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Multiple symmetry sustaining phase transitions in spin ice
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We present the full phase diagram of the dumbbell model of spin ice as a function of temperature, chemical
potential and staggered chemical potential which breaks the point group symmetry of the underlying diamond
lattice in favor of a magnetic charge crystal. We observe a double winged structure with five possible phases,
monopole fluid (spin ice), fragmented single monopole crystal phases, and double monopole crystal, the zinc-
blende structure. Our model provides a skeleton for liquid-liquid phase transitions and for the winged structures
observed for itinerant magnets under pressure and external field. We relate our results to recent experiments
on Ho,Ir,O; and propose a wide ranging set of new experiments that exploit the phase diagram, including
high-pressure protocols, dynamical scaling of Kibble-Zurek form, and universal violations of the fluctuation-

dissipation theorem.
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I. INTRODUCTION

Over the last decade, spin ice models and materials [1,2]
have emerged as model systems for the study of general-
ized electrostatics on a lattice [3—-9]. The emergence of the
electrostatics can best be seen by replacing the point dipole
moments of spin ice by infinitesimally thin magnetic needles,
lying along the axes linking the centers of adjoining tetra-
hedra [10] (see Fig. 1). Within this dumbbell approximation
[4], the pyrochlore lattice of magnetic moments transforms
[11,12] into a diamond lattice of vertices for magnetic charge.
The needles carry magnetic flux and dumbbells of effective
magnetic charge which touch at the vertices. By construction
the ensemble of low-energy “Pauling states” [13] with two
spins into and two out of each tetrahedron are degenerate in
this approximation, with charge neutrality imposed at each
vertex. These ground states form a vacuum from which mag-
netic monopole quasiparticles are excited by reversing the
orientation of a needle, breaking the ice rules on a pair of
neighboring sites [4]. Double monopoles can also be created
by reversing a second needle, for a vertex with all needles in
or all out. The emerging Coulomb fluid of magnetic origin
is often referred to as a magnetolyte [14] in analogy with its
electrical counterpart.

In this paper, we study the phase diagram of the dumbbell
model, including a staggered chemical potential, A, which
lowers the point group symmetry of the monopole configu-
ration space from Fd3m of the diamond lattice to F43m of
the zinc-blende structure [15] via a Z, symmetry breaking,
favoring monopole and double monopole crystallisation into
bipartite ionic cristals. In spin language, the lowering of
monopole point group symmetry corresponds to the develop-
ment of “all-in-all-out” (AIAO) antiferromagnetic order. The
staggered chemical potential lifts the degeneracy between sin-
gle and double monopoles at the crystallisation transition in a
manner compatible with the staggered internal magnetic field
offered by iridium ions in the spin ice material Ho,Ir,O7 [16].
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The work is inspired by the S =2 Blume-Capel model
[17] in which interacting spin degrees of freedom can take
value § = 0, 1, £2. There is a close analogy between the
antiferromagnetic version of this model and the dumbbell
model in which diamond lattice sites can accommodate zero
charge, plus (minus) a single monopole charge or plus (minus)
a double monopole (see Fig. 1). However, there are differ-
ences, notably the entropy carried by the emergent field, even
in the absence of charges [8,13]. From this starting point,
we deduce in detail below that the dumbbell model offers
the rich double winged phase diagram illustrated in Fig. 2.
The three-dimensional space of parameters consists of A,
energy scale v fixing the monopole and double monopole
chemical potentials: u = —v, u, = —4v, and temperature 7.
The central plane with A = 0 corresponds to the standard spin
ice phase diagram within this approximation [18,19], with a
transition from spin ice to AIAO order that changes from first
to second order in a multicritical region. The saturated AIAO
order corresponds to the ionic crystal of double monopoles
with the zinc-blende structure. The particularity of these
model systems is that they can accommodate two levels of
broken symmetry, one with saturated and one with partially
saturated order parameters. As a consequence, one finds the
double wings of boundaries emerging from the central plane
and terminating in continuous lines of critical end points.
In the case of spin ice, the partially ordered phase is the
fragmented monopole crystal [8,20] in which the magnetic
moments appear to break up into independent divergence full
and divergence free parts. In total the boundaries separate five
phases: the Coulomb fluid (spin ice) phase [marked (0) in
Fig. 2], two fragmented monopole crystal phases (1), and two
double monopole crystal phases (2).

As A breaks the point group symmetry, there is no further
microscopic symmetry breaking away from the central plane
so that all transitions at finite A are symmetry sustaining.
In this sense, the transition from monopole fluid to single
monopole crystal is thermodynamically equivalent to the
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FIG. 1. From spins to dumbbells. (Left) The pyrochlore lattice
of corner sharing tetrahedra. Tetrahedron centers form a diamond
lattice. Blue and red spheres illustrate the reduction of point group
symmetry from the diamond to the zinc-blende structure. (Right) The
point dipoles are extended to needles touching at the diamond lattice
sites. The needles carry magnetic flux and charge ¢ = £m/a at each
end. In a 2in-2out configuration (top) the vertex is charge neutral.
A 3in-1out (3out-1in) configuration carries a monopole charge Q =
2m/a (—Q = —2m/a) (center). A 4in (4out) configuration carries a
double monopole charge 2Q = 4m/a (—2Q = —4m/a) (bottom).

liquid-gas transition and that from single to double monopole
crystal is equivalent to liquid-liquid transitions observed
experimentally in supercooled liquids [21-24]. Entirely anal-
ogous sets of phase transitions also occur in itinerant magnetic
compounds under pressure and in the presence of an external
field [25,26]. A consequence of our work is that we are able
to offer a generic framework and minimal model to generate

TT

FIG. 2. Dumbbell model phase diagram. (0) monopole fluid (¢),
(1) monopole crystal (¢;) and (2) double monopole crystal (¢,).
Surfaces show first-order and solid lines second-order transitions and
dotted lines show the multicritical region. The long dashed lines
show the extension of the second-order lines to infinity. Chemical
potentials for single and double monopoles are u = —v, pu, = —4v
[see Eq. (3)]. For the phase diagram of the S = 2 Blume-Capel model
A replaces A and ¥ replaces v.

such seemingly exotic behavior, occurring in diverse domains
of physics and chemistry.

In the next section, we will provide concrete and quanti-
tative evidence for the existence of the double winged phase
diagram shown in Fig. 2, introducing general Blume-Capel
models, providing a detailed explanation of the multicritical
region, explicitly highlighting the consequences of the spin ice
entropy and investigating one of the continuous set of critical
end points that takes the model from the spin ice monopole
fluid to fragmented monopole crystal. In Sec. III, we present
dynamical finite size scaling results in the region of the crit-
ical point and show that it exihibits dynamical Kibble-Zurek
scaling in the three-dimensional Ising universality class. We
also present results showing the universal violation of the
fluctuation-dissipation relation consistent with this universal-
ity class. In Sec. IV, we relate our results to the observed
monopole driven phase transition for spin ice materials in a
magnetic field H in the [111] direction showing that monopole
crystallisation thermodynamics leads to a quantitative predic-
tion of the H, T phase diagram. In Sec. V, we give some
discussion, putting our results in the wider context of liquid-
liquid phase transitions and the temperature-field-pressure
phase diagram of itinerant magnets. We conclude this section,
returning to frustrated magnets, in particular Ho,Ir,O; and
the possibility of observing such a rich phase diagram and its
consequences in future experiments.

The work in this paper is classical and the phase transitions
are driven uniquely by thermal fluctuations. While the role of
quantum fluctuations are beyond the present work, in the dis-
cussion we address the question of competition between the
thermal transitions presented here and quantum fluctuations,
both in the context of quantum spin ice [27,28] and itinerent
magnetic materials [25,26].

The Kelvin energy scale is used throughout, fixing Boltz-
mann’s constant to unity. We also set the permeability of free
space uo = 1 so that the field H is measured in tesla. We
follow standard notation for spin ice simulations and refer
to a dimensionless length L, measured in cubic units. Each
cubic cell contains 16 spins (dumbbells) so that the num-
ber of tetrahedra (monopole sites), Ny = 8L>. In this paper
quantitative measures refer to the spin ice material Dy, Ti, O
(DTO) for which diamond lattice constant a = 4.33 A, the
nearest-neighbor spin distance r,,, = @ = 3.74 A, and cube

length a, = 4—ﬁ ~ 10 A (see Fig. 1).

II. MONOPOLE CRYSTAL PHASE DIAGRAM

The dumbbell model is an excellent approximation to the
dipolar spin ice model (DSI) which is characterized by short-
range exchange interactions and dipole interactions which
provide long-range forces for the monopole quasiparticles
[11,29]. The dumbbell model captures all features of the
DSI except for a low-temperature ordering transition which
indicates the lifting of the degeneracy of the Pauling states.
Above this energy scale, the DSI shows a phase transition on
varying the ratio of the exchange terms to dipolar interaction,
taking the model from the spin ice phase to the AIAO phase
[30]. The transition appears to change from first to second
order via a multicritical point [19].
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A. Blume-Capel models

Such physics is generically provided [31] by the Blume-
Capel (BC1) model [32,33], developed by Blume, Emery,
and Griffiths [34] to study mixtures of 3He and “He. In this
model, Ising-like degrees of freedom, which could be spins or
occupation numbers for a neutral two component lattice fluid,
take on values, S; = 0, =1. Contact with spin ice corresponds
to the antiferromagnetic case with spins on a bipartite lattice
such as square, cubic, or diamond with energy function

”HBC_JZSS +v252 AD DS,

llN()

where J < 0 is a coupling constant, v is the energy scale
for exciting a site i, A is a staggered field that breaks the
Z, symmetry of the bipartite lattice. Although the function
Hpc may generically be referred to as the Hamiltonian, for
future reference we take the Hamiltonian to be the many
body term only. The parameters ¥ and A can be interpreted
as Lagrange multipliers which allow the evolution from the
canonical to less constrained ensembles, so that the single site
terms contribute to the free energy but not the internal energy
[35]. A suitable order parameter can be defined

< N > ¢,>, )

i=1,Np

where (...) is a thermal average. The term ¢; = ¢;S; dis-
tinguishes the two sublattices with €, =1 on an A site and
—1 on a B site (in the discussion of fluctuations ¢ repre-
sents an instantaneous measure of the order parameter where
appropriate).

For A =0, on increasing v, the transition changes from
second order, in the Ising universality class, to first order via
a tricritical point. The staggered term A is conjugate to ¢ and
therefore guarantees a winged structure, as shown in Fig. 3.
The first-order transitions terminate along a line of critical
end points for finite A and temperature. The winged phase
boundaries and finite temperature critical end points stretch
out to A — 00, as even when the site occupation is perfectly
partitioned with S; = 1 on A sites only and S; = —1 on B sites
only, the interaction between the sublattices remains, allowing
for a singular jump in site occupation at finite temperature. As
A breaks the lattice symmetry, the transitions at the critical
end points are symmetry sustaining. They are characterized
by an emergent Ising-like order parameter at each point and
in this sense are liquid-gas-like.

The Blume-Capel model can be extended [17] to higher
values of S. Of particular interest is S =2 (BC2) which
greatly resembles the dumbbell model of spin ice. The order
parameter is now defined on the interval —2 < ¢ < 2 and
according to mean field [17] and pair approximation calcu-
lations [36] the BC2 model allows for two ordered phases
corresponding to |¢| ~ 1 (referred to as ¢;) and |p| ~ 2
(¢2) as well as the disordered phase with ¢ ~ 0 (¢p). As a
consequence, adding a finite staggered field, A to the BC2
energy function will open out a double winged structure as
shown qualitatively in Fig. 2 for the dumbbell model and
discussed in detail below.
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FIG. 3. Blume-Capel S = 1. (0) Paramagnet and (1) antiferro-
magnet. Surfaces show first- and lines second-order transitions and
the point shows a tricritical point.

B. The dumbbell model

Returning to the dumbbell model, the charge on vertex i of
the diamond lattice takes values Q; = 0, =0, £20Q with Q =
2m/a, m the magnetic moment associated with a spin and a
the lattice constant (see Fig. 1), from which one can define
a site occupation variable 7; = % —0,+1,+2 in analogy
with the BC2 model variables S;. A magnetic north (south)
monopole carries charge +Q (—Q). Within the dumbbell ap-
proximation, the dipolar spin ice Hamiltonian for excitations
above the lowest energy 2in-2out states can be written as

H = ”(Za) ( >nn, n vZn —a Y (D, 3)
i#] i=1,No

where u(a) = 4°Qa is the nearest-neighbor Coulomb energy
scale for a pair of monopoles. The mapping thus reformulates
the spin ice problem as a lattice Coulomb fluid in the grand
ensemble [4,6,8,37-40] with chemical potential for monopole
and double monopole creation 4 = —v and u, = —4v, re-
spectively. The chemical potential p can be calculated for
each material from the parameters of the corresponding (DSI)
and that for double monopoles is constrained to u, = 4u
by the spin Hamiltonian. Here we add a staggered chemical
potential term A which lifts the degeneracy for quasi-particles
with charge +0Q (and with charge +20Q) on the sublattices
Aand B, uf = pn+ A, u = F A and the convention is
such that A > 0 reduces the energy scale for creation of
monopoles (double monopoles) with positive charge on A
sites and with negative charge on B sites.

The Hamiltonian in Eq. (3) is a BC2 type energy function
with long-range Coulomb interactions, with order parameter
¢ given by Eq. (2) and with 7; replacing S;. However, the
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BC2 and dumbbell models are different as they have differ-
ent configurational phase spaces and so have different en-
tropies. In the dumbbell model one must take into account the
fragmented spin background [8], the so-called Dirac strings
[4,41], which emerge in the electrostatics as a divergence free
electric field giving Coulomb phase correlations [3,42] at low
temperature in the ¢y phase. These strings possess their own
configurational entropy independently of the charges. As a
consequence, for zero or finite monopole density and even
in the monopole crystal phases, the entropy remains different
from that of a lattice Coulomb fluid and hence of the BC2
model. The zero-temperature limits for these entropies are
well known. The entropy number density of the Coulomb
fluid phase is the Pauling entropy, so ~ In(3/2) = 0.405 per
tetrahedron. The entropy of the fragmented monopole crystal
is that of an ensemble of hard core dimers on a diamond
lattice [8,43], s;1 ~ In(1.3) = 0.262 while that of the double
monopole crystal is zero. One can develop an expression for
the entropy of both monopoles and strings at the Pauling level
of approximation [5,13] which works well in the monopole
fluid phase [40,41], but breaks down in the crystal phases.
More detailed analysis requires a return to the field theoretic
description of the charges and its ensuring lattice Helmholtz
decomposition [8,44].

C. The double winged phase diagram

The entropy terms make some quantitative difference but
similar phase diagrams can be expected for the two models as
can be seen from thermodynamic arguments. The monopole
free energy can be written as

Q = No(ue. + vn+ 4vny, — A¢p — sT), “4)

where u, and s are the Coulomb energy and entropy number
densities. As we are dealing with ionic crystals, the energy of
the three phases are known exactly at zero temperature [8]:
u? =0, u? = —u(a)a/2, u” = —2u(a)a, where o = 1.638
is the Madelung constant for a diamond lattice. Hence there
are zero-temperature phase boundaries between the three
phases with A > 0:

A _u(a)a

o : @1, +v K,

3u(a)a

b1, A=—

+3v K. 5)

Notice that, as both the Coulomb energies and the chemical
potentials scale with the square of the charge (u, = —4v)
the five phases intercept the A = 0 axis at the same point,
v* = ua /2. For smaller v, the Coulomb energy of the double
monopole crystal wins out corresponding to spin ice models
passing directly into the AIAO phase. However, as A couples
linearly to the charge, the wings spread out from this point in
the 7 = O plane.

The finite temperature phase boundaries can be estimated
from the Clapeyron equation for equilibrium between phases
o and B:
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FIG. 4. A-T plane. (Left) shaded plane through the full phase
diagram at fixed v - dotted black lines show the intercepts of the
phase boundaries with the plane. (Right) The fixed v plane rotated to
give A vs T. Green lines show the phase boundaries, the dotted black
line shows an isothermal trajectory in the plane.

where ¢, and s, are the order parameter and entropy den-
sities of phase «. At small temperature, we can assume
that both order parameter and entropy are constant: sy =
0.405, 51 =0.262 and s, =0, ¢ = 2,1 and 0, giving inter-
cepts and slopes for the phase boundaries in a 7 — A plane
for fixed v > v*. At higher temperatures this “fixed entropy
approximation” will break down and the lines should termi-
nate in critical end points as illustrated in Fig. 4.

We have tested this proposition numerically. In Fig. 5,
we show ¢ vs A for simulations with L = 8 for different
temperatures for fixed v = 4.35 K and u(a) = 2.88 K, values
estimated for DTO.! For the lowest temperature, sharp steps
are indeed observed in ¢ from ¢ =~ 0 to ~1 and from ¢ ~ 1 to
~2 at a value slightly greater than 2 and 6 K, respectively. The
data are consistent with two first-order phase transitions from
o to ¢ and from ¢; to ¢,. As the temperature is increased the
steps in ¢ become rounded, consistent with the model passing
through a critical end point with the transitions evolving to
crossovers at high temperature. The singular nature of the
transition between ¢y and ¢; at T = 0.3 K is confirmed in
the lower panel where we show the probability density P(¢)
estimated during the simulation. The distribution is sharply
peaked near ¢ = 1 but shows a lower peak in probability
near ¢ = 0, consistent with fluctuations between metastable
states separated by a finite jump in order parameter space. The
inequality in the peak heights shows that for these parameters,
the system has passed into the ordered phase. The lower
peak in distribution occurs at a small but finite value of ¢,
consistently with A breaking the Z, symmetry of the lattice
even in the ¢y phase. The five phases confirming the double
winged structure are indeed the Coulomb fluid (spin ice) phase
(o), the two fragmented monopole crystal phases [8,20] (¢,)
and the double monopole crystal AIAO phases (¢»).

The position of the first-order transitions in parameter
space can be estimated using Eqgs. (5) and (6). Taking the
DTO values for v, and u(a) and A > 0 the zero temperature

'The value of u(a) = 2.88 K used here corresponds to a magnetic
moment for the spins, m = 9.87up, as deduced from crystal field
calculations [83] rather than the 105 often quoted in the literature,
which gives u(a) = 3.07 K and a corresponding difference in the
energy scale for the phase diagram.
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FIG. 5. Multiple monopole crystallization. (Top) The order pa-
rameter ¢ vs A simulated from the dumbbell model at fixed v =
4.35 K. Simulations for Ny = 4096 (L = 8) and periodic boundaries.
All values are in Kelvin. (Bottom) Probability density P(¢) for
A=205K,T=03K,andv =4.35K.

intercept of the two phase boundaries are

A=19K,
A =597K. 7)

oo : 1,
o1 ¢,

Assuming complete jumps in the order parameter at the
transition, one finds for 7 = 0.3 K

@0 : ¢1,
1 : P2,

A=203K,
A =6.05K, (8)

in close agreement with the results of Fig. 5.

D. A critical end point

‘We have made a quantitative estimate of the position of one
critical end point, that for the transition from ¢, to ¢, for v =
4.35 K. This can be extracted from the crossings of the Binder
cumulant [45], B4 for the emergent Ising-like order parameter

1. i i i i i I
8.3655 0.3660 0.3665 0.3670 0.3675 0.3680 0.3685 0.3690
T (K)

2.5

1.5

P(¢)

1.0

0.5

) . 0.4 0.6 . 1.0
¢

FIG. 6. Locating the critical point. (Top) The Binder cumulant
B4 for the emergent order parameter ¢ = ¢ — ¢, for fixed v =
435Kand A = A, =2.03745 K and ¢, = 0.42 at the ¢, : ¢ phase
boundary (see text). (Bottom) Probability density P(¢) at the critical
end point, v = 4.35 K, A, = 2.03745, and T, = 0.36752.

at the critical end point, ¢ = ¢ — ¢, where ¢. = ¢(T,):

{(9)*")
(@)1

The parameters A., T., and ¢, were estimated using an
iterative procedure. A first estimate of 7, and A, was made
by following the evolution of P(¢) from a double to sin-
gle peak distribution. From here a more accurate estimate
of A was found from the maximum of the susceptibility
for ¢. This estimate was found to be invariant under small
temperature changes and the result can be established with
high precision [46]. We find A, = 2.03745 + 0.00005 K.
The evolution of Bs with temperature for this A, is shown
in Fig. 6 for system sizes L =8, 10, and 12 and for ¢, =
0.42. A crossing point is found for 7' = 0.36752 £ 0.00001 K
with B4(T, A) = 2.03 £ 0.01. The crossing value should be
compared with other Ising-like systems: B4(7.) = 1.60 for
the 3D Ising model [47] and B4(T;, H.) = 1.86 for spin ice
with field H along the [111] cubic axis [46]. We found that
the value depends on ¢, reducing to ~1.60 for ¢. = 0.5,

Bi(T, A) = &)
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A A

T T

FIG. 7. Low temperature (7 < v). (Left) v=v* and (right)
v < v*. (0) monopole fluid (¢), (1) monopole crystal (¢;), and (2)
double monopole crystal (¢,).

with crossing at 7 = 0.3672 K, but in this case the crossing
was not so accurately defined. From this analysis we estimate
T. = 0.3675 + 0.0003 K. In Fig. 6, we show the probability
density function, P(¢) calculated at 7., A, which resembles
qualitatively the universal function P(M) for the magnetiza-
tion M of the three-dimensional Ising model at the critical
point [48,49] and is centered on ¢ = 0.5. The universality
class of the critical point is discussed further below through
a dynamical finite size scaling analysis and the measurement
of the fluctuation-dissipation ratio.

E. The multicritical region

How the wings meet in the multicritical region is a rather
subtle question. The intersection of the five phases on the
A =0 plane at a single pentacritical point is unlikely, as
the plane is characterized by two variables 7 and v only.
This allows the system to tune to a tricritical point in which
both the quadratic and quartic terms in an expansion of
the free energy in ¢ are zero [31]. However, a pentacritical
point would require the annulation of the sixth order term
which, without a third parameter would be accidental. In the
model studied here, emergent from the DSI, the monopole and
double monopole costs are fixed: p, = 4v. Floating p, away
from this value could allow the tuning necessary to establish
pentacriticality but the evidence presented below suggests
that in our case the wings meet in two stages which indeed
maintains the tricriticality of the BC1 model.

The five phases do however meet at T =0, A =0, and
v = v*. A phase boundary between ¢, and ¢y then rises from
the five phase intercept along

4(v* —v) = 50T, (10)

where we have again assumed a constant entropy approxima-
tion, valid for T <« v*. Within this approximation the Pauling
entropy of the spin ice vacuum gives a finite slope away
from 7 = 0 which takes the system away from ¢; and this
phase is suppressed everywhere in the A = 0 plane except
the special point at 7 = 0. This can be seen in detail by
analysis of the three different free energies. As a consequence,
A-T planes for v =v* and v < v* take the form shown
in Fig. 7 at low temperature. In the latter case, there is a
finite temperature order disorder transition between ¢, and
¢o along the A =0 axis, ensuring that the ¢, ¢; and ¢g
phases meet at a triple point for finite A. The slopes of
the phase boundaries, 144 can be estimated from Eq. (6):

o 2=% (
¢~ +1
¢~ +2 ‘/(1)
(2)

Vi

FIG. 8. Symmetry breaking in the S = 2 Blume-Capel model:
the A=0 plane of the S = 2 Blume-Capel model [36]. Phases are
defined in Fig. 1.

n = (Sl — S2) = 0262, N = (S() — S1) =0.143 and N0 =
%(so —s57) = 0.203 and the triple point, which is allowed
because of the linear dependence between the three boundary
curves, occurs at

_ 2(v* —v)

I = (11)

251 — 8o

As |v — v*| increases, the A = 0 transition temperature
increases until at the tricritical point the transition changes
from first to second order, at which point the line structure
in Fig. 7(b) will have evaporated through critical end points.

Heating up to the critical end points should therefore lead
to the wings meeting in two stages with the possibility of three
separate tricritical points, with all lines meeting tangentially
[50]. Two of these would be the critical termination of the
triple points for finite positive and negative A and the third,
a classic tricritical point separating ordered and disordered
phases for A = 0.

This scenario can be compared with that of the BC2 model.
In this case, the same five phase intercept occurs at 7 = 0 but
the ¢, : ¢y phase boundary now rises vertically as the entropy
of both phases approach zero as T goes to zero. However, at
the level of mean field and pair approximation calculations
[17,36] a small sliver of ¢, appears at higher temperatures,
stabilized by the entropy of spin fluctuations. The ¢; : ¢»
boundary ends at a critical point in the A = 0 plane as shown
in Fig. 8. This suggests that the tricritical point of the BC1
model is again maintained with this time, separate intercepts
onto the central plane for the two wings for positive and for
negative A.

The undershoot and overshoot of the wing interceptions in
the dumbbell and BC2 models illustrates the accidental nature
of pentacriticality for this set of parameters and strongly
suggests that a generalized model with independent  and u,
could be tuned to include a pentacritical point.

III. DYNAMIC SCALING AT A CRITICAL END POINT

A. Critical slowing down

Along the lines of critical end points there are divergent
timescales associated with the diverging correlation lengths
and critical slowing down. In Fig. 9, we show the evolution of

224425-6



MULTIPLE SYMMETRY SUSTAINING PHASE ...

PHYSICAL REVIEW B 99, 224425 (2019)

100
Wy
B ) ot
Ba
101}
=
()O ‘ u
102} ® : A %
e T-0.36752K ] %é: >
> T=0.368K L 7o
A T= 0.3685K
o T— 0.369K "'
103} m 7= 037K
100 101 102 i03 10 ios

t (MC steps)

FIG. 9. Critical correlations at equilibrium. Autocorrelation
function for the monopole crystal C4(¢) vs t for temperatures close
to the critical temperature. Solid black line shows power law decay
with exponent —1/2.

the autocorrelation function
(9i(1)9i(0)) — (i (1)) (¢i(0))
(#1(0)%) — ($:(0))>
with Metropolis Monte Carlo time as the critical end point
for v=4.35 K, A.=2.03745 is approached along the
temperature axis. Note that in Eq. (12) we study the critical
dynamics using the local spin-spin autocorrelation function,
which is distinct from the autocorrelation function of the
global order parameter ¢. The spin autocorrelation function
is statistically easier to access, but it also captures the critical
slowing down. The data show decay of correlations at equilib-
rium for a system of size L = 12.

As the transition is approached from above the correlation
time increases and Cy(¢) develops a power-law decay with
exponent a ~ —1/2, out to a maximum of the order of 10
Monte Carlo steps per dumbbell. The best power law is
observed for a temperature 7 =~ 0.369 K, higher than the
T. = 0.3675 estimated from analysis of the Binder cumulant.

Within the critical region timescales and length scales
are bridged via the dynamical critical exponent [51] z. The
correlation time 7 diverges with the correlation length £ as

LA (§> (13)
70 a

Hence, as the spatial correlation function for the local order
parameter in dimension d scales with distance in the critical
region as r~~1=" with d — 1 the anomalous dimension of
the universality class, one expects dynamical scaling of the
form Cy(t) ~ t~@=1=m/z Taking n ~ 0.0363 <« 1 and z ~ 2,
which should be the case for local dynamics in the three-
dimensional Ising universality class, one finds an exponent
o & 1/2 as observed. The shift in effective transition temper-
ature away from the Binder crossing point is expected and is
due to finite size effects.

The cutoff of the power law is compatible with the finite
size cutoff of &: &.x < L' = %. Taking z ~ 2, L =12 and
microscopic time ty equal to one Monte Carlo time step
indeed gives a cutoff to the critical scaling of the order of
10° Metropolis time steps. Below the critical temperature the

Cot) = (12)
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FIG. 10. Hysteresis loops. ¢ vs A for different sweep rates.
System size L = 8. The ¢(¢) is a configurational average of 500
samples, each starting at equilibrium atz = 0.

time correlation function develops a plateau which decays at
longer timescales. This is consistent with a change of regime
in the dense crystalline phase where decay of correlations is
due to the creation and propagation of monopole holes [52].

B. Kibble-Zurek scaling

A more quantitative picture of the emergent universality
class of the critical end point can be achieved by following the
dynamical Kibble-Zurek [53,54] scaling protocol proposed in
[46]. In this scenario, the field-like scaling variable is swept in
time through a cycle with characteristic timescale 7¢:

= 20 =8 o Gn (1), (14)
A 2TQ

c

with temperature fixed at 7. Far from the critical point, the
equilibrium timescale is small compared with 7y so that the
evolution is adiabatic but as the critical point is approached
the equilibrium timescale diverges. As a consequence, at a
given point in each cycle the system falls out of equilibrium
creating hysteresis loops in the thermodynamic observables,
whose magnitude depends on sweep time.

In Fig. 10, we show the evolution of ¢ with A at 7, for a
system of size L = 8 and Ao = 0.1 for different ty. Hysteresis
loops centered on ¢ = ¢, indeed appear and their amplitude
falls to zero as 7y increases.

Following Eq. (13), the correlation time diverges along the
field axes as T ~ oA~ with v, the field driven correlation
length exponent, so that T and sweep time are related through
Eq. (14). The crossover from adiabatic to out of equilibrium
response occurs around the point |‘(11—§| = 1, which fixes a

characteristic Kibble-Zurek timescale, txy = fO(Z_Q )ZW vt

In the critical region, the fall from equilibroium of the
emergent order parameter ¢ is captured by the dynamical
scaling hypothesis [51]

IN? [t
—(— L. 5
(o) s

where D, is the scaling dimension of the field and G(x) is a
scaling function allowing for data collapse for different data
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FIG. 11. Kibble-Zurek scaling. Ag weighted by tfg/ “ as a func-
tion of (é) forv, =0.4and z = 2.

sets. For short-range systems, up to and including the upper
critical dimension D, = d”;";}’l, while in the Gaussian regime
D, = 1.

In Fig. 11, we show the Kibble-Zurek scaling collapse
for Ap = o(1) T —@p(A) |, the difference in order parameter
values on an up and down swing of the cycle. We find
a convincing collapse using known values for the three-
dimensional Ising universality class [55] and local stochastic
dynamics [56], v;, = 0.4 and z = 2. We do not have access to
large enough system sizes or high enough resolution on our
data to distinguish between three-dimensional XY and Ising
universality classes but the collapse shown is superior to that
found using Gaussian exponents. Hence, as in Ref. [46] for
the critical point observed for spin ice in a [111] field, we can
exclude the possibility of the long-range Coulomb interactions
influencing the universal fluctuations.

It is worth remarking that, however accurate the data, the
field scaling Kibble-Zurek protocol cannot unambiguously
establish Ising universality, as the procedure accesses only one
of the two static scaling dimensions, D;; v; being independent
of the second dimension D,. This yields D; = ﬁ =, where
exponents have their usual meaning [31], establishing weak
universality only [57]. This in principle allows for variation
of B and v within the weak universality constraint [58].
A thermal Kibble-Zurek protocol would fix the two static
exponents through the presence of both D, and v although one
would then have a three parameter fit (D,, v, z) for a single
expression.

C. Aging and fluctuation-dissipation ratio

A further remarkable consequence of the diverging
timescale at the critical point is that if the system is suddenly
quenched from a high temperature to 7, it will not reach
equilibrium within the time window offered by experiments or
simulation. As a result, systems quenched to criticality display
universal aging properties, reported in an extensive literature
[59-69] showing explicitly that the tools developed in the
context of materials with slow glassy dynamics are highly
relevant for aging critical dynamics.

Two important properties emerge from the out-of-
equilibrium dynamics. First, the time correlation function in

Eq. (12) is no longer time translationally invariant, so that one
needs to explicitly follow the dependence on the time spent
at criticality since the quench. As a result the system slowly
ages towards equilibrium in a manner reminiscent of disor-
dered glassy systems [70]. Second, the fluctuation-dissipation
theorem (FDT) which, in equilibrium connects linear response
functions to time correlations functions, is no longer valid.
In glassy materials, violations of the FDT have been found
to take simple forms with appealing physical interpretations
[70-73]. Studies of FDT violations in systems quenched to
criticality show that the deviations from the equilibrium rela-
tion contains direct information about the universality class of
the model [59,64].

Inspired by these studies, we consider a numerical proto-
col in which the temperature is instantaneously varied from
T=1000K to T =T, =0.3685 K, and denote t,, the “wait-
ing time” spent at 7. since the quench. We then define

(i (tw)pi(1)) — (Pi(tw)) (hi(1))

(i) — (di(1))? ’
where the waiting time dependance is now made explicit.
Indeed, as with other critical systems, we find that the time
decay of the spin autocorrelation function is not just a function
of t —t,, but now depends explicitly of both times. We also
define the linear response function associated with the time
correlation function in Eq. (16) as

9{gi(1))
8Ai(tw) '

where A; is the field conjugate to the local order parameter
¢;. We introduce the normalized response function j, =
Xo/ ((¢>,-(t)2~) — {¢i(1))?), such that the equilibrium FDT reads
% =(1—Cp)/T.

In the aging regime following a quench, the FDT is not
expected to be satisfied, and it can generically be rewritten as

X(t,ty)
T
which defines the fluctuation-dissipation ratio X (¢, t,,) [71].
Physically, Eq. (18) is appealing as it has the same mathemat-
ical form as in equilibrium, with the difference that the ther-
mal bath temperature is replaced by an effective temperature

T/X(t,t,)[72].

In Fig. 12, we display FDT violations by representing
T %4(t, t,) as a function of 1 — C‘¢,(t, ty), for a fixed time ¢
and using t,, as a running parameter in the plot [67]. We repeat
these measurements for a series of ¢ values. In order to achieve
statistical accuracy, we adapt the most efficient Monte Carlo
tools presented in Refs. [74—76] to the dumbell model.

The relevance of this representation is obvious as the
slope of these curves is a direct measure of the fluctuation-
dissipation ratio, by virtue of Eq. (12). Close to the origin,
corresponding to short time differences ¢ — t,,, the equilibrium
FDT is obeyed and the parametric response-correlation plot is
linear with slope given by the temperature 7'. In contrast, clear
deviations from the FDT are observed in the opposite limit of
large time differences t — t,,, with a fluctuation-dissipation ra-
tio X (¢, t,) < 1. The physical interpretation is that small-scale
(and thus fast) fluctuations rapidly reach thermal equilibrium
and display equilibrium FDT, whereas large and slow critical

C¢(t, tw) =

(16)

Xo(t, 1) = a7)

Ko, tw) = (1= Cy(t, 1)), (18)
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FIG. 12. FDT violations. Parametric plot of the response func-
tion against the correlation function, for various fixed times ¢ and
using f,, as a running parameter after a quench at the critical point
T., A.. The system size is Ny = 13824 (L = 12), and data are aver-
aged over 500 independent quenches. The inset show limiting values
for long times. The solid lines show the expected universal value
X = 0.38 for the 3D Ising universality class.

fluctuations retain their nonequilibrium nature and display
FDT violations, as seen in other critical systems [59,61].

The limiting value of the fluctuation-dissipation ratio de-
fined as

Xoo = lim lim X (z,t,) (19)
ty—>00 t—>00

takes a finite value, specific to a particular universality class.
In the inset of Fig. 12, we compare the limiting value of
the fluctuation-dissipation ratio measured in our simulations
to the known value, X, = 0.38 measured for the three-
dimensional Ising model [60,69]. We find an excellent agree-
ment with our data, which again supports the idea that the
critical end point is in this universality class.

IV. COMPARISON WITH SPIN ICE IN A [111] FIELD

At present, the only experimentally observable phase tran-
sition driven by monopole ordering is that observed with
magnetic field placed along the [111] crystal axis [77-79],
H = %(1, 1, 1). A field of modest strength selects a subset

of Pauling states with the moments of the spins lying parallel
to the field axis aligned in the field direction. The system
maintains a finite entropy related to configurations of the
three spins of each tetrahedron with components lying in
the kagome planes perpendicular to the field direction [80]
(see Fig. 13). On increasing the field at low temperature, a
first-order transition is observed to a fully ordered state of
3in-1lout/3out-1lin tetrahedra. As the temperature increases
the transition line terminates in a critical end point. In Fig. 14,
we reproduce data from Fig. 4 of Ref. [77], which reports
experiments on DTO. The figure shows the estimated phase
diagram. The order of magnitude of the applied field is 0.9 T
and the critical temperature is around 0.35 K.

The transition has previously been successfully interpreted
as liquid-gas-like, with the critical end point terminating a
monopole crystallisation transition [4]. In this sense, it is a
close cousin of the transition separating ¢y and ¢, discussed

I 1

[111]

T
Ay Aot
’ T

FIG. 13. Monopole creation in a [111] field. (Top) Connected
tetrahedra perpendicular to the [111] axis form kagomé planes of
spins which are bases for alternating up and down tetetrahedra. The
arrow shows the direction of an applied field. (Bottom) Flipping the
spins indicated (left) creates monopole pairs with broken point group
symmetry. North pole (+): red disk, the south pole (—): blue disk.

above. In consequence, the phase diagrams in Figs. 14 and
4(b) are analogous. The only difference is that, in this case the
external field couples to both of the fragmented components
of the magnetic moments [8], providing a staggered chemical
potential for the monopoles and introducing a preference

0.95 T T T
0.94 +  Fully ordered state B
0.93 L ¢ o ° L
ie * , '
—~ 092 + Pis i
= .-F
T 091 :
0.9 [ ] E
L
0.8 | m Partially ordered 4
plateau state
088 1 1 1
0 0.1 0.2 0.3 0.4

T(K)

FIG. 14. Monopole phase transition in a [111] field. We re-
produce data from Fig. 4 of Ref. [77], which shows the thermal
variation of the transition field of Dy, Ti,O; for H parallel to [111].
Solid circles (squares) denote the data points obtained for increasing
(decreasing) field sweeps. Open triangles are the averaged critical
field H., which show a nearly linear temperature variation with
% = 0.08 T K~! (dashed line) at low temperature. The added blue
circles are our estimates of the field strength at 7 =0 and at 7.
with blue line the phase boundary given by the constant entropy
approximation.
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for Dirac strings oriented with the field. The field therefore
breaks both the magnetic symmetry and the monopole config-
urational symmetry leading, in spin language to coexistence
of ferromagnetic and antiferromagnetic order for the two
fragmented spin sectors [8].

At the transition monopole pairs are created in abundance
by flipping spins in the kagome planes as illustrated in Fig. 13.
The direct action of the field on the charges is to provide a
chemical potential gradient, Vs = +0H so that, in addition
to the energy scale for monopole creation in zero field, there
is also a contribution depending on the direction of movement
in the field. The chemical potential gradient alone does not
therefore provide a staggered energy profile. If one of the
north monopoles of Fig. 13 were to continue moving along
the Z axis it would pick up energy at each step in the same
manner. However, the constraints of spin ice forbid this:
movement between the kagome planes is blocked as, on the
magnetic plateau the spins joining the planes point in the
wrong direction to allow monopole movement between planes
via a single spin flip. Preparing the ground for this move
requires flips of loops of spins at high energy cost [81] so that
the monopoles are essentially confined to two-dimensional
strips perpendicular to the field axis.

The chemical potential gradient does provide a staggered
energy landscape within this confined space. The difference in
potential energy for a (north) monopole on an A or a B site of
a kagome plane is 2A = Qd - H where @ = %(—1, —1,1)is
a lattice vector spanning the two sites. This yields A = (%),
which is just the Zeeman energy of the spin flip in the presence
of the field.

Given the similarities, we can repeat the thermodynamic
arguments of Sec. IIC for modified phases ¢, the plateau
phase with entropy per tetrahedron s/, = 0.1616 [82] and or-
dered monopole crystal phase ¢| with entropy zero. From this,
using m = 9.87up [83] we predict a field for the transition
at zero temperature H(7 = 0) = 0.90 T and an initial slope
for the phase boundary ‘;—1}' =0.073 T K~!'. We note that
the observed critical temperature for DTO [77] is very close
to our calculated value 7, = 0.367 K for the ¢ : ¢; critical
end point. Taking this value and using the constant entropy
approximation, we find H. = 0.927 T.

Our predicted phase diagram, shown in Fig. 14 is in quite
remarkable quantitative agreement with Ref. [77]. However,
a word of caution is probably in order. As the entropy of the
phases ¢, ¢, and ¢1, ¢ are different there is no reason to
expect such quantitative agreement between the two critical
temperatures. Indeed simulations of the transition using the
dipolar spin ice model [11], while still in excellent qualitative
agreement with the experimental data show a significantly
higher critical temperature, T, = 0.587 K [4,46]. However,
quantitative modeling of experiments with the DSI at such
low temperatures requires corrections in the form of further
neighbor exchange terms [29], which could also have signifi-
cant effects on the critical end point [4]. In general these extra
terms reduce the ordering temperature for symmetry breaking
among the Pauling states, compared with the original DSI
model [30]. As the dumbbell model has no such ordering
transition these corrections may play in its favour, but one
could be forced to concede an element of good fortune in

this remarkable agreement. It would clearly be of interest to
pursue this subject in future research.

V. DISCUSSION

We have shown that the dumbbell model of spin ice has a
rich phase diagram with the double winged structure shown in
Fig. 2. A key to its existence is the presence of a first-order line
for the spin ice - ATAO transition in the A = 0 plane [19]. The
first-order nature of the transition ensures that the singularity
survives application of a symmetry breaking field giving sym-
metry sustaining transitions and the emergence of the wings.
The first-order transition becomes second order via a tricritical
point as discussed in detail in Sec. Il E. Tricritical behavior
with first- and second-order sectors is common in frustrated
magnetic systems [84—87] and is related to the entropy of
fluctuations provided by the frustrated geometry. In the case
of spin ice, one must go beyond the nearest-neighbor spin ice
model to generate a first-order transition as within this approx-
imation the monopoles are noninteracting. Ordering in this
case is due uniquely to entropic considerations [19] and can
only be second order [4]. Including the dipolar interactions
in the spin model provides the emergent monopoles with an
energy versus entropy trade off which drives the transition first
order. However, truncating the Coulomb interaction beyond
nearest-neighbor monopoles would not give a quantitative
change to the phase diagram.

We have studied both the dumbbell model and the related
Blume-Capel model, the BC2. The five phases of the wings
meet either in two stages for dumbbell, or not at all for
BC2, entering the A =0 plane at two different values of
v and 7. This undershoot or overshoot is consistent with
there being only two independent variables on the plane. This
could however be changed by freeing the double monopole
chemical potential from the fixed value, w, = —4v of the
present model. By tuning y = 4v 4 u,, it should be possible
to find a parameter set v, 7', y for which the five phases meet
at a single pentacritical point. This corresponds, at the mean
field level to all terms up to and including order ¢° being zero
in an expansion of the free energy.

Future research will surely address the question of stability
of this classical phase diagram in the presence of quantum
fluctuations. To do so, one will need to extend models of
quantum spin ice [27,28] beyond nearest-neighbor spin in-
teractions to stabilize the classical phase boundaries. In this
case, adding quantum fluctuations to the emergent field of
the fragmented crystal could lead to a new, emergent pho-
ton mode [88] compatible with hard core dimer fluctuations
[8,89], while coherent monopole fluctuations [52] could lead
to supersolid characteristics for the monopole crystal [90].

A. Liquid-gas, liquid-liquid, and symmetry
sustaining transitions

Liquid-gas phase transitions have two defining character-
istics. Firstly they correspond to crossing lines of phase equi-
libria in a temperature-like—field-like phase diagram, between
two phases with the same symmetry. It is then possible for the
transition to terminate at a critical end point allowing one to
move analytically from one phase to another, contouring this
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special point. As a consequence, the only thing that defines
the two separate phases is the transition itself. There is broken
symmetry at the transition, but it is emergent, separating
phase space into high- and low-density sectors with the same
microscopic symmetry.

The second is that the sustained symmetry is the highest
allowed by the Hamiltonian. The generic case is that of a fluid
that changes from low to high density through the control of
temperature and pressure, or chemical potential while main-
taining continuous translational symmetry. In the quantum
case, temperature could be replaced by a coupling constant
and thermal fluctuations by quantum fluctuations, allowing
for the transition from a long-range entangled quantum liquid,
such as a quantum spin liquid [27] to a classical paramagnet,
or spin gas phase [91].

The first criterion is ubiquitous thermodynamics and can
be generated for any first-order transition by the application
of a field conjugate to the order parameter characterising
the transition. The second is a nonuniversal property of
strongly correlated systems, with the existence of the liquid-
gas singularity dependent on the microscopic properties of the
model [92].

The transitions discussed in this paper satisfy the first
criterion but not the second. In general, Coulomb fluids on
a bipartite lattice do not offer a liquid gas transition with
the full point group symmetry of the 7 — v, A = 0 plane
[93]. Rather, such a transition is usurped by sublimation
from low density fluid to crystal with broken Z, configu-
rational symmetry, as we have seen here in detail for the
diamond lattice. The transitions are therefore liquid-gas-like
in the weaker sense: they are symmetry sustaining but do
not maintain the highest configurational symmetry offered by
the lattice. However, as the two criteria are equivalent from a
thermodynamic point of view, Blume-Capel type models and
therefore spin ice can be considered as generic systems for
studying symmetry sustaining phenomena, often occurring in
liquids.

In particular, there has been much work on systems show-
ing liquid-liquid phase transitions. In water [21,24], molten
phosphorous [22], or silicon [23], pressure takes the fluid from
a low- to high-density liquid state via a first-order transition
that terminates in a critical end point. The high-density tran-
sition appears in a supercooled state as it is again usurped by
crystallisation in thermodynamic equilibrium. A characteristic
of these systems is the capacity to accommodate two kinds
of local packing, open (tetrahedral) and close packed. This
can be modelled using two hard core repulsion length scales
as, for example, in the Jagla model [94,95]. The BC2 model
and hence spin ice clearly provides a generic skeleton for
this science. If passage from the ¢y to ¢; is equivalent a
liquid-gas phase transition then that from ¢; to ¢, on one
side of the double winged phase diagram of Fig. 2 is thermo-
dynamically equivalent to a liquid-liquid transition. Detailed
comparison with the models presented here could therefore
provide new insight into the necessary conditions for liquid-
liquid transitions including the possibility of liquid-liquid
tricriticality.

Slightly nearer to home, similar physics is observed in
magnetic itinerant electron systems under pressure. Both
LaCrGes [25] and UGe, [26] show double winged phase

diagrams as a function of temperature, pressure and applied
field with two ferromagnetic phases extending out to finite
field values. The ferromagnetic phase transitions are symme-
try sustaining in exact analogy with the transitions presented
in this paper so that, although the overall phase diagrams are
more complex, the BC2 type models again provide a skeleton
for this structure. Interestingly these materials provide exper-
imental examples of the two possible multi-critical regions
discussed in Sec. IIE, confirming the accidental nature of
the wing connections in the phase diagram. In LaCrGej, the
wings meet in two stages for each field direction, as proposed
for spin ice, giving three distinct tricritical points for positive
and negative characteristic fields and for H = 0. In UGe; on
the other hand, the wings meet the central plane separately, as
is apparently the case for the BC2 model.

In these materials the evolution, at zero field from a second-
to first-order transition via a tricritical point is seen as a
mechanism for evading quantum criticality. Here we have
shown that the starting point for such a scenario is classical.
The observed transitions are at finite temperature, are driven
by thermal fluctuation and can therefore be captured by a clas-
sical model of BC type. The tricritical point is present at the
mean field level because varying v changes both the transition
temperature and the quartic term of a Landau expansion of the
free energy [31]. In the materials, quantum corrections could
play a role in renormalising the parameters of the effective
mean field theory as the pressure is varied. They could then
eliminate the tricritical point, leading to a breakdown of the
mean field scenario and emergence of quantum criticality.
In the case of LaCrGes, it appears that this scenario is in
competition with other perturbations driving the system into
antiferromagnetic phases at high pressure.

However, the explicit effects of quantum fluctuations could
be present in the experimental phase diagrams. For LaCrGes,
the winged phase transitions are extrapolated to terminate
at zero temperature and finite field at a series of “quantum
wing critical points.” This prediction should be contrasted
with antiferromagnetic BC2 type models for which the lines
of finite temperature critical end points extend out to A =
doo. Here, as A becomes large the partitioning of north
and south poles on A and B sublattices becomes perfect, but
the collective interaction between charges of opposite sign
still drives a liquid-gas-like discontinuity in the sublattice
monopole density at finite temperature. It would certainly
be interesting to do more studies for the ferromagnetic case
including transverse spin fluctuations, the quantum case being
accessible via quantum Monte Carlo simulation.

B. Future experiments in frustrated magnetism

Motivation for this work has come in large part from
experiments on the spin ice material Ho,Ir,O; (HIO)[16]. In
this material, both the Ho*" ions and the Ir** ions carry a
magnetic moment and they sit on interpenetrating pyrochlore
structures. The moments of the Ir** ions order on the scale of
100 K into an AIAO structure which provides internal mag-
netic fields which act in turn on the Ho** magnetic moments.
In the monopole picture, the internal fields translate into the
staggered chemical potential studied here and proposed in [§]
as a mechanism for separating the ¢, and ¢, monopole crystal
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phases and accessing the ¢; phase. As temperature is lowered
through the 1-K range the Ho sublattice continuously develops
AIAO order with the ordered moment saturating at 50 % of the
total moment. The leftover moment gives correlated diffuse
scattering consistent with a Coulomb phase and the measured
characteristics of the powder sample are indeed consistent
with the fragmented ¢, phase.

As the Ho sublattice shows no phase transition none of the
winged structure is, as yet observable directly in experiment.
However, it is worth noting that a different material in this
series, TbyIr,O7 (TIO) settles into a ground state with full
ATAO order, that is into the ¢, phase as defined above [96]. Its
sister material Tb,Ti,O7 (TTO) is in some sense spin ice like,
falling close to the spin ice AIAO (A = 0) phase boundary
[11]. Hence, although TTO remains an enigma [97], the fact
that TIO fully orders is completely consistent with our logic.
If one could chemically tune the values of v and A from TIO
to HIO one would pass through the ¢, : ¢; phase boundary on
the way. Once at the values corresponding to HIO, heating up
one could hit a further phase boundary but no further transi-
tion is required from symmetry arguments as the transitions
are symmetry sustaining. Although the planes of first-order
transitions do not lie perpendicular to the v-A planes they
do fall with a very steep slope, the inverse of Eq. (6). Hence
for an accidental value of A it is quite likely that a thermal
trajectory would maintain the system well away from the
phase boundaries. We propose that this is the case for HIO.

The above conclusion immediately begs the question of
if it is possible to shift the value of A experimentally. One
possibility would be to put materials such as HIO or its
dysprosium counterpart under pressure. High pressure would
presumably change both the strength of the internal fields and
the monopole chemical potentials i and u,, which are com-
binations of exchange and dipole interactions [4]. One might
expect that increasing the pressure would have the effect of
increasing the scale of the antiferromagnetic exchange, there-
fore reducing the scale of ., while at the same time increasing
the scale of A, moving the system towards the ¢; : ¢, bound-
ary, but the evolution could equally well be counterintuitive
and go in the opposite direction. One could also consider the
effects of chemical pressure through the chemical substitution
of Ir** jons with nonmagnetic species such as Ti**, or Ge**
which has a smaller ionic radius than its counterparts [98].
In order to hit one of the phase boundaries, starting from HIO
one would need to shift A and/or v on the Kelvin scale, that is
on the scale of the exchange constants themselves. These are
challenging experiments that open the door to rich theoretical
and numerical problems and the present results provide a
motivating framework in which to work.

Given the steepness of the slope of the phase boundaries
in Fig. 2, if one did cross a first-order plane by altering
A, further tuning to find the critical end point to the plane
should be straightforward, at least in comparison, giving
access to Kibble-Zurek scaling experiments as outlined in
Sec. III and proposed for the critical point in a [111] field
[46]. The prospect of doing Kibble-Zurek scaling experiments

is particularly appealing as critical slowing down gives very
weakly diverging timescales and so is difficult to access
experimentally. For example, if the microscopic timescale is a
nanosecond, getting the divergence into the millisecond-range
requires a correlation length of 1000 times the microscopic
length and a reduced temperature or field of order 10~°. Such
high precision can be avoided by finding systems with either
long microscopic length or timescales. Long microscopic
length scales occur naturally in cold atom systems, which
has recently led to successful Kibble-Zurek type experiments
[99,100]. Spin ice, on the other hand, is ideally suited because
of its naturally long microscopic timescales, for example,
around a millisecond for DTO [6] so that the plethora of
critical points presented here could open the door to many
such dynamical experiments. Once accessed, both field-like
and temperature-like protocols are envisageable.

Our work also suggests that it could be interesting to extend
to spin ice materials the type of noise measurements that
were previously performed in spin glasses [101,102] to simul-
taneously detect linear susceptibilities and time correlation
functions, in order to experimentally access the fluctuation-
dissipation ratio introduced in Sec. III C.

VI. CONCLUSION

Spin ice materials and models have proven to be the source
of rich emergent science [2-5,8,11,103], widening the scope
and interest of frustrated magnetism and offering multiple av-
enues for novel research. In particular, the monopole picture,
which simplifies a complex and strongly interacting frustrated
system to a level in which it can be addressed in incomparable
detail, has provided an unexpected controlled environment in
which to study Coulomb fluids both from a field theoretic
and charge perspective. We have exploited the full phase
diagram of the emergent, on lattice magnetolyte in which both
monopoles and double charged monopoles play important
roles. In doing so, we have exposed a model system for mul-
tiple phase transitions with wide ranging applications. These
include fluids showing liquid-liquid phase transitions [22-24]
and itinerant magnetic systems under pressure [25,26] as well
as extensive new applications within the field of frustrated
magnetism.
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