetic elements. This work thus provides a route to
fabricate artificial algebraic spin liquids using a purely two-dimensional geometry.
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I. INTRODUCTION

Artificial arrays of interacting nanomagnets were intro-
duced [1–3] as a mean to fabricate experimentally various
types of spin and vertex models. In particular, the idea of using
lithographically patterned architectures to explore the physics
of highly frustrated magnets [4] triggered a wealth of studies
at the frontier between nanomagnetism and condensed matter
magnetism. Classical spin liquids [5–7], emerging magnetic
properties [7–13], Coulomb phases [14–16] and complex
magnetic ordering [17–19] are examples of the low-energy
physics that can be now probed experimentally, in an almost
routine fashion. Because almost any type of two-dimensional
(2d) geometry can be designed, whether or not this geometry
exists in nature [20–24], artificial spin systems offer a power-
ful lab-on-chip approach to directly visualize exotic magnetic
phenomena in real space [25,26].

Among the works done so far, the square geometry has
been extensively studied [3,27–36]. One reason is that the
square geometry potentially allows investigation of ice-type
models, a family of vertex models introduced in the thirties
by Linus Pauling to describe the residual entropy of water ice
at low temperature [37]. However, due to the nonequivalent
strengths of the magnetostatic interaction between orthogonal
and collinear elements in artificial 2d square arrays of
disconnected nanomagnets, these systems were not able to
reach the square ice physics. Instead, these arrays order
in a Néel-like fashion at low effective temperature, and the
macroscopic degeneracy of the ground-state manifold initially
sought is lost [3].

However, an extensive degeneracy of the ground-state
manifold can be restored if the square geometry is modified.

For example, the Shakti lattice provides means to address the
physics of the square ice, but in an emergent form [20,38]. An
ice physics may be also recovered if extra nanomagnets are
inserted at the vertex sites of the square lattice [15], or if one of
the two sublattices is shifted vertically [14,16,27]. These
works suggest that experimental tricks have to be used if one
wants to counter-balance the nonequivalent strengths of the
magnetostatic interaction between orthogonal and collinear
nearest neighbors in a square lattice. The question then arises
whether an ice physics may be observed in a conventional,
two-dimensional square lattice of interacting nanomagnets.

The purpose of this work is to show numerically that an ice
manifold can indeed be found in a purely 2d square lattice. To
do so, we consider a square array of nanomagnets that extend
up to the vertex, meaning that the nanomagnets are physically
connected at the nodes of the lattice. Connected square spin
systems are then reminiscent of several other works done in
the past on magnetic antidot arrays [39–44]. Besides the
magnetostatic interaction, the micromagnetic exchange inter-
action, absent when the nanomagnets are physically discon-
nected, now plays a key role. Competition between these
two interactions generates different micromagnetic textures
at the vertex sites, depending on how magnetization is lo-
cally oriented. The energy associated with this magnetization
distribution is calculated using micromagnetic simulations,
and computed as a function of the geometrical parameters
of the nanomagnets. Contrarily to what is found when the
nanomagnets are disconnected, type-II vertices always have
the lowest micromagnetic energy. Moreover, the energy gap
between type-I and type-II vertices can be significantly re-
duced when the width and thickness of the nanomagnets are
increased. These findings have two important consequences.
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First, the ground-state manifold of an artificial square spin
system made of connected nanomagnets is predicted to be
extensively degenerate and made of essentially independent,
ferromagnetic lines crossing the whole lattice. This is strik-
ingly different from what is observed in otherwise similar
lattices made of disconnected nanomagnets. Secondly, as the
energy gap between type-I and type-II vertices is reduced, the
low-energy configurations of an artificial square spin system
with connected elements resemble the ones of the square
ice. Otherwise said, the system is predicted to behave at
low temperatures as a classical spin liquid. To support these
claims, Monte Carlo simulations were performed using an
Ising spin Hamiltonian for which the coupling strengths are
derived directly from the micromagnetic vertex energies. The
low-energy magnetic structure factor is then computed and
compared to the one expected in the square ice model. When
the energy gap between type-I and type-II vertices is low
enough, the magnetic structure factor is hardly distinguishable
from the one of the square ice, suggesting that an icelike
physics should be observed in a conventional, purely 2d
square geometry with connected magnetic elements.

In the next section, we recall the main features of the six
vertex model we address in this work. Using micromagnetic
simulations performed on a single vertex made of four con-
nected elements, we show in Sec. III that the magnetization
distribution at the vertex sites resembles magnetic domain
walls in many ways. Their micromagnetic energy is then
computed as a function of the width and thickness of the
nanomagnets. To describe the associated physics at the scale
of a lattice, Monte Carlo simulations are performed using an
Ising spin Hamiltonian, and using the previously calculated
micromagnetic energies as an input to define the spin-spin
coupling strengths. The main result of these Monte Carlo
simulations, reported in Sec. IV, is the observation of mag-
netic correlations that strongly resemble those expected in
the square ice model in a finite temperature range. Finally,
the advantages and limitations of using artificial square spin
systems with connected nanomagnets to reach an ice physics
are discussed in Sec. V.

II. THE SIX VERTEX MODEL

In the six vertex model, each local configuration is defined
by the state of four arrows (Ising spins) located on the bonds
of a square lattice. Among the 24 = 16 possibilities to define a
vertex, only the six states made of two spins pointing inwards
and two spins pointing outwards the vertex are considered in
this model. In other words, only vertices having the lattice
equivalent of a divergence-free state are taken into account,
while states breaking the divergence-free condition (often
called type-III and type-IV vertices) are not considered. These
six states are represented in Fig. 1(a) and can have six different
energies. Because of symmetry, in artificial arrays of nano-
magnets the conditions E1 = E2 = EI and E3 = E4 = E5 =
E6 = EII are fulfilled, such that the six vertices can be sorted
in two groups only [see dashed rectangles in Fig. 1(a)]: type-I
vertices, with no net magnetic moment, and type-II vertices
carrying a nonzero magnetic moment.

We emphasize that the six vertex model is a short-range
model, i.e., neighboring vertices do not interact. When an

FIG. 1. (a) Schematics of the vertices involved in the six vertex
model with their associated energy E . Because of symmetry, these
vertices can be sorted in two types only (see dashed rectangles),
with E1 = E2 = EI and E3 = E4 = E5 = E6 = EII (b). Ground-state
configuration when EI < EII. (c) One given configuration belonging
to the degenerate ground-state manifold when EI > EII.

artificial spin system is described by the six vertex model,
one implicitly assumes that the nanomagnets are coupled
through first neighbor interaction only. In the following, we
consider that the long-range magnetostatic interaction can
be neglected. The impact of the dipolar interaction on the
ground-state degeneracy will be discussed in Sec. V.

In artificial 2d arrays of disconnected nanomagnets, mag-
netostatics leads to the condition EI < EII. This condition im-
plies that the low-energy physics of these arrays is described
by the F model: [45,46] the magnetic ground state is antiferro-
magnetically ordered, and consists of flux-closure loops with
alternating chirality [see Fig. 1(b)]. Artificial spin systems can
be also designed in such a way that the condition EI = EII

is fulfilled [14,16,27]. In that case, the low-energy physics
of the array is described by the square ice model [47] and
the ground-state manifold is macroscopically degenerate. The
magnetic system is an algebraic spin liquid, i.e., a spin liquid
characterized by spin-spin correlations decaying as a power
law with the separating distance [14]. Local configurations
breaking the divergence-free constraint associated with the
six vertex model behave, in that particular case, and in that
particular case only, as deconfined particulelike excitations
interacting via a Coulomb potential [48,49], the so-called
classical magnetic monopoles.

In the following, we consider the third possible situation
of the six vertex model in which EI > EII. The low-energy
physics of the system is then described by the KDP model
[50,51] initially introduced to describe ferroelectrics. In that
case, the ground state is extensively degenerate and made
of decoupled ferromagnetic lines crossing the entire lattice
[see Fig. 1(c)]. In the next section, we will show that con-
sidering a vertex made of four physically connected elements
necessarily leads to the condition EI > EII, thus offering a
mean to fabricate experimentally a KDP system. We will also
show that the energy difference EI − EII > 0 can be made
small enough to consider the limit case where the low-energy
physics of the KDP model is difficult to distinguish from a
square ice manifold.
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FIG. 2. Micromagnetic configurations of type-I, II, III, and IV
vertices for 200-nm-wide, 20-nm-thick permalloy nanomagnets.
Small black arrows represent the direction of magnetization within
the nanomagnets, while the blue/red contrast codes for the diver-
gence of the magnetization vector.

III. MICROMAGNETIC SIMULATIONS

We examine the micromagnetic energy of a single square
vertex. The energy is computed for the four vertex types as
a function of the width and thickness of the nanomagnets.
The main purpose here is to show that the micromagnetic
energy of type-I and type-II vertices can reach similar values,
provided that the thickness and width of the nanomagnets are
chosen appropriately. As mentioned above, since the condi-
tion EI = EII is required to restore an extensive degeneracy
of the ground-state manifold, this result suggests that a low-
energy icelike physics might be present in square lattices with
connected nanomagnets.

The micromagnetic simulations were performed using the
OOMMF code from NIST [52]. The mesh size was set to
2 × 2 × t nm3, where t is the thickness of the nanomagnets.
Spontaneous magnetization Ms and exchange stiffness A are
those of permalloy: μ0Ms = 1.0053 T, A = 10 pJ/m, while
magnetocrystalline anisotropy is neglected. We assume that
these parameters, especially Ms, are constant all over the
range of thicknesses probed in this work. We thus neglect
possible changes in the Ms value when the nanomagnets
become atomically thin. In all the simulations we performed,
the nanomagnets are uniformly magnetized and the magnetic
moments at the extremities of the nanomagnets are fixed to
avoid nonuniform magnetization profiles at the edges. The
magnetization is then nonuniform only at the vertex site and
we exclude here multidomain configurations within the nano-
magnets that might occur experimentally (see the discussion
in Sec. V).

The micromagnetic configurations for the four vertex types
are reported in Fig. 2. Since the nanomagnets are connected,
these configurations are similar to magnetic domain walls in
many ways. Type-I vertices have the form of a magnetic an-
tivortex [53], while type-II vertices are almost homogeneously

magnetized in (11)-like directions. Type-III vertices have the
form of a transverse domain wall separating the two hori-
zontal head-to-head nanomagnets. Type-IV vertices resemble
a vortex domain wall, with an anticlockwise chirality in
Fig. 2.

The energetics of magnetic domain walls usually depends
on the geometrical parameters of the nanostructure. We then
changed the geometrical parameters of the nanomagnets in
a wide range of width [50–400] and thickness [0.5–40],
where numbers are in nanometers. Figure 3 shows how the
total micromagnetic energy of each vertex type varies as a
function of those parameters. These numerical results have
two main consequences regarding the type of model that can
be potentially accessed experimentally using a square lattice
of connected nanomagnets.

First, in the whole range of parameters explored here,
type-II vertices have the lowest energy (see red curves in
Fig. 3). Therefore the ground-state configuration consists of
independent ferromagnetic lines crossing the entire network
[see Fig. 1(c)], as predicted by the KDP model. This is in
sharp contrast with artificial square spin systems made of dis-
connected nanomagnets in which type-I vertices have always
the lowest energy, leading to a twofold degenerate ground
state made of local flux-closure configurations [see Fig. 1(b)].
Therefore a new model can be reached simply by connecting
the nanomagnets in a 2d square lattice. We emphasize that
the ground-state manifold associated with this model is exten-
sively degenerate, although this degeneracy is subdominant
(i.e., the entropy per spin tends to zero at the thermodynamic
limit when the temperature approaches zero, even though the
degeneracy of the ground-state manifold is extensive).

The second consequence deduced from Fig. 3 is the ca-
pability to obtain a quasi-ice condition (EI ≈ EII) as type-I
and type-II vertices asymptotically tend to the same energy in
the limit of thick and/or wide nanomagnets. Clearly, type-II
vertices have still the lowest energy, but for large thicknesses
(30–40 nm) and reasonable width (200 nm or more), we
can envision that sample defects or thermal fluctuations for
example will allow the system to select both vertex types
equivalently. This might offer a unique opportunity to probe a
low-energy icelike physics in a purely two-dimensional square
array of connected nanomagnets.

IV. THERMODYNAMIC PROPERTIES

We now examine the thermodynamic properties of the spin
model associated with the micromagnetic properties described
above. To do so, Monte Carlo simulations were performed
using the Hamiltonian H = −J1

∑
〈i j〉 σi.σ j − J2

∑
〈〈i j〉〉 σi.σ j ,

where σi and σ j are Ising variables on sites i and j. J1

and J2 are positive coupling strengths between orthogonal
and collinear nearest neighbors, respectively. The simula-
tions were done for a 20 × 20 × 2 site lattice with periodic
boundary conditions. A single spin flip algorithm was used
to capture the physics that might be observed experimen-
tally, where local magnetization reversal is the only relevant
dynamics. As a consequence, the simulations suffer from
a critical slowing down when approaching the ground-state
manifold. At low temperatures, the system freezes, as that
would be the case experimentally. The cooling procedure
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FIG. 3. Normalized micromagnetic energy of the four vertex types as a function of the width and thickness of the nanomagnets.
Nanomagnets are 10-, 20-, and 40-nm-thick in (a)–(c), respectively, while they are 100-, 200-, and 400-nm-wide in (d)–(f), respectively.
Type-II vertices have always the lowest energy, which is taken here as the reference energy. a.u., arbitrary units.

starts from T/J1 = 100 and ends at T/J1 = 0.1. 104 modified
Monte Carlo steps (mmcs) are used for thermalization [54].
Measurements follow the thermalization and are computed
also with 104 mmcs.

The coupling strengths J1 and J2 used in the Monte Carlo
simulations are directly derived from the micromagnetic en-
ergies calculated in the previous section. To do so, we link
the micromagnetic energy EDWi of a domain wall [with i =
(1, . . . , 4) for type i vertices] to the coupling strengths J1 and
J2 using the following equations:

EDW1 = −4J1 + 2J2,

EDW2 = −2J2,

EDW3 = 0,

EDW4 = 4J1 + 2J2. (1)

Although these equations provide the correspondence be-
tween the two approaches, EDWi is not directly computed
in our OOMMF simulations. Instead, we compute the total
micromagnetic energy of a vertex made of four connected
nanomagnets, which is the sum of all four internal energies
E0 plus the energy of the domain wall formed at the vertex
site. We emphasize that, contrarily to a spin in a spin model, a
nanomagnet has an internal energy E0, which is a function of
its thickness and width.

The total micromagnetic energy of the type i vertex can be
represented as Ei = 4E0 + EDWi . Considering the first three
energies E1, E2, and E3, we get

E1 − E3

E2 − E3
= 2

J1

J2
− 1 (2)

or

E2 − E4

E1 − E4
= 1

2

(
J2

J1
+ 1

)
(3)

if we consider E1, E2, and E4. The ratio J2/J1 is thus deter-
mined from the micromagnetic energies of the different vertex
types. Fixing J1 to 1, J2 is calculated from Eq. (2) or (3) (both
equations give similar results).

The spin-spin correlations deduced from the real space
configurations are Fourier transformed for all computed tem-
peratures, leading to a magnetic structure factor. We define the
magnetic structure factor as in neutron scattering experiments,
where the spin correlations perpendicular to the diffusion
vector are measured [14]. It is composed of a matrix of
81 × 81 points covering an area of ±6π along the qx and qy

directions in reciprocal space.
The magnetic structure factors obtained at the lowest sam-

pled temperatures are reported in Fig. 4 for different J2 values.
As expected, when J2 = 1, we find the magnetic structure
factor of the square ice, characteristic of an algebraic spin
liquid with its associated pinch points [14]. For J2 values
larger than 1.1, the magnetic structure factor is drastically dif-
ferent and made of lines spanning across the reciprocal space,
consistently with the formation of decoupled ferromagnetic
lines in real space. More importantly, for J2 values up to 1.03
typically, the magnetic structure factor strongly resembles
the one of the square ice [see Figs. 4(a)–4(c)]. This is so
because the single spin flip dynamics used in the Monte Carlo
simulations is unable to reach the ground-state configuration
of the KDP model as J2 approaches J1. The low-temperature
physics is then similar to the one of the square ice, even though
the ground state is different. Otherwise said, although J2 is not
strictly equal to J1, it is close enough to push the ground-state
configuration of the KDP model down to inaccessible low
temperatures. We note that this regime, where J2/J1 is smaller
than 1.03 is achieved for example for nanomagnets having
a width of 400 nm and a thickness of 40 nm [see Fig. 5
where the J2/J1 ratio calculated from Eq. (2) is plotted as a
function of the width for 20- and 40-nm-thick nanomagnets].
Our results then suggest that connected artificial spin systems
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FIG. 4. Computed magnetic structure factors at the lowest sampled temperature for J2 = 1 (a), 1.01 (b), 1.03 (c), 1.05 (d), 1.1 (e), and 1.2
(f). J1 = 1 in all cases. Intensity is normalized the same way in all images. r.l.u., reciprocal lattice unit.

with geometrical parameters easily achievable experimen-
tally should behave similarly to the square ice, i.e., a low-
energy, extensively degenerate manifold should be captured
experimentally.

V. DISCUSSION

In this section, we discuss the applicability of our numer-
ical findings to potential experiments. In particular, we come
back on the assumptions we made throughout our analysis and
justify the choice (i) of considering that the nanomagnets are
uniformly magnetized between neighboring vertices and (ii)
of neglecting the role of long-range interactions between the
vertices.

First of all, the results described above show that the
micromagnetic nature of artificial spin systems made of

FIG. 5. Ratio between the J2 and J1 coupling strengths deduced
from the micromagnetic vertex energies as a function of the width
of the nanomagnets. Red squares and black dots correspond to a
thickness of 20 and 40 nm, respectively.

connected nanomagnets can be used to invert the hierarchy
of the type-I and type-II vertex energies in a square lattice.
Besides, choosing appropriately the width and thickness of the
nanomagnets allows a substantial reduction of the energy gap
EI − EII > 0, which tends to vanish in the limit of thick and/or
wide magnetic elements. Micromagnetism [55–59], which is
usually neglected or avoided in artificial spin ice systems,
can be used as an extra knob to restore an icelike physics
in a conventional, easy-to-implement two-dimensional lattice.
Based on our Monte Carlo simulations, we find that J2 must be
smaller than 1.03 × J1 to approach an ice physics at very low
temperature. However, we expect in practice the low-energy
physics of artificial arrays of connected nanomagnets to be
hardly distinguishable from an icelike system even for less
restrictive conditions on the J2/J1 ratio.

Indeed, the comparison we made above between the mag-
netic structure factor of the square ice and the one expected
when the J2 = J1 condition is slightly detuned has been
done for a large averaging (what is reported in Fig. 4 is
an average of 104 measurements at low temperatures). In
practice, a few snapshots only will be available experimentally
and the effective temperature that can be reached through
a demagnetization protocol or a thermal annealing will re-
main fairly large (of the order of the coupling strength J)
[14–16]. Otherwise said, given the intrinsic signal to noise
ratio accessible experimentally, the J2/J1 value might be
further increased while still preserving a magnetic structure
factor similar to the one expected in the square ice model. The
impact of the temperature can be illustrated by comparing the
simulated magnetic structure factors at a temperature T/J1 =
1 for several J2/J1 ratios (see Fig. 6). Such a comparison
reveals only small differences between the square ice [J2 =
J1, see Fig. 6(a)] and a KDP model for which J2/J1 = 1.1
[see Fig. 6(c)]. In particular, the magnetic structure factor
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FIG. 6. Computed magnetic structure factors at the effective
temperature T/J1 = 1 for J2 = 1 (a), 1.05 (b), 1.10 (c), and 1.15 (d).
Intensity is normalized the same way in all images. r.l.u., reciprocal
lattice unit.

is still diffuse but structured in the latter case, and strongly
resembles the one of an algebraic spin liquid. The interest here
is the less restrictive J2/J1 condition required experimentally,
which allows to envision the design of artificial arrays with
nanomagnets having a width of 200 nm or less, and a thickness
of 40 nm (see Fig. 5).

This is an important point as in our micromagnetic de-
scription we neglected the possibility to have nanomagnets
with a multidomain configuration and we assumed that the
magnetization always remains uniform along the long axis of
the elements. This approximation is questionable, especially
in the limit of large and thick nanomagnets. For example, it
is likely experimentally that 400-nm-wide and 40-nm-thick
nanomagnets tend to have a multidomain state when properly
field demagnetized or thermally activated. However, the ob-
servation of an icelike magnetic structure factor at T/J1 = 1
for J2/J1 = 1.1 suggests that the quasidegeneracy we found is
valid for width of 200 nm or less, for which experiments show
a single domain configuration [60].

We also envision that it would be more promising to
test our predictions using a thermally active spin system
rather than an athermal one subject to a field demagnetization

protocol. The reason is that field driven protocols will likely
propagate efficiently magnetic domain walls throughout the
lattice, thus favoring the formation of type-II vertices. Such
kinetic effects might be less pronounced in thermally active
systems annealed above the Curie point of the consistent
material.

Finally, as mentioned in Sec. II, we have considered so
far that artificial spin systems consisting of connected nano-
magnets are well approximated by a short-ranged spin model.
This approximation is also questionable as artificial arrays of
nanomagnets are known to be dipolar by nature [5,7,17,26].
However, the short-range approximation works well for the
square ice geometry and the low-energy manifold imaged
in disconnected arrays of nanomagnets shows no trace of
dipolar signatures [14,16]. One possible explanation is that
the square ice model becomes a loop model in its low-energy
manifold, i.e., the relevant excitations once the ice rule is
obeyed everywhere are collective loop moves [26]. Experi-
mentally, the only relevant spin dynamics involves single spin
flip events, but this dynamics encounters a critical slowing
down when the system enters an ice regime. Consequently,
whatever the experimental protocol used to lower the system
energy, whether it is a field demagnetization protocol [14] or
a thermal annealing [16], the system freezes way before the
long-range dipolar interactions can lift the energy degeneracy.
Although dipolar by nature, artificial square ice systems are
then well described by a short-range spin Hamiltonian. Note
that this behavior is very similar to the one of the three-
dimensional condensed matter pyrochlore dipolar spin ices.
There, dynamical freezing can be an issue as it prevents
observing the expected ordered ground state, or an advantage,
as it allows to observe the emergent physics of a three-
dimensional Coulomb phase on a finite temperature range
[61]. Besides this dynamical reason, the long-range dipolar
interaction can always be made negligible by increasing the
length of the nanomagnets. Since the energy that matters is
the micromagnetic energy stored at the vertex sites, one can
imagine to design lattices consisting of nanomagnets with
large aspect ratios. In fact, fabricating a series of connected
lattices with various aspect ratios, while keeping the width and
thickness unchanged, might be a powerful way to understand
to what extent the vertex-vertex interaction can be neglected.
However, for the purpose of restoring an icelike degeneracy,
long nanomagnets can be easily fabricated.
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