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The antiferromagnetic order in the heavy-fermion compound CeCu2Ge2 can be suppressed by Co-doping, and
at critical composition xc = 0.6 (TN → 0 K) a quantum critical point has been observed. We have performed
zero-field (ZF) and longitudinal-field muon spin relaxation (μSR) measurements on polycrystalline samples
of Ce(Cu1−xCox )2Ge2 (x = 0, 0.2, 0.6, 1) over a temperature range of 100 mK to 10 K and in applied fields
from 0 up to 3000 G. Above any ordering temperature, the muon relaxation spectra can be described by a
Gaussian-Kubo-Toyabe times exponential line shape. Below the magnetic ordering temperature (i.e., for x <

0.6), an additional Gaussian relaxation is observed. The zero-field muon relaxation rate suggests the presence of
antiferromagnetic ordering below 4 and 0.8 K for x = 0 and 0.2 samples, respectively. For x = 0.6, the magnetic
order is completely suppressed, and the quantum critical point is accompanied by non-Fermi-liquid behavior,
manifested in the power-law divergence of exponential depolarization, i.e., λ ∝ T 0.55. The relaxation rate of x =
0.6 obeys the time-field scaling relation Gz(t, H ) = Gz(t/Hγ ), which is considered to be a characteristic feature
of quantum critical magnetic fluctuations. Furthermore, for x = 0.6, the exponent of isotherm magnetization,
M ∼ Hη, and magnetization-field-temperature scaling is consistent with the ZF-μSR data. These results provide
strong evidence for the formation of a quantum Griffiths phase near the antiferromagnetic quantum phase
transition.

DOI: 10.1103/PhysRevB.99.224424

I. INTRODUCTION

Quantum phase transitions (QPTs) have become one of
the most fascinating areas of research in modern condensed-
matter physics. They can be tuned by external parameters such
as pressure, magnetic fields, or doping, from magnetically or-
dered to paramagnetic states as T → 0 K. A quantum critical
point (QCP) is expected to appear at the phase boundary and
is characterized by a continuous development of the order
parameter from zero in the paramagnetic state to nonzero
in the ordered phase. In the vicinity of a QCP, many ex-
otic phenomena have been observed, such as unconventional
superconductivity [1–7], heavy-fermion (HF) behavior [6,8],
and a breakdown of Landau Fermi-liquid behavior [called
non-Fermi-liquid (NFL) behavior] [3,4,9]. Despite continuous
efforts over the last two decades, the microscopic origin
of the emergence of a NFL ground state is still not well
understood. The single-ion multichannel Kondo effect, prox-
imity to a T → 0 K QCP, and the Kondo disorder model
are among theoretical models proposed for NFL [3,4,10–14].
In addition, the NFL behavior of some chemically substi-
tuted f -electron systems is better described in the context of
Castro-Neto theory based on Griffiths singularities [4,15–19].
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These quantum Griffiths singularities can be attributed to rare
magnetic regions embedded in the paramagnetic bulk [20,21].
Griffiths singularities also exist inside the long-range ordered
magnetic phase [18,22]. At the QCP, NFL behavior in such
systems is characterized by a power-law dependence of spe-
cific heat C(T )/T ∝ T −1+η, susceptibility χ (T ) ∝ T −1+η,
and magnetization M ∝ Hη, where η is slightly smaller than
1.0 [4,19,23,24]. Also, close to the critical concentration, all
M(H, T ) data collapse on each other within a certain tempera-
ture range, which confirms non-single-impurity interpretation
of the NFL behavior [25]. Understanding the origin of this
NFL behavior near a QCP has become a stimulating area
of research in strongly correlated d- and f -electron systems
[26–30]. Since the dynamics of the spin fluctuations plays
an essential role in the formation of magnetic clusters near
a QCP and is responsible for NFL behavior, it is imperative to
accumulate experimental information on the spin dynamics of
disordered magnetic materials. The μSR technique is a very
useful probe for characterizing unconventional magnetism,
e.g., in heavy-fermion compounds [31], spin glasses [32], and
disordered NFL metals [33], due to its extreme sensitivity to
small magnetic fields (down to about 0.1 G), and therefore
it can probe local magnetic fields that may be nuclear or
electronic in origin.

Recently, we have investigated the system
Ce(Cu1−xCox )2Ge2, which has an interesting magnetic-phase
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diagram where TN shows two different slopes for 0 � x < 0.1
and 0.1 � x < 0.6 [34]. Moreover, NFL behavior develops
for x ∼ 0.6 as TN → 0 K. This feature is characterized by the
formation of magnetic clusters in a nonmagnetic background
known as the Griffiths phase. Here, we have carried out μSR
measurements for x = 0, 0.2, 0.6, and 1 in order to gain
further insight into the unusual magnetic ground state as well
as the nature of low-energy spin fluctuations in the x = 0.6
sample. Our μSR experiment shows that the samples with
x = 0 and 0.2 order magnetically below TN = 4 and 0.8 K,
respectively, which is in agreement with the macroscopic
measurements such as magnetic susceptibility and specific
heat. A power-law divergence of the μSR depolarization rate
λ at low temperatures has been observed without any clear
sign of magnetic ordering down to 100 mK for the x = 0.6
sample. Moreover, our study confirms the presence of a
quantum Griffiths phase in x = 0.6.

II. EXPERIMENTAL DETAILS

Polycrystalline samples of Ce(Cu1−xCox )2Ge2 for 0 �
x � 1 were prepared by arc melting of the constituent el-
ements in an argon atmosphere. Samples were subjected to
a heat treatment in evacuated sealed quartz tubes at 850 ◦C
for one week. Powder x-ray diffraction with Cu Kα radiation
at room temperature was used to determine the phase purity
and crystal structure. The magnetic measurements were per-
formed using a commercial vibrating sample magnetometer
(VSM) attached with the physical property measurement sys-
tem (PPMS, Quantum Design). Muon spin relaxation mea-
surements were performed using the μSR spectrometer at
the ISIS facility, Rutherford Appleton Laboratory, Didcot,
UK [35], both in zero field and in longitudinal fields up
to 3000 G. For these measurements, the powder samples of
Ce(Cu1−xCox )2Ge2 for x = 0, 0.2, 0.6, and 1 were mounted
on high-purity silver plates using diluted GE varnish and
covered with a thin silver foil. A sample temperature down
to 100 mK was achieved using a dilution refrigerator. The ZF-
μSR spectra were recorded at several temperatures between
100 mK to 10 K, and LF data were collected at temperatures
well above and below magnetic ordering temperature for
fields between 0 and 3000 G. In the μSR measurement,
spin-polarized muons (μ+) are implanted into the sample,
after which they decay into a positron e+ and two neutrinos
νe, ν̄μ with an average lifetime τμ of 2.2 μs and they are
emitted preferentially in the direction of the muon spin axis.
When muons are subjected to magnetic interactions in a
sample, their asymmetry evolves with time. The asymmetry
function, Gz(t), is determined by measuring the distribution
of emitted e+ in the forward and backward directions with
respect to the initial μ+ momentum by the detectors that are
positioned before (F ) and after (B) the sample. The asymme-
try function is defined as Gz(t ) = [NF (t ) − αNB(t )]/[NF (t ) +
αNB(t )], where NF (t ) and NB(t ) are the number of muon
events counted by the forward and backward detectors at time
t , respectively, and α is a calibration constant that reflects
the relative counting efficiency of the forward and backward
counters and is determined from calibration measurements
made in the paramagnetic state with a small applied transverse
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FIG. 1. Magnetization as a function of field at T = 2.5 K for
x = 0.6, showing a linear behavior, M ∼ H , for H < 20 kG and
a power-law behavior, M ∼ Hη, for H > 20 kG. The inset shows
nonuniversal exponent η vs x.

magnetic field of 20 G. Gz(t ) provides information about the
internal field and the spin lattice relaxation rate.

III. RESULTS AND DISCUSSION

A. Magnetic characterization

Recently, we have reported that the NFL system
Ce(Cu1−xCox )2Ge2 follows power-law behavior for x = 0.6
both in C(T )/T and χ (T ) based on a Griffiths phase scenario
[34]. To further characterize Ce(Cu0.4Co0.6)2Ge2 and to better
determine whether a quantum Griffiths phase scenario applies
best, the magnetization was measured as a function of mag-
netic field, as shown in Fig. 1. The magnetization follows the
predicted Griffiths phase behavior M(H ) = M0 + aHη, where
M0 is the negative constant offset and η is the same as in the
temperature dependence of χ , above some crossover field of
about 20 kG up to the highest available field of 80 kG [22,36].
However, the power-law dependency breaks down below this
crossover field of 20 kG, and the magnetization behaves as
M ∼ H . The best fit yields the exponent η = 0.672(4), which
is consistent with the value determined from C(T )/T and
χ (T ) in our previous report [34]. The inset of Fig. 1 shows the
variation of exponent η with concentrations x on both sides
of the QPT at T = 2.5 K (i.e., in the paramagnetic regime).
The exponent η is nonuniversal, i.e., strongly x-dependent.
It has a minimum close to the critical concentration xc and
increases monotonically with increasing distance from xc.
It should be noted that a similar kind of behavior has also
been observed for ferromagnetic systems like Ni1−xVx, where
the M versus H isotherms have been measured below the
ordering temperature for x < xc and attributed to the pres-
ence of magnetic clusters in the paramagnetic bulk [22].
Also, our magnetization data are consistent with the scal-
ing behavior found in systems like U(Cu, Pd)5, U1−xYxPd3,
Ce1−xThxRhSb, CePd1−xRhx [25,37–39], and is described by
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the following functional form:

M

H
= T −ηm × g

(
H

T βm

)
. (1)

Here we used subscript m just to avoid confusion with
the symbols used in the muon relaxation function. The cor-
responding scaling plot for x = 0.6 is shown in the main
panel of Fig. 2. All the M(H, T ) curves in the temperature
range 2.5–10 K are superimposed on each other, confirming
the M(H, T ) scaling. We have produced similar scaling plots
for x = 0.8 (see the inset of Fig. 2). The scaling for x = 0.8
is less perfect than the scaling for x = 0.6. The resulting
value of the exponent η = 0.56(2) nearly matches with that
obtained by a direct fit of the power law for x = 0.6. In
addition, the magnetic-field scaling exponent (βm) is nearly
equal to 1.4 for x = 0.6. The scaling dimension greater than
1 is an indication of the non-single-impurity interpretation of
NFL behavior near the quantum critical point and ruling out
single-ion theories, which have scaling dimension less than
1 [25]. We emphasize that no such scaling behavior should
be observed for a FL system. The value of the magnetic-field
scaling exponent (βm > 1) implies non-single-impurity inter-
pretation of the NFL behavior of Ce(Cu0.4Co0.6)2Ge2. The
presence of M(H, T ) scaling also indicates that the system has
a second-order phase transition at T = 0 [25], consistent with
our previous claim based on the magnetic phase diagram. This
value of ηm is comparable with the exponent obtained from the
temperature dependence of the spin relaxation rate, presented
in the next section.

B. μSR measurements

In this section, in order to understand the magnetic inter-
actions on a microscopic level, we presented μSR measure-
ments of Ce(Cu1−xCox )2Ge2 for x = 0, 0.2, 0.6, and 1. The
results confirm the development of an inhomogeneous local
magnetic field below the ordering temperature, with a nearly
full volume fraction for x = 0 and a diminishing volume
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FIG. 3. ZF-μSR time spectra of Ce(Cu1−xCox )2Ge2 for x = 0
and 0.2 measured at different temperatures. The solid lines represent
fits to the relaxation functions given by Eq. (2).

fraction as a function of doping concentration, x. The μSR
data clearly rule out any possible static magnetic ordering for
x = 0.6 and 1. Moreover, we find that the critical exponent
determined from the power-law behavior of M(H ) as well as
scaling analysis of the M(H, T ) for x = 0.6 is consistent with
the μSR results.

1. ZF- and LF-μSR spectra for Ce(Cu1−xCox)2Ge2 (x = 0, 0.2)

Figure 3 shows the time dependence of ZF-μSR asymme-
try spectra collected on Ce(Cu1−xCox )2Ge2 for x = 0 and 0.2
samples, measured at various temperatures. While for x = 0
we observe a drastic change in μSR spectra at T = 4 K for
x = 0.2, the change at T = 0.8 K is broader than expected,
which might be due to the distribution of TN values in the
x = 0.2 sample. We do not see a clear oscillation in the
ordered state of the μSR spectra in x = 0 or 0.2 related to
the muon spin precession. In contrast, clear oscillations are
observed below TN in Ce(Cu1−xNix )2Ge2 for x = 0 and 0.1
[40], where the measurements have been performed at TRI-
UMF, Vancouver. The absence of oscillations below ordering
temperature in our case is due to a pulse width (70 ns) of muon
beam at ISIS, which does not allow us to collect data very
close to zero time, which is very important for the materials
having ordering with large ordered state moments. The data
for x = 0 and 0.2 have been successfully fitted to the muon
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spin relaxation function described in Eq. (2),

Gz(t ) = GKT(t )

[
A1exp(−λt ) + A2exp

(−σ 2t2

2

)]

+ ABG, (2)

where A = A1 + A2 represents the effective initial asymmetry
of the signal, and λ and σ are the depolarization rates. ABG

is a constant background arising from muon stopping on the
silver sample holder. The static Kubo-Toyabe function

GKT(t ) = 1

3
+ 2

3
[1 − (σKTt )2]exp

(−σ 2
KTt2

2

)
(3)

describes the muon spin depolarization with a rate of σKT

caused by randomly oriented 63,65Cu, 59Co, and 73Ge nuclei.
Best fits to the spectra yielded σKT = 0.09(2) and 0.12(3)
μs−1 above the ordering temperature and equal to zero below
the ordering temperature for x = 0 and 0.2, respectively. The
first exponential component in Eq. (2) accounts for dynamic
magnetic fluctuations, whereas the second term describes the
Gaussian distribution of static fields. The need for a broad
field distribution (Gaussian) to describe the antiferromagnetic
component indicates a strongly inhomogeneous order. The fit-
ting parameters, determined from the best fits, are displayed in
Fig. 4. The temperature dependence of the initial asymmetry
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FIG. 5. LF-μSR time spectra of Ce(Cu1−xCox )2Ge2 for x = 0
and 0.2 above and below ordering temperature at different field up
to 3000 G.

for x = 0 and 0.2 is presented in Figs. 4(a) and 4(d), respec-
tively. For x = 0, the effective initial asymmetry (A) exhibits
a nearly 1/3 drop below 4 K [Fig. 4(a)], indicating that the
long-range magnetic ordering occurs in the full volume of the
sample and hence has a bulk nature. For x = 0.2, we do not
observe any significant change in effective initial asymmetry
[Fig. 4(d)]. However, A1 and A2 independently show signif-
icant changes around T = 0.8 K [inset of Fig. 4(d)]. This is
near the temperature where C/T and χ (T ) show a maximum.
As the transition TN is approached, λ [see Figs. 4(b) and 4(e)]
shows an increase with decreasing temperature. The enhance-
ment of λ indicates a slowing down of Ce spin fluctuations due
to the development of strong correlations, a common feature
seen in other AFM and FM materials below magnetic ordering
temperature [18,22,41]. Furthermore, with the lowering of
temperature, below magnetic ordering, λ levels off for x =
0 [Fig. 4(b)] whereas it decreases drastically for x = 0.2
[Fig. 4(e)]. The possible mechanism leading to the reduction
of λ below TN could be that the fluctuations are static in nature,
as seen in the increase in the σ in Fig. 4(f). The damping rate
σ , which reflects the width of the local field distribution at the
muon site, is displayed in Figs. 4(c) and 4(f) for x = 0 and
0.2, respectively. An increase below 4 K and about 1.5 K is
observed in the temperature dependence of σ for x = 0 and
0.2, respectively, while it is almost temperature-independent
above the mentioned temperatures. The two-component μSR
signal observed in Ce(Cu1−xCox )2Ge2 has also been found
in several other rare-earth heavy-fermion compounds, such
as CeCu2Si2, YbBiPt, CeAl3, CeRh2Si2, CeCoGe3−xSix, and
CeRhBi [18,31,42–45].

Figure 5 shows μSR asymmetry data well above and below
magnetic ordering temperature in the longitudinal external
field of 0–3000 G for x = 0 and 0.2 samples. A small lon-
gitudinal field can suppress muon spin depolarization caused
by weaker local static fields, typically due to nuclear dipole
moments, whereas depolarization due to fast fluctuating local
fields (in our case Ce 4 f spins) may only be affected by
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much larger applied fields. It is clear from the LF spectra
in Fig. 5 that a 50 G LF is enough for almost complete
suppression of the depolarization above ordering temperature
[Figs. 5(c) and 5(d)] for both x = 0 and 0.2 samples. However,
below the ordering temperature, the muon depolarization is
gradually reduced by much higher fields [Figs. 5(a) and 5(b)]
and is not suppressed completely even with an applied LF of
3000 G. This indicates that the observed relaxation is due to a
static field, generated by the static magnetic order in both the
undoped and doped systems.

2. ZF- and LF-μSR spectra for Ce(Cu1−xCox)2Ge2 (x = 0.6, 1)

The ZF-μSR spectra at various temperatures between
100 mK and 4 K in Ce(Cu0.4Co0.6)2Ge2 are shown in Fig. 6,
which can be best fitted by Eq. (4) given below:

Gz(t ) = A0GKT(t ) × exp(−λt ) + ABG, (4)

where A0 is the initial asymmetry. The ABG was estimated
from 2 K data and was kept fixed for fitting all the other
spectra. The value of σKT was found to be ∼0.27(4) μs−1 from
fitting the spectra above 2.5 K, and this value was found to be
nearly temperature-independent down to 100 mK. The values
of the parameters σKT and λ, estimated from our analysis, are
plotted in Fig. 7 as a function of temperature. We have not
observed any signature of static magnetic ordering in the μSR
experiments in Ce(Cu0.4Co0.6)2Ge2 down to 100 mK. It can
be seen from Fig. 7 that λ exhibits a power-law-type behavior
with an exponent α = 0.55(1). This exponent value is in ex-
cellent agreement with the values 0.66 and 0.53 obtained from
the temperature dependence of the magnetic susceptibility and
C(T )/T of Ce(Cu0.4Co0.6)2Ge2, respectively [34], as well as
with the value of η = 0.56(2) obtained from magnetization
scaling, as mentioned previously. This agreement is a strong
indication for the coexistence of uncorrelated local moments
as short-range-ordered spin clusters in the paramagnetic envi-
ronment and is clear evidence for the formation of a Griffiths
phase in Ce(Cu0.4Co0.6)2Ge2. Also, our data do not follow the
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typical relaxation function reported for a spin-glass system
[32].

To further study the role of static and dynamic local
internal fields and to investigate the time-field scaling, we
have carried out μSR measurements in applied longitudinal
fields between 0 and 3000 G at 0.1 K (main panel of Fig. 8)
and at 4 K (inset of Fig. 8). The muon spin relaxation in
longitudinal fields is mainly due to spin fluctuations of 4 f
moments, which are coupled with the muons implanted in
the sample. Due to the spin fluctuations of the neighboring
4 f moments, these muons at a given site experience a time-
varying local internal field Hloc(t ). Although the Griffiths
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phase mechanism has been considered as a promising theory
for explaining the NFL behavior in this system [34], investi-
gation of low-temperature muon spin dynamics is expected
to provide additional information about the origin of NFL
behavior in Ce(Cu0.4Co0.6)2Ge2. In the following, we discuss
the field and temperature dependence of the relaxation rate of
the muon spin obtained from LF-μSR experiments.

Under the influence of an external magnetic field HLF, par-
allel to the initial muon polarization, muons decouple them-
selves from the static and dynamics fluctuations, and hence
the muon relaxation rate is expected to decrease with the
applied longitudinal field. It is clear from Fig. 9 that initially

0.01 0.1 1

-0.2

0.0

0.2

0.4

γ = 0.4(1)

T = 100 mK

H = 50 G
100 G
200 G
500 G
1000 G
1500 G

A
sy
m
m
et
ry

t /H

x = 0.6

FIG. 10. Time-field scaling of the μSR relaxation function, Gz(t )
vs (t/Hγ ), for Ce(Cu0.4Co0.6)2Ge2 at 100 mK.

λ decreases very fast followed by a weak field dependence
up to H = 3000 G. The spin autocorrelation time τc can also
be estimated from the longitudinal-field dependence of λ. We
use λ(H ) data of x = 0.6 measured at T = 100 mK, shown
in Fig. 9, to estimate the spin autocorrelation time τc of spin
fluctuation using the following Redfield equation [32]:

λ = λ0 + 2γ 2
μ

〈
H2

loc

〉
τc

1 + γ 2
μH2

LFτ
2
c

, (5)

where λ0 is the H-independent depolarization rate and Hloc is
the time average of the second moment of the time-varying
local field Hloc(t) at muon sites due to the fluctuations of
neighboring Ce 4 f moments. The internal field has been de-
termined by measuring the longitudinal field (LF) dependence
of muon spin relaxation rates at 100 mK. The best fit to λ

by Eq. (5), shown by the solid curve in Fig. 9, returned the
fitting parameters λ(0) = 0.17 μs, 〈Hloc〉 = 40(8) G, and τc =
68 ns. A correlation time of about 37 and 42 ns was found
in CeCoGe1.8Si1.2 and stoichiometric CeRhBi, respectively
[18,45]. The value of τc in Ce(Cu0.4Co0.6)2Ge2 is much larger
compared to the typical range of 0.10–0.01 ns observed in
metallic spin glasses such as CuMn [32] and usually comes
from disordered spin arrangements. Long correlation times
(slow magnetic fluctuations) are generally expected in the
critical region just above a magnetic transition. To illustrate
the behavior of λ with H , we plotted λ versus H on a log-log
scale, shown in the inset of Fig. 9. A power-law behavior,
λ ∼ H−β , with β = 0.10(1) in the low-field regime and β =
0.29(1) in the high-field regime, can be found from this
analysis. The observation of two scaling exponents in field
dependence λ is quite unique in the existing literature (see
Ref. [39]). We anticipate that this change in the exponent
is due to the dimensional crossover of critical fluctuations
(from 2D AFM to 3D AFM fluctuations). Such dimensional
crossover of critical fluctuations may occur while tuning either
the temperature or the nonthermal tuning parameter (in this
case applied field) [46]. Further detailed investigation such as
inelastic neutron scattering will be worthwhile to address this
tempting issue. This behavior is further evidence for a long
correlation time at the muon stopping site, which is considered
to be a characteristic feature of quantum critical magnetic
fluctuations. It is interesting to compare these values with
CeRu4Sn6, exhibiting NFL behavior with a spin gap, which
has a value of β = 0.17 [47].

Furthermore, we find that the LF-μSR data follow char-
acteristic time-field scaling Gz(t, H ) = Gz(t/Hγ ), where the
exponent γ provides information about spin-spin dynamical
autocorrelation [33,48]. Time-field scaling is a signature of
slow dynamics and has been observed for both classical spin-
glass systems and NFL systems having local f moments. The
time-field scaling can, in principle, appear near any critical
point but is usually associated with spin-glass-like behavior
[33]. For systems with NFL behavior, such glassy spin dynam-
ics can result from the effect of disorder on critical quantum
fluctuations. By observing the time-field scaling, independent
information on the nature of the spin autocorrelation function
q(t ) can be obtained. It is also to be noted that q(t ) is
theoretically predicted to exhibit a power law or stretched
exponential behavior with γ < 1 for power-law correlation
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FIG. 11. ZF-μSR time spectra of CeCo2Ge2 measured at differ-
ent temperatures. The upper inset shows LF-μSR spectra up to 50
G, whereas the lower inset shows the temperature dependence of
relaxation rate λ obtained from the fitting of the μSR spectra using
Eq. (4)

and γ > 1 for stretched exponential correlation [33,49]. The
asymmetry as a function of scaling variable t/Hγ for x = 0.6
is plotted between 50 and 1500 G at 0.1 K in Fig. 10. Similar
time-field scaling has also been observed in UCu5−xPdx,
CePtSi1−xGex, CePd0.15Rh0.85, CeRhBi [33,39,45,48], as well
as of the spin-glass system AgMn (0.5 at. % Mn) above Tg

[50]. The best scaling of the overall data can be obtained with
γ = 0.4(1), except for the high-field data with 1500 G field,
which show considerable deviation from the scaling curve.
A time-field scaling breakdown would occur for high fields
indicating that the applied fields directly affect q(t ). A similar
kind of deviation has also been found in YbNi4P2 around
the ferromagnetic quantum critical point but at a very low
applied field of 300 G [51]. The observed value of γ = 0.4 for
Ce(Cu0.4Co0.6)2Ge2 is very similar to the value observed for
UCu4Pd (γ = 0.35) but smaller than the values observed for
UCu3.5Pd1.5, CePtBi (γ = 0.7, 0.8), and CePtSi1−xGex (γ =
1.6 for x = 0 and 0.1). A value of γ = 1/2 is also predicted
by the mean-field model of a disordered Kondo alloy at a
quantum critical point [52]. The scaling exponent γ is less
than 1, implying that the spin autocorrelation function q(t )

is well approximated by a power law rather than a stretched
exponential or exponential (γ > 1) [33]. Therefore, it would
be interesting to investigate directly the form of q(t ) using
a neutron spin-echo technique for Ce(Cu0.4Co0.6)2Ge2. The
main panel of Fig. 11 shows ZF μSR spectra of valance fluctu-
ating CeCo2Ge2 [53], measured at temperatures between 1.4
and 10 K, which could be best fitted by Eq. (4), yielding a
nearly constant value of λ = 0.1 μs−1 (see the lower inset of
Fig. 11), consistent with the paramagnetic fluctuation of Ce
moments. The LF spectra in the upper inset of Fig. 11 show
that these fluctuations are completely suppressed by a small
applied LF of 50 G.

IV. CONCLUSION

In conclusion, we have performed ZF- and LF-μSR ex-
periments on a heavy-fermion system Ce(Cu1−xCox )2Ge2 for
x = 0, 0.2, 0.6, and 1. The ZF-μSR data confirm the magnetic
ordering below TN = 4 and 0.8 K for x = 0 and 0.2 samples,
respectively. We found that the temperature dependence of the
ZF-μSR dynamic relaxation rate λ, close to critical concen-
tration xc = 0.6, exhibits a power-law behavior, λ ∼ T −α ,
with an exponent α = 0.55(1), attributed to the existence of
magnetic clusters at low temperature in the quantum critical
regime. The observed value of the exponent α is in good
agreement with exponents ηm = 0.56(2) and η = 0.67, ob-
tained from magnetization-field-temperature scaling and the
power-law Griffiths singularity, M ∼ Hη, respectively, which
provides further evidence of the presence of such clusters
inside a paramagnetic environment. Furthermore, the LF-μSR
data for x = 0.6 at 100 mK exhibit a time-field scaling with
the exponent γ = 0.4(1), which suggests that the spin-spin
autocorrelation function has a power-law behavior. The large
value of the spin autocorrelation time τc, even larger than that
for spin-glass systems, is again indicative of disorder-induced
NFL behavior. These results show that around the quantum
phase transition (at x = 0.6), the Griffiths phase crucially
controls the low-temperature spin dynamics and is responsible
for NFL behavior.
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