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Dissipative quantum Ising chain as a non-Hermitian Ashkin-Teller model
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We study a quantum Ising chain with tailored bulk dissipation, which can be mapped onto a non-Hermitian
Ashkin-Teller model. By exploiting the Kohmoto-den Nijs-Kadanoff transformation, we further map it to a
staggered XXZ spin chain with pure-imaginary anisotropy parameters. This allows us to study the eigenstates
of the original Liouvillian in great detail. We show that the steady state in each parity sector is a completely
mixed state. The uniqueness of each is proved rigorously. We then study the decay modes on the self-dual line
corresponding to the uniform XXZ chain and obtain an exact formula for the Liouvillian gap g, the inverse
relaxation time, in the thermodynamic limit. The gap g as a function of dissipation strength � has a cusp,
implying a kind of phase transition for the first decay mode.

DOI: 10.1103/PhysRevB.99.224432

I. INTRODUCTION

Open quantum systems have recently attracted much atten-
tion in a variety of fields including condensed matter physics
[1–5], quantum information [6,7], quantum computing [8],
and mathematical physics [9]. The Lindblad equation [10] is a
general quantum master equation describing such open quan-
tum systems under Markovian and completely positive and
trace preserving (CPTP) conditions. In general, the analysis
of the Lindblad equation is more challenging than that of the
Schrödinger equations for closed systems, as one has to deal
with the space of operators rather than the Hilbert space. One
possible approach is to develop some approximate methods
such as the perturbative [11,12] or numerical ones [13,14]. In
particular, due to the recent development of machine learning
approaches [15–18], the number of these studies has been
increasing. Another way which is complementary to the above
methods is to construct exactly solvable models. Although
many such models are known in closed many-body systems,
very few exact results are available for open many-body
systems [9,19–23].

The quantum Ising chain is a paradigmatic example of an
exactly solvable model for closed systems and also serves as
a textbook example of a quantum phase transition [24,25].
It is mapped to a free-fermion model, and hence integrable,
which allows for explicit computation of various quantities.
With the recent surge of interest in open quantum systems,
a number of studies on dissipative quantum Ising models
have been reported recently [26–29]. However, to the best of
our knowledge, exact solutions are available only for models
subject to dissipation at the end of the chain [30].

In this paper we present a dissipative quantum Ising model
with bulk dissipation, which is integrable with judiciously
chosen dissipators and parameters. The Hamiltonian and
dissipators of the model conserve parity, and hence it has
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two degenerate nonequilibrium steady states (NESSs). By
vectorizing the density matrix, one can identify the Liou-
villian of the system with a non-Hermitian analog of the
Ashkin-Teller model, the Hermitian counterpart of which was
studied in Refs. [31–35]. Due to the Z2 × Z2 symmetry of
the model, the space of states splits into four sectors labeled
by the eigenvalues of the parity operators. In each sector, the
Hamiltonian of the model can be mapped to that of a staggered
XXZ chain with pure-imaginary anisotropy parameters. This
enables us to prove that the two NESSs are unique. By further
exploiting this mapping, we investigate the Liouvillian gap g,
the inverse relaxation time, and the corresponding first decay
mode on the self-dual line at which the bulk Hamiltonian
of the XXZ chain is spatially uniform. Due to the nonlocal
nature of the transformation, the boundary terms in the XXZ
chain differs from sector to sector. With this in mind, we prove
rigorously that the Liouvillian gap in two sectors are exactly
4�. Furthermore, we find that the gap in the other two sectors
in the thermodynamic limit can be obtained analytically from
the Bethe ansatz solution of the model [36]. Combining these
two results, we derive an explicit formula for the global
Liouvillian gap g as a function of the dissipation strength �,
which has a cusp at � = 1/

√
3.

The rest of the paper is organized as follows. In Sec. II
we give a precise definition of the model and discuss its
NESSs. In Sec. III we derive the mapping of the model to
the staggered XXZ model in a different way from Ref. [31].
We also consider the boundary terms carefully and show that
that of the XXZ chain differs by sectors. In Sec. IV we
show a lemma on the largest imaginary part of eigenvalues
of non-Hermitian matrix. With the help of this lemma and the
above mapping, we prove that the two NESSs constructed in
Sec. II are unique. In Sec. V we discuss the Liouvillian gap
of the model on the self-dual line in each of four sectors,
and obtain the exact formula of the global Liouvillian gap.
In the Appendix A we present another formalism of the
model, i.e., the Z4 parafermion chain with non-Hermitian
interactions.
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II. MODEL AND NESSs

Consider the Lindblad equation

dρ

dt
=L[ρ] := −i[H, ρ] +

∑
i

(
LiρL†

i − 1

2
{L†

i Li, ρ}
)

(1)

for a quantum Ising chain described by the Hamiltonian

H = −h
N∑

i=1

σ z
i − J

N∑
i=1

σ x
i σ x

i+1, (2)

with the following Lindblad operators:

Li =
√

�1σ
z
i (i = 1, . . . , N ), (3)

LN+i =
√

�2σ
x
i σ x

i+1 (i = 1, . . . , N ). (4)

Here ρ is the density matrix, N is the number of sites,
σα

i (i = 1, . . . , N, α = x, z) are Pauli matrices at site i, and
�1,�2 � 0 are dissipation strengths. We impose periodic
boundary conditions σ x

N+1 = σ x
1 . Note that the Lindblad op-

erators take the same form as the local Hamiltonians of H .
Since we can change the signs of h and J by an appropriate
unitary transformation, we can assume that h, J � 0 without
loss of generality.

The model has a conserved charge, the parity operator

P :=
N∏

i=1

σ z
i , (5)

which satisfies

[H, P] = 0, [Li, P] = 0 (i = 1, . . . , 2N ). (6)

Due to the existence of this conserved charge, there are two
nonequilibrium steady states (NESSs)

ρ± := 1 ± P

2N
, (7)

which are eigenstates of the Liouvillian with eigenvalue 0:

L[ρ±] = 0. (8)

We briefly explain this construction of NESSs according to
Ref. [23]. Since all Lindblad operators are Hermitian, there
is a trivial NESS, i.e., completely mixed state ρc := 1/2N .
By noting that Pρc ∝ P also satisfies L[P] = 0, we see that
ρ± obeys Eq. (8). We note that the operators ρ± are positive
semidefinite, as their eigenvalues are nonnegative.

III. MAPPING TO THE NON-HERMITIAN
STAGGERED XXZ MODEL

A. Non-Hermitian Ashkin-Teller model
and staggered XXZ model

A 2N × 2N density matrix ρ can be thought of as a
22N -dimensional vector [12,23,37,38]. In this sense, we can
identify the Liouvillian L (times i) as a non-Hermitian
Hamiltonian on a “Ket ⊗ Bra space” as

iL ∼= H ⊗ 1 − 1 ⊗ HT

+ i
∑

i

(
Li ⊗ L∗

i − 1

2
L†

i Li ⊗ 1 − 1

2
1 ⊗ LT

i L∗
i

)
, (9)

(a)

(b)

FIG. 1. Schematic representations of (a) the setup and (b) the
Liouvillian (times i) on the Ket ⊗ Bra space [see Eqs. (9) and
(10)]. Rectangles in (a) denotes reservoirs. Solid and wavy lines
in (b) are referred to as Hermitian and non-Hermitian interactions,
respectively.

where the Hilbert space of the right-hand side is the Ket ⊗
Bra space. For our model, the corresponding non-Hermitian
Hamiltonian reads

iL + const. ∼= H = Hbulk + Hboundary, (10)

Hbulk = −h
N∑

i=1

σ z
i − J

N−1∑
i=1

σ x
i σ x

i+1 + h
N∑

i=1

τ z
i + J

N−1∑
i=1

τ x
i τ x

i+1

+ i�1

N∑
i=1

σ z
i τ z

i + i�2

N−1∑
i=1

σ x
i σ x

i+1τ
x
i τ x

i+1, (11)

Hboundary = Jσ x
Nσ x

1 + Jτ x
Nτ x

1 + i�2σ
x
Nσ x

1 τ x
Nτ x

1 , (12)

where τα
i (α = x, z) are the Pauli matrices for the ith Bra

site [see Fig. 1(b)]. First, let us concentrate on the bulk
Hamiltonian Hbulk. It corresponds to the quantum Ashkin-
Teller model [31,32] with imaginary anisotropy parameters
by an appropriate unitary transformation [39]. Furthermore,
it is mapped to the staggered XXZ model. It was already
mentioned in Refs. [31,32], but let us derive it in another way
using Majorana fermions. By a Jordan-Wigner transformation

σ z
i = −ic2i−1c2i, (13)

σ x
i =

⎛⎝ i−1∏
j=1

−ic2 j−1c2 j

⎞⎠c2i−1, (14)

τ z
i = −id2i−1d2i, (15)

τ x
i =

⎛⎝ N∏
j=1

−ic2 j−1c2 j

⎞⎠(
i−1∏
k=1

−id2k−1d2k

)
d2i−1, (16)
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FIG. 2. Mapping procedure of our model. The left, middle, and right figures refer to Eqs. (11), (17), and (24), respectively. In the left and
middle panels, the dashed lines indicate the ordering paths used for the Jordan-Wigner transformation.

the model is mapped to the interacting Majorana fermion
model with the Hamiltonian (Fig. 2)

Hbulk = ih
N∑

i=1

c2i−1c2i + iJ
N−1∑
i=1

c2ic2i+1

− ih
N∑

i=1

d2i−1d2i − iJ
N−1∑
i=1

d2id2i+1

−
N∑

i=1

i�1c2i−1c2id2i−1d2i

−
N−1∑
i=1

i�2c2ic2i+1d2id2i+1. (17)

Here ci and di (i = 1, . . . , 2N) are Majorana operators obey-
ing the following relations:

c†
i = ci, d†

i = di, (18)

{ci, c j} = {di, d j} = 2δi j, {ci, d j} = 0. (19)

Now we apply another Jordan-Wigner transformation and
rewrite the Majorana fermions as

c2i−1 = (−1)i

⎛⎝2i−2∏
j=1

Zj

⎞⎠X2i−1, (20)

d2i−1 = (−1)i

⎛⎝2i−2∏
j=1

Zj

⎞⎠Y2i−1, (21)

c2i = (−1)i

⎛⎝2i−1∏
j=1

Zj

⎞⎠Y2i, (22)

d2i = (−1)i

⎛⎝2i−1∏
j=1

Zj

⎞⎠X2i, (23)

where Xi,Yi and Zi (i = 1, . . . , 2N) are Pauli operators at
site i. One can express these new Pauli operators as nonlocal
products of the original ones, i.e., σ j and τ j . Using the new
Pauli operators, Hbulk can be recast as

Hbulk =
N∑

i=1

[h(X2i−1X2i + Y2i−1Y2i ) + i�1Z2i−1Z2i]

+
N−1∑
i=1

[J (X2iX2i+1 + Y2iY2i+1) + i�2Z2iZ2i+1], (24)

which is nothing but the Hamiltonian of the staggered XXZ
model, with the caveat that the two anisotropy parameters
are purely imaginary [40]. When h = J and �1 = �2, the
model reduces to the uniform XXZ chain with pure imaginary
anisotropy parameter, which is further investigated in Sec. V.
From another point of view, the bulk Hamiltonian can be
thought of as a Z4 parafermion chain with non-Hermitian
interactions (see the Appendix A for more detail).

B. Boundary terms

Here we consider the boundary terms in Eqs. (2) and (4),
which lead to Eq. (12). It is useful to define the following
operators:

Pσ :=
N∏

i=1

σ z
i , Pτ :=

N∏
i=1

τ z
i . (25)

They are conserved charges of H satisfying

[H, Pσ/τ ] = 0, [Pσ , Pτ ] = 0. (26)

By the first Jordan-Wigner transformation, they can be written
in terms of Majorana fermions as

Pσ = (−i)N
N∏

j=1

c2 j−1c2 j, Pτ = (−i)N
N∏

j=1

d2 j−1d2 j, (27)

and the boundary terms are mapped to

Hboundary = −iJ (Pσ c2N c1 − Pτ d2N d1)

− i�2Pσ Pτ c2N c1d2N d1. (28)

By the second Jordan-Wigner transformation, we have

Pσ = (−1)N
2N∏
j=1

Yj, Pτ =
2N∏
j=1

Xj, (29)

Hboundary = (−1)N J (Pτ X2N X1 + PσY2NY1)

+ i�2Pσ Pτ Z2N Z1.
(30)

We then define a new set of Z2 charges as

QZ := Pσ Pτ =
2N∏
j=1

Zj, QX := Pτ =
2N∏
j=1

Xj, (31)

in terms of which the the boundary terms can be rewritten as

Hboundary = (−1)N JQX (X2N X1 + QZY2NY1)

+ i�2QZZ2N Z1. (32)
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Equation (32) clearly shows that the Hilbert space of the
Hamiltonian H = Hbulk + Hboundary splits into the following
sectors labeled by the eigenvalues of QZ and (−1)N QX :

(i) QZ = +1, (−1)N QX = +1: periodic,
(ii) QZ = +1, (−1)N QX = −1: antiperiodic,
(iii) QZ = −1, (−1)N QX = +1: antidiagonal twisted

[41,42],
(iv) QZ = −1, (−1)N QX = −1: antiperiodic and antidi-

agonal twisted.
We now define

Hboundary(a, b) = bJ (X2N X1 + aY2NY1) + i�2aZ2N Z1, (33)

H̃(a, b) = Hbulk + Hboundary(a, b), (34)

where a and b are c-numbers, instead of q-numbers, taking
±1. One can construct the eigenstates of H from simultaneous
eigenstates of H̃(a,±1) and QZ . This can be seen by noting
that if |φ〉 is a simultaneous eigenstate of H̃(a,±1) and QZ ,
then [|φ〉 ± (−1)N QX |φ〉]/2 is an eigenstate of H with the
same eigenvalue.

It is known that H̃(a, b) for any a = ±1 and b = ±1 is
integrable (see, e.g., Ref. [42] for more detail). In particular,
H̃(+1, b) has a U (1) symmetry, i.e., the z component of the
total spin Z tot = ∑

i Zi commutes with H̃(+1, b). Therefore,
eigenvalues and eigenvectors in sectors (i) and (ii) can be
obtained by means of the algebraic Bethe ansatz (ABA).
However, for H̃(−1, b), Z tot is no longer a conserved quantity
and the standard ABA fails to work in sectors (iii) and (iv).
Instead, there is a general method for studying such models
without U (1) symmetry called the off-diagonal Bethe ansatz
(ODBA) [36,42–44].

IV. PROOF OF THE UNIQUENESS OF THE TWO NESSs

It can be proved that all eigenvalues of the Liouvillian
L have nonpositive real parts [10,45]. Then, the eigenvalue
0 of L, whose corresponding eigenstate is a NESS, has the
largest real part. After the above mapping, the corresponding
eigenvalue of H has the largest imaginary part and its real part
is 0. It turns out that such states are ferromagnetic states:

|⇑〉 := |↑ · · · ↑〉, |⇓〉 := |↓ · · · ↓〉, (35)

where |↑〉i (|↓〉i) is the eigenstates of Zi with the eigenvalue
+1 (−1). This follows from the following lemma.

Lemma IV.1. Let H = T + iK , with T † = T and K† = K
be a non-Hermitian matrix, λi be eigenvalues of H, and εK be
the largest eigenvalue of K . Then,

max
i

(Im λi ) � εK . (36)

Proof. Let |ψi〉 be a right eigenstate of H with eigenvalue
λi. We can assume that |ψi〉 is normalized as 〈ψi|ψi〉 = 1.
Then we have

λi = 〈ψi|H|ψi〉 = 〈ψi|T |ψi〉 + i〈ψi|K|ψi〉. (37)

Since T and K are Hermitian, 〈ψi|T |ψi〉 and 〈ψi|K|ψi〉 are
real. Thus we find that

Im λi = 〈ψi|K|ψi〉 � εK . (38)

This holds for all i, so Eq. (36) also holds. �

For our Hamiltonian H = Hbulk + Hboundary,

K = (H − H†)/(2i) (39)

= �1

N∑
i=1

Z2i−1Z2i + �2

N−1∑
i=1

Z2iZ2i+1 + �2QZZ2N Z1 (40)

is already diagonalized. The largest eigenvalue is N (�1 + �2)
and the corresponding (unique) eigenstates are |⇑〉 and |⇓〉.
Moreover,

T |⇑〉 = T |⇓〉 = 0, (41)

where

T = (H + H†)/2 (42)

=
N∑

i=1

h(X2i−1X2i + Y2i−1Y2i ) +
N−1∑
i=1

J (X2iX2i+1 + Y2iY2i+1)

+ (−1)N JQX (X2N X1 + QZY2NY1). (43)

Therefore, these ferromagnetic states correspond to the
two unique NESSs of the original model. One can eas-
ily see that the superposition [|⇑〉 + (−1)N |⇓〉]/√2 ([|⇑〉 −
(−1)N |⇓〉]/√2) lives in sector (i) [sector (ii)].

V. THE LIOUVILLIAN GAP ON THE SELF-DUAL LINE

In this section we focus on our model on the self-dual line
[31]

h = J, �1 = �2 = �, (44)

on which H is invariant under the duality transformation [46]

σ z
i = σ̃ x

i σ̃ x
i+1, τ z

i = τ̃ x
i τ̃ x

i+1, σ x
i =

i∏
k=1

σ̃ z
k , τ x

i =
i∏

k=1

τ̃ z
k

(45)

up to boundary terms. We investigate how the Liouvillian
gap, i.e., the inverse relaxation time, and the first decay mode
behave on the self-dual line. Since the overall scale is not
important for the analysis, we set h = J = 1 in the following.
Let eigenvalues of the Liouvillian L be �i(L). A Liouvillian
gap g is defined as

g := − max
i

[�i (L)] �= 0

Re[�i(L)], (46)

hence, the inverse of the relaxation time. It is clear from
Eq. (10) that the Liouvillian gap corresponds to the gap
between the first and second largest imaginary parts of eigen-
values of H.

As we have seen in Secs. III B and IV, the Hilbert space
is divided into four sectors (i), (ii), (iii), and (iv), and the
two ferromagnetic states which correspond to NESSs live in
sectors (i) and (ii). We now define the local Liouvillian gap
g(i), g(ii), g(iii), and g(iv) as follows: g(i) and g(ii) are defined as
the gap between the first and second largest imaginary part of
the eigenvalues of H̃(+1,±1). Note that the first largest one
is 2N� as we have proved in Sec. IV. The other two gaps,
g(iii) and g(iv), are defined as the difference between 2N� and
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FIG. 3. Liouvillian gap g as a function of �. A blue solid
line denotes the exact result Eq. (48) in the thermodynamic limit
possessing a cusp at � = 1/

√
3, while a orange dashed line is the

numerical one with 2N = 10.

the largest imaginary part of the eigenvalues of H̃(−1,±1).
The global Liouvillian gap g is then obtained as

g = min (g(i), g(ii), g(iii), g(iv) ). (47)

The main result of this section is that we the exact formula for
g as a function of dissipation strength � in the thermodynamic
limit is obtained as

g(�) =
{

4�
(
0 < � � 1√

3

)
,

2
√

�2 + 1
(

1√
3
� �

) (48)

(see also Fig. 3). The result implies a kind of phase transi-
tion for the first decay mode. In fact, the first decay mode
lives in sectors (i) and (ii) in the weak dissipation region
0 < � � 1/

√
3, while it lives in sectors (iii) and (iv) in the

strong dissipation region � > 1/
√

3, which we discuss in the
following subsections.

A. In sectors (i) and (ii)

First, let us consider the lower bound of g(i). In Sec. IV
we have shown that the largest imaginary part of H, and
also of H̃(+1,+1), is 2N� and corresponding eigenstates are
ferromagnetic states |⇑〉 and |⇓〉. Then, the state which has the
second largest imaginary part of H̃(+1,+1) must have at least
one up-spin and at least one down-spin. Therefore, there are
at least two kinks, which together with Lemma IV.1 implies
that the second largest imaginary part is less than or equal
to (2N − 4)�. In other words, g(i) � 4� holds. Next, let us
explicitly construct an eigenstate whose imaginary part of the
eigenvalue is (2N − 4)�. We denote by |i, j〉 the normalized
state which has two down-spins at site i and j, and (2N − 2)
up-spins at the rest of chain. Then, one can verify that

|χ (i)〉 := 1√
2N

2N∑
i=1

(−1)i−1|i, i + 1〉 (mod 2N ) (49)

is an eigenstate of H̃(+1,+1) with eigenvalue (2N − 4)�.
The state |χ (i)〉 is known as a singular state in the context of
the Heisenberg chain [47–50]. Therefore, we have proved that

g(i) = 4� holds and the first decay mode in sector (i) is

[1 + (−1)N QX ]√
2

|χ (i)〉. (50)

The Liouvillian gap in sector (ii) g(ii) and the first decay
mode can also be obtained in a similar way. One can see that

|χ (ii)〉 := 1√
2N

2N−1∑
i=1

(−1)i−1|i, i + 1〉 + |2N, 1〉 (51)

is an eigenstate of H̃(+1,−1) with eigenvalue (2N − 4)�.
One can also prove that g(ii) � 4� using Lemma IV.1, and
therefore, we have proved rigorously that

g(ii) = 4�, (52)

and the corresponding first decay mode is

[1 − (−1)N QX ]√
2

|χ (ii)〉. (53)

B. In sectors (iii) and (iv)

It is known that H̃(−1,+1) and H̃(−1,−1) give the same
spectrum [51], which leads to g(iii) = g(iv). Thus, it suffices
to consider only H̃(−1,+1). In Ref. [36], the energy of the
ferromagnetic XXZ model under this antidiagonal twisted
boundary condition has been studied by the ODBA method.
As a result, the authors obtained inhomogeneous Bethe ansatz
equations and the formula for the energy E as

eiu j

2N∏
l=1

sin(u j − ul + iη)

sin(u j + iη/2)

= e−iu j

2N∏
l=1

sin(u j − ul − iη)

sin(u j − iη/2)

+ 2ie−Nη sin

(
u j −

2N∑
l=1

ul

)
( j = 1, . . . , 2N ), (54)

E = −2i sinh η

2N∑
j=1

[
cot

(
u j + iη

2

)
− cot

(
u j − iη

2

)]
+ 2N sinh η + 2 sinh η, (55)

where {uj} are the Bethe roots and cosh η corresponds to the
anisotropy parameter. It is important to note that the ODBA
method is also applicable to complex anisotropy parameter,
and hence, complex η. The special case cosh η = i� is par-
ticularly relevant to the analysis of the gap, as it corresponds
to H̃(−1,+1). We confirmed numerically the following two
facts:

1. The Bethe roots for the eigenvalue of H̃(−1,+1) with
the largest imaginary part is obtained by analytic continuation
of those for the eigenstate of the Hermitian XXZ model with
the largest eigenvalue in absolute value [Fig. 4(b)].

2. The string hypothesis (3.1) of Ref. [36] may also be
valid for complex anisotropy [Fig. 4(a)]. In particular, the
corresponding Bethe roots for H̃(−1,+1) are obtained by
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Re

mImI

Re

)b()a(

FIG. 4. Numerical results of (a) Bethe roots and (b) corresponding eigenvalues of
∑2N

i=1(XiXi+1 + YiYi+1 + �eiθ ZiZi+1) under the
antidiagonal twisted boundary condition A2N+1 = X1A1X1 (A = X,Y, Z), where 2N = 8, � = cosh(1.0). The results show how the set of
Bethe roots and the corresponding eigenvalue move in the complex plane as the anisotropy parameter �eiθ varies from θ = 0 (corresponding
to the Hermitian XXZ) to θ = π/2 [corresponding to H̃(−1, +1)].

analytic continuation as

u j = −π

2
+

(
2N + 1

2
− j

)
i

[
ln(� +

√
�2 + 1) + iπ

2

]
+ o(N ) ( j = 1, . . . , 2N ). (56)

Then, by using this string hypothesis for the solution, g(iii)

in the thermodynamic limit can be obtained as

g(iii) = 2
√

�2 + 1. (57)

As a result, we obtain the explicit formula for the global
Liouvillian gap Eq. (48). We have confirmed that this ana-
lytical result agrees extremely well with the numerical result
obtained by exact diagonalization for 2N = 10 (see Fig. 3).

One can check the validity of Eq. (57) by considering the
Ising limit � → ∞. For notational convenience, we rescale
the Hamiltonian

H̃(−1,+1) → 1

�
H̃(−1,+1) = H0 + V, (58)

with

H0 = i
2N∑
i=1

ZiZi+1 (59)

and

V = 2

�

2N∑
i=1

(S+
i S−

i+1 + S−
i S+

i+1), (60)

where S±
i = (Xi ± Yi )/2 and the antidiagonal twisted bound-

ary conditions are imposed, i.e., Z2N+1 = −Z1, S±
2N+1 = S∓

1 .
In the Ising limit, one can first analyze H0, and then treat the
remaining term V as a perturbation. It is seen by inspection
that (2N − 2)i is the eigenvalue of H0 with the largest imag-
inary part. The corresponding eigenstates with QZ = −1 are
the following 2N states:

|↑↓ · · · ↓〉, |↑↑↑↓ · · · ↓〉, . . . , |↑ · · · ↑↓〉,
|↓↑ · · · ↑〉, |↓↓↓↑ · · · ↑〉, . . . , |↓ · · · ↓↑〉. (61)

Each state has two kinks (domain walls), one of which is
between sites 2N and 1, and the other of which is between
sites 2 j − 1 and 2 j ( j = 1, . . . , N). Let P be a projection
operator onto the subspace spanned by the states in Eq. (61).
We also define

R :=
∑

n
P|ψn〉 = 0

|ψn〉〈ψn|
(2N − 2)i − En

, (62)

where |ψn〉 are other eigenstates of the nonperturbed Hamilto-
nian with eigenvalue En. Then the effective Hamiltonian from
the second order perturbation reads

Heff = P (V + V RV )P . (63)

One can see that the first order perturbation term vanishes,
and the second order one leads to the constant shift of the
eigenvalue by

4

�2

1

(2N − 2)i − (2N − 6)i
= − i

�2
(64)

without lifting the degeneracy. Putting all this together, we
have

g(iii) = 2N� −
[

(2N − 2)� − 1

�

]
+ O

(
1

�2

)
(65)

= 2� + 1

�
+ O

(
1

�2

)
, (66)

which is consistent with Eq. (57).

VI. SUMMARY

We have studied a quantum Ising chain with bulk dissi-
pation. By vectorizing the density matrix, we showed that
the Liouvillian of the model can be thought of as a non-
Hermitian Ashkin-Teller model. Then using the Kohmoto-den
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Nijs-Kadanoff transformation, we further mapped it to a stag-
gered XXZ model with pure-imaginary anisotropy parame-
ters. This mapping has enabled us to prove that the two NESSs
are unique. Furthermore, we obtained the exact results for
the Liouvillian gap on the self-dual line corresponding to the
uniform XXZ model, which shows an excellent agreement
with the numerical results even for small system sizes. Though
we mostly focused on the self-dual line, it would be interesting
to explore the first decay mode in the whole parameter region
of h, J , �1, and �2. Whether it also undergoes the phase
transition remains an interesting question for future research.
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APPENDIX: INTERACTING PARAFERMION
REPRESENTATION

Our model has another representation using Z4

parafermions [52–55]. Neglecting the boundary terms,
we start from Eq. (11). First let us define the following two
operators:

α j = 1 + i

2
σ x

j + 1 − i

2
(−1) j−1τ x

j , (A1)

β j = 1

2

(
σ z

j − τ z
j

) + i

2
(−1) j

(
σ x

j τ
y
j + σ

y
j τ

x
j

)
, (A2)

which satisfy

α4
j = β4

j = 1, αiβ j = iδi j β jαi. (A3)

One can verify that

α
†
i αi+1 + αiα

†
i+1 = σ x

i σ x
i+1 − τ x

i τ x
i+1, (A4)

βi + β
†
i = σ z

i − τ z
i . (A5)

Then, Eq. (11) is rewritten in terms of αi and βi as

Hbulk =−h
N∑

i=1

(βi + β
†
i ) − J

N−1∑
i=1

(α†
i αi+1 + αiα

†
i+1)

− i�1

N∑
i=1

β2
i +β

†
i

2

2
−i�2

N−1∑
i=1

(α†
i αi+1)2+(αiα

†
i+1)2

2
.

(A6)

Next, we define Z4 parafermion operators as follows:

γ2i−1 =
⎛⎝ i−1∏

j=1

β j

⎞⎠αi, (A7)

γ2i = eiπ/4

⎛⎝ i−1∏
j=1

β j

⎞⎠αiβi = ei3π/4

⎛⎝ i∏
j=1

β j

⎞⎠αi. (A8)

They satisfy

γ 4
i = 1, γ

†
i = γ 3

i , γiγ j = iγ jγi (i < j). (A9)

By noting that

βi = e−iπ/4γ
†
2i−1γ2i, (A10)

α
†
i αi+1 = ei3π/4γ

†
2iγ2i+1, (A11)

we obtain

Hbulk = −h
N∑

i=1

(e−iπ/4γ
†
2i−1γ2i + eiπ/4γ

†
2iγ2i−1)

− J
N−1∑
i=1

(ei3π/4γ
†
2iγ2i+1 + e−i3π/4γ

†
2i+1γ2i )

− i�1

N∑
i=1

γ 2
2i−1γ

2
2i − i�2

N−1∑
i=1

γ 2
2iγ

2
2i+1. (A12)

The first and second terms are quadratic, while the third
and fourth terms are quartic in parafermions. Therefore, our
model can be thought of as a Z4 parafermion chain with
non-Hermitian quartic interactions (up to boundary terms).
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[12] M. Žnidarič, Phys. Rev. E 92, 042143 (2015).
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