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Microscopic spinon-chargon theory of magnetic polarons in the t-J model
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The interplay of spin and charge degrees of freedom, introduced by doping mobile holes into a Mott insulator
with strong antiferromagnetic (AFM) correlations, is at the heart of strongly correlated matter such as high-Tc

cuprate superconductors. Here, we capture this interplay in the strong coupling regime and propose a trial wave
function of mobile holes in an AFM. Our method provides a microscopic justification for a class of theories
which describe doped holes moving in an AFM environment as mesonlike bound states of spinons and chargons.
We discuss a model of such bound states from the perspective of geometric strings, which describe a fluctuating
lattice geometry introduced by the fast motion of the chargon, relative to the spinon. This is demonstrated
to give rise to short-range hidden string order, signatures of which have recently been revealed by ultracold
atom experiments at elevated temperatures. We present evidence for such short-range hidden string correlations
also at zero temperature by performing numerical density-matrix renormalization-group simulations. To test our
microscopic approach, we calculate the ground-state energy and dispersion relation of a hole in an AFM, as well
as the magnetic polaron radius, and obtain good quantitative agreement with advanced numerical simulations
at strong coupling. We discuss extensions of our analysis to systems without long-range AFM order to systems
with short-range magnetic correlations.

DOI: 10.1103/PhysRevB.99.224422

I. INTRODUCTION AND OVERVIEW

Despite many years of intense research, key aspects of the
phase diagram of the Fermi-Hubbard model remain poorly
understood [1,2]. Simplifying variational theories are lacking
in important parameter regimes, which makes the search
for a unified field theory even more challenging. In other
strongly correlated systems, microscopic approaches have
proven indispensable in the development of field-theoretic
descriptions. A prominent example is the composite-fermion
theory of the fractional quantum Hall effect, which provides
a nonperturbative but conceptually elegant explanation of a
class of topologically ordered ground states [3–5].

In the case of the two-dimensional (2D) Fermi-Hubbard
model at strong coupling, already the description of a single
hole doped into a surrounding antiferromagnetic (AFM) rep-
resents a considerable challenge. This problem is at the heart
of high-temperature superconductivity and strongly correlated
quantum matter, where pronounced AFM correlations remain
present at short distances even for relatively large doping.
While many properties of a single hole moving in an AFM
spin background are known, their derivation, in particular
at strong couplings, requires sophisticated numerical simula-
tions [6–19]. This includes basic characteristics such as the
shape of the single-hole dispersion relation.

One of the central obstacles in the search for a generally
accepted theory of strongly correlated materials, and the rich
phase diagram of high-temperature superconductors in par-
ticular, is the lack of a known unifying physical principle.

*Corresponding author: fabian.grusdt@tum.de

Arguably one of the most influential approaches is the
resonating-valence bond (RVB) paradigm suggested by An-
derson [20]. While it yields satisfactory results at intermediate
and large doping levels [21], it is not powerful enough to
accurately describe the low-doping regime, starting on the
single-hole level, or capture the disappearance of antiferro-
magnetism observed upon doping.

Recent experiments with ultracold fermions in optical lat-
tices [22–25] suggest a new paradigm: by introducing short-
ranged hidden string order, a connection has been demon-
strated between the Fermi-Hubbard model at finite doping and
an AFM parent state at half-filling, both in one dimension
(1D) [26,27] and recently also in 2D [28,29]. While the 1D
case can be rigorously proven [30–32], it was argued that
this hidden string order also emerges in 2D as an immediate
consequence of hole motion [33–39].

In this paper, we demonstrate that the hidden string order
paradigm discussed in Ref. [29] provides a unified under-
standing of the properties of a single hole doped into an AFM
parent state, with or without long-range magnetic order. We
use numerical density-matrix renormalization-group (DMRG)
simulations on 8 × 6 cylinders to show that the hidden string
order, for which recent experiments [29] have found indica-
tions at elevated temperatures, is also present in the ground
state of a single hole in the t-J model. Figure 1 provides a
summary of our findings, which will be explained in more
detail later on. This observation leads us to a microscopic
description of individual holes doped into general spin back-
grounds with strong AFM correlations.

Specifically, we propose a trial wave function for the
magnetic polaron formed by a single hole, which goes be-
yond the RVB paradigm by explicitly including short-range
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FIG. 1. Mesonlike spinon-chargon bound states and short-range
hidden string order. A single hole in a 2D AFM forms a mesonlike
bound state of a spinon and a chargon, similar to quark-antiquark
pairs forming mesons in high-energy physics. (a) In the t-J model, a
spinon can be bound to a chargon by a geometric string of displaced
spins, as illustrated in (b) (note the indices of spins along the string
on the right). Geometric string states � can be defined in arbitrary
spin backgrounds, where they provide an adequate approximate basis
in the presence of strong local AFM correlations. (c) Signatures of
geometric strings can be found in individual Fock configurations by
analyzing the difference to a classical Néel pattern. (d) We use the
matrix product state formalism (MPS) and the DMRG algorithm to
generate snapshots of the T = 0 ground state of the t-J model with
a single hole, similar to the recent measurements using ultracold
fermions [29]. In (d) we show the distribution function of the length �

of stringlike patterns emanating from the hole. A striking difference
is observed between a localized and a mobile hole (MPS, indicated
by symbols connected with dashed lines), for � = 0 in particular.
Mobile holes are described quantitatively by the geometric string
theory [frozen-spin approximation (FSA), shaded ribbons indicating
statistical errors] which is based on the string length distributions
pFSA

� (see inset). Since the string patterns illustrated in (c) are
sensitive to quantum fluctuations in the spin background, the FSA
distribution from the inset in (d) differs quantitatively from the results
in the main panel. Quantum fluctuations are also responsible for the
even-odd effect observed most clearly for a localized hole.

hidden string order. While most theories start from the weak
coupling regime, where the tunneling rate t of the hole is
small compared to the superexchange energy J , our method
works best at strong couplings, where the bandwidth of a

free fermion Wt = 8t is much larger than the energy range
covered by the (para)magnon spectrum in the AFM, WJ ≈ 2J ,
i.e., t � J/4. This coincides with the most relevant regime
in high-temperature cuprate superconductors, where t ≈ 3J
[1]. Note that we require t/J � 20, however, below which the
Nagaoka polaron with a ferromagnetic dressing cloud [40,41]
is realized [18]. Extensions of our approach to weak couplings
t � J are possible and will be devoted to future work.

A central part of our study is the analysis of string patterns
in individual images. This contains more information than the
commonly used two-point correlation functions and is moti-
vated by recent experiments with quantum gas microscopes.

This paper is organized as follows. In the remainder of
the Introduction, we provide a brief review of the known
properties of magnetic polarons along with an overview of our
results, concerning in particular the short-range hidden string
order and the magnetic polaron radius. In Sec. II we discuss
our microscopic model for describing individual dopants in
an AFM and introduce the trial wave function. In Sec. III we
present our numerical results and analyze the accuracy of the
trial wave function. We close with an outlook and a discussion
in Sec. IV.

A. Magnetic polarons

When a single dopant is introduced into a spin background,
it can be considered as a mobile impurity which becomes
dressed by magnetic fluctuations and forms a new quasi-
particle: a magnetic polaron. In the case of a doublon or a
hole doped into a Heisenberg AFM, commonly described by
the t-J model, the dressing by magnon fluctuations leads to
strongly renormalized quasiparticle properties [6–8]. Here, we
provide a brief review of these known properties and their
most common interpretation:

(i) The dispersion relation of the hole is strongly renor-
malized, with a bandwidth W ∝ J rather than the bare hole
hopping t .

(ii) The shape of the dispersion differs drastically from
that of a free hole −2t[cos kx + cos ky]. It has a minimum
at k = (π/2, π/2) and disperses weakly on the edge of the
magnetic Brillouin zone (MBZ), |kx| + |ky| = π .

(iii) At strong couplings the ground-state energy depends
linearly on J2/3t1/3 and approaches −2

√
3t when J → 0.

In the conventional magnetic polaron picture, (i) and (ii)
are a consequence of a cloud of correlated magnons dressing
the hole [6–8] (see Fig. 2). This polaron cloud is difficult to
describe quantitatively due to the strong interactions of the
magnons with the hole, with strength t . The properties in
(iii) can be obtained from numerical calculations within the
magnetic polaron theory, but their relation to an underlying
physical mechanism is not made explicit.

B. Parton picture: Spinons, chargons, and strings

As reviewed next, the established properties of magnetic
polarons (i)–(iii) follow more naturally from a spinon-chargon
ansatz. Here, the magnetic polaron is understood as a com-
posite bound state of two partons: a heavy spinon carrying
the spin quantum number of the magnetic polaron, and a light
chargon carrying its charge. This parton picture of magnetic
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MPS
FSA

FIG. 2. Dressing cloud of magnetic polarons. Using the MPS
formalism and DMRG we calculate local spin correlation functions
Cz

n(d ) = 〈n̂h
rh

Ŝz
r2

Ŝz
r1
〉/〈n̂h

rh
〉, where n = 1 (n = 2) denotes nearest-

neighbor (diagonal next-nearest-neighbor) configurations of r1, r2,
as a function of the bond-center distance d = |(r1 + r2)/2 − rh| of
the two spins from the hole. At strong coupling, the distortion of the
magnetic spin environment around the hole follows a shape which
is described well by the geometric string approach (FSA), except
for some additional features between d ≈ 1.5 and 2.5 captured only
by DMRG. Calculations are performed for one hole and Sz

tot = 1
2 as

described in Sec. I C.

polarons was first suggested by Béran et al. [42]. Based on an
even broader analysis, these authors conjectured that magnetic
polarons are composites, closely resembling pairs of quarks
forming mesons in high-energy physics.

The properties (i) and (ii) can be understood from the
parton ansatz by noting that the chargon fluctuates strongly
on a timescale ∼1/t , whereas the center-of-mass motion of
the spinon-chargon bound state is determined by the slower
timescale ∼1/J of the spinon [42]. Hence, the overall kinetics
of the bound state is dominated by the spinon dispersion,
which features (i) a bandwidth W ∝ J , and (ii) a near degen-
eracy at the magnetic zone boundary because the spinon dy-
namics is driven by spin-exchange interactions on the bipartite
square lattice.

As also previously recognized [33–38], the third result
(iii) is related to the string picture of holes moving in a
classical Néel state [43,44]: the hole motion creates strings
of overturned spins, leading to a confining force [33]. The
approximately linear string tension ∝J leads to the power-law
dependence ∝J2/3t1/3 of the ground-state energy, and the
asymptotic value −2

√
3t is a consequence of the fractal struc-

ture of the Hilbert space defined by string states [33,34,39].
It is generally acknowledged that strings play a role for

the overall energy of magnetic polarons in the t-J model (iii),
but the string picture alone does not account for the strongly
renormalized dispersion relation of the hole, i.e., properties
(i) and (ii) above. Hence, a complete description of magnetic

polarons needs to combine the parton ansatz with the string
picture. As also noted by Béran et al. [42], it is natural to
assume that the strings are responsible for binding spinons to
chargons.

While the combination of spinons, chargons, and strings
provides a satisfactory picture of magnetic polarons, a quan-
titative microscopic description of the mesonlike bound states
and the underlying partons has not been provided. More
recently, toy models have been discussed which also contain
spinon-chargon bound states from the start [45] and capture
the most important physical features of the pseudogap phase
(see also Ref. [46]). But in these cases, too, the precise con-
nection to the microscopic t-J model and the spinon-chargon
binding mechanism remains a subject of debate.

In this paper we introduce a complete microscopic descrip-
tion of magnetic polarons, in terms of individual spinons,
chargons, and so-called geometric strings [29,39,47] of dis-
placed, rather than overturned, spins connecting the partons;
see Fig. 1(b) for an illustration. This leads us to a trial wave
function of magnetic polarons, which can be constructed for
arbitrary doped quantum AFMs, with or without long-range
order. Our microscopic description implies experimental sig-
natures, which will be discussed next. They go beyond the
capabilities of traditional solid-state experiments, but can be
accessed with ultracold atoms.

This paper extends our earlier work on the spinon-chargon
theory for the simplified t-Jz model with Ising couplings
between the spins, where the spinon motion is introduced
by Trugman loops [35,39], and in systems with mixed di-
mensionality where the hole motion is constrained to one
direction [47]. Instead of invoking gauge fields for model-
ing the strings connecting spinons and chargons [42], our
approach has a purely geometric origin and generalizes the
concept of squeezed space used to describe doped 1D systems
[26,30–32].

C. Geometric string paradigm: Short-range hidden string order
in magnetic polarons

The properties (i) and (ii) of magnetic polarons discussed
in Sec. I A have been measured in solid-state experiments [48]
by spectroscopic techniques. Quantum gas microscopy can
go beyond such measurements and analyze individual exper-
imental snapshots, obtained in quantum projective measure-
ments, and directly search for signatures of string formation
[33–38] in real space [39]. This has been done in Ref. [29],
where string patterns were analyzed and signatures for hidden
AFM correlations have been obtained.

To identify string patterns, the experimental images in
Ref. [29] were compared to a perfect checkerboard con-
figuration as expected for a classical Néel state. Stringlike
objects were revealed from difference images where the sites
deviating from the perfect Néel pattern are identified [see
Ref. [29] for details and Fig. 1(c) for an illustration]. Then, the
distribution of lengths of such stringlike objects was analyzed.
The string patterns exist even at half-filling due to fluctua-
tions of the local staggered magnetic moment, providing a
background signal. Upon doping, a significant increase of the
number of string patterns was detected which is proportional
to the number of holes [29].
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Here, we perform density-matrix renormalization-group
(DMRG) simulations on a 8 × 6 cylinder, using the TENPY

package [49], to search for similar signatures of geometric
strings in the ground state of the t-J model with exactly
one hole |�1h〉. To generate snapshots {|αn〉} of the wave
function, we employ Metropolis Monte Carlo sampling of
Fock basis states |α〉 with one hole and calculate the required
overlap |〈α|�1h〉|2 using the matrix product state formalism.
For every generated snapshot |αn〉 we calculate the difference
to a classical Néel pattern and determine the length � of
nonbranching stringlike defects emanating from the hole [see
Fig. 1(c)]. Cases where no strings exist count as � = 0, and
in cases with multiple possible strings the longest object is
considered. Our analysis is similar to the experimental one
in Ref. [29], except for the simultaneous spin and charge
resolution which leads to a reduction of the background signal
from undoped regions.

In Fig. 1(d) we show our results for the full counting
statistics of string lengths �. The DMRG calculations were
performed on a 8 × 6 cylinder with open (periodic) boundary
conditions in the long (short) direction, in the subspace with
Ŝz

tot = 1
2 . We compare the case of a mobile hole at weak

(t = 0.4J) and strong (t = 3J) coupling to a Heisenberg AFM
with one spin removed, corresponding to a localized hole.
In the latter case, the majority of strings has length � = 0.
Other string lengths are also found, but even string lengths
� = 2, 4, . . . are more likely than odd ones. This is understood
by noting that quantum fluctuations on top of the classical
Néel state are caused by spin-exchange terms: individually,
they change the string length by two units.

We observe that the string length distributions obtained for
mobile holes are significantly broader, and the even-odd effect
explained by quantum fluctuations of the spins is much less
pronounced. Already for t ≈ J we find that approximately
half of the observed string patterns have a length � � 2. For
t = 3J the string length distribution continues to broaden and
develops a local maximum at � = 1. In Fig. 3(a) we plot the
average string length, i.e., the first moment of the distribution.
As expected from the linear string tension [33], it depends
linearly on (t/J )1/3 in the strong coupling regime, but before
the Nagaoka polaron is realized at t/J � 20 [18]. In the
latter case, the polaron radius is expected to scale as (t/J )1/4

instead [41].
The string patterns revealed in Fig. 1(d) in the ground state

share the same characteristics as the string patterns found
experimentally in Ref. [29] over a wide range of dopings. As
in the experiment, we will show in this paper that the string
patterns are described quantitatively by the so-called frozen-
spin approximation (FSA), which will be discussed in detail in
Sec. II A. The main assumption of the FSA is to consider only
charge fluctuations along strings of displaced spins. While the
quantum state of the surrounding spins remains unmodified,
the positions of the spins in the lattice change.

This geometric string paradigm is at the heart of the FSA
and allows to construct a set of snapshots {|αFSA

n 〉} describing
a mobile hole, starting from a set of snapshots {|α0

n〉} for
the undoped system: From the latter we generate the FSA
snapshots by removing a spin in the center of the cylinder
and moving the resulting hole in random directions l times,
where l is sampled from the string length distribution pFSA

l

FIG. 3. Magnetic polaron radius. We calculate the size of the
magnetic polaron as a function of t/J: (a) by determining the average
length 〈�〉 of the stringlike objects revealed in individual snapshots,
and (b) by fitting the dependence of local spin correlations Cn(d )
on the bond-center distance by a function of the form C∞

n + ae−d/Rmp

and interpreting the fit parameter Rmp as the magnetic polaron radius.
For small values of t , the fit to Cz

2(d ) is not meaningful and we do not
provide any data points in this regime. MPS and FSA are defined in
the figure caption of Fig. 1.

obtained from microscopic considerations (see Sec. II A or
Ref. [39]). This motion of the hole displaces the spins and
introduces short-range hidden string order.

In Fig. 1(d) we analyze the string patterns in the FSA snap-
shots and find remarkable agreement with our full numerical
DMRG simulations of the mobile holes. This remains true
for a wide range of parameters t/J . Similar agreement was
reported in ED simulations of a simplified t-J model with
mixed dimensionality [47]. The inset of Fig. 1(d) shows the
underlying FSA string-length distributions pFSA

l , which share
the same qualitative features as the detected string patterns in
the main panel. These distributions are not identical, however,
because quantum fluctuations present in the spin background
into which the geometric strings are introduced can modify
the observed string patterns.

D. Dressing cloud of magnetic polarons

The capability of ultracold atom experiments to resolve the
collapsed quantum state with full resolution of spin and charge
simultaneously [22] has recently led to the first microscopic
observation of the dressing cloud of a magnetic polaron
[50]. The measurements are consistent with earlier theoretical
calculations at zero temperature [9] and show that the local
spin correlations are only affected in a relatively small radius
of one to two lattice sites around the mobile dopant. In
Fig. 2 we perform similar calculations using DMRG (see also
Ref. [18]), and observe that the spin correlations approach a

224422-4



MICROSCOPIC SPINON-CHARGON THEORY OF MAGNETIC … PHYSICAL REVIEW B 99, 224422 (2019)

universal shape which becomes nearly independent of t/J at
strong couplings t � J/4.

The most pronounced effect of the dopant is on the di-
agonal next-nearest-neighbor correlations. They are strongly
suppressed and can change sign for sufficiently large t/J at
finite temperature [27,50]. Such behavior can be understood
from the FSA by noting that the charge is located at one
end of the fluctuating geometric string, which interchanges
the sublattice indices of the surrounding spins and hides the
underlying AFM correlations. For C1, C2 denoting nearest-
and next-nearest-neighbor spin correlations in the undoped
system, the FSA predicts diagonal next-nearest-neighbor cor-
relators C2(d = 1/

√
2) directly next to the dopant given by

C2(1/
√

2)|FSA ≈
(

pFSA
0 + 1 − pFSA

0

2

)
C2 + 1 − pFSA

0

2
C1.

(1)
Here, d = 1/

√
2 denotes the bond-center distance defined in

the caption of Fig. 2; pFSA
l is the string-length distribution

derived from the FSA approach in Sec. II A, which is shown
in the inset of Fig. 1(d).

The correlations between the mobile hole and the sur-
rounding spins are liquidlike, with no significant effect on
lattice sites more than two sites away even when t/J is large:
If we fit an exponential C∞

n + ae−d/Rmp to Cn(d ), we find that
Rmp, which we identify as the polaron radius, depends only
weakly on t/J and the index n of the correlator [see Fig. 3(b)].
The average string length 〈�〉 of the string patterns revealed
in individual microscopic Fock configurations, in contrast,
depends more strongly on t/J [see Fig. 3(a)].

In the string picture, these liquidlike correlations in the
local spin environment of the mobile dopant are a direct
consequence of the large number of string configurations
N� (�) with a specific string length �, growing exponentially:
N� (�) = 4 × 3�−1 for � > 0. Every individual string configu-
ration � has a large effect on a specific set of spin correlations.
But by averaging over all allowed string states, the effect on
a specific spin correlator relative to the dopant is strongly
reduced.

II. MODEL

We consider a class of 2D t-J models with Hamiltonians of
the form Ĥt-J = Ĥt + ĤJ , where

Ĥt = −t
∑
〈i, j〉

∑
σ

P̂GW(ĉ†
i,σ ĉ j,σ + H.c.)P̂GW (2)

describes tunneling of holes with amplitude t . We consider
fermions ĉi,σ with spin σ and use Gutzwiller projectors
P̂GW to restrict ourselves to states with zero or one fermion
per lattice site; 〈i, j〉 denotes a pair of nearest-neighbor
(NN) sites and every bond is counted once in the sum.
The second term ĤJ includes interactions between the spins
Ŝ j = ∑

σ,τ=↑,↓ ĉ†
j,σσσ,τ ĉ j,τ with an overall energy scale J .

In the following we will consider NN Heisenberg exchange
couplings

ĤJ = J
∑
〈i, j〉

(
Ŝi · Ŝ j − n̂in̂ j

4

)
, (3)

where n̂ j = ∑
σ=↑,↓ ĉ†

j,σ ĉ j,σ denotes the number density of
the fermions, but the methods introduced below can be applied
more generally.

To make the single-occupancy condition built into the t-J
model explicit, we use a parton representation

ĉ j,σ = ĥ†
j f̂ j,σ . (4)

Here, ĥ j is a bosonic chargon operator and f̂ j,σ is a S = 1
2

fermionic spinon operator [51,52]. The physical Hilbert space
is defined by all states satisfying∑

σ

f̂ †
j,σ f̂ j,σ + ĥ†

j ĥ j = 1, ∀ j. (5)

We start from the half-filled ground state |�0〉 of the
undoped spin Hamiltonian ĤJ , and consider cases where
|�0〉 has strong AFM correlations. The ground state of the
Heisenberg model (3) has long-range AFM order, but the
presence of strong and short-ranged AFM correlations would
be sufficient to justify the approximations made below. We
note that our results below do not require explicit knowledge
of the wave function |�0〉.

The simplest state doped with a single hole is obtained by
applying ĉ js,σ to |�0〉, where · reverses the spin: ↑ =↓, ↓ =↑.
This state

| js, σ, 0〉 = ĉ js,σ |�0〉 = ĥ†
js f̂ js,σ |�0〉, (6)

with a spinon and a chargon occupying the same lattice site js,
defines the starting point for our analysis of the parton bound
state constituting the magnetic polaron. In the following,
we assume that t � J , which justifies a Born-Oppenheimer
ansatz: first the initially created valence spinon at site js will
be fixed and we determine the fast chargon fluctuations. Sim-
ilar to nuclear physics, these fluctuations can involve virtual
spinon-antispinon pairs. In a second step we introduce the
trial wave function as a superposition state of different valence
spinon positions js. Finally, we will derive the renormalized
dispersion relation of the spinon-chargon bound state.

A. Chargon fluctuations: Geometric strings and frozen-spin
approximation

We review a binding mechanism of chargons and spinons
by geometric strings (see also Sec. VI A in Ref. [39]). When
t � J , we expect that the chargon delocalizes until the energy
cost for distorting the spin configuration around js matches
the kinetic energy gain. To describe such chargon fluctuations
we apply the “frozen-spin approximation” (FSA) [29,47]: we
assume that the motion of the hole merely displaces the sur-
rounding spins, without changing their quantum state or their
entanglement with the remaining spins. When the chargon
moves along a trajectory C starting from the spinon, it leaves
behind a string � of displaced spins. The latter thus change
their corresponding lattice sites. This so-called geometric
string is defined by removing self-retracing paths from C.
Consider, for example, a spin S j̃ initially located at site j̃.
When the chargon moves from j̃ − ex to j̃ along the string
� (see Fig. 4), the position of the spin changes to j̃ − ex. We
continue to label this spin by S̃ j̃ . After the chargon has moved,
the spin operator at site j̃ − ex is thus given by Ŝ j̃−ex

= S̃ j̃ .
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FIG. 4. Frozen-spin approximation. In the approximate FSA ba-
sis we only allow processes where the motion of the chargon dis-
places the surrounding spins without changing their quantum states.
As a result, nearest-neighbor correlations Cey (red) [next-nearest-
neighbor correlations Cex+ey ( yellow), respectively] in the frozen-
spin background (a) contribute to next-nearest-neighbor correlators
(nearest-neighbor correlators, respectively) measured in states with
longer string lengths (b). This leads to the approximately linear string
tension, Eq. (10), binding spinons to chargons.

The geometric string construction provides the desired
generalization of squeezed space from 1D [26,30–32] to 2D
systems: the spins are labeled by their original lattice sites j̃
before the chargon is allowed to move. We call this space,
which excludes the lattice site js where the spinon is located,
the 2D squeezed space. The motion of the chargon along a
string � changes the lattice geometry: the labels j̃ no longer
correspond to the actual lattice sites occupied by the spins.
In particular, this changes the connectivity of the lattice, and
spins which are NN in squeezed space can become next-
nearest neighbors in real space. Hence, in this “geometric
string” formulation the Ĥt part of the t-J Hamiltonian is
understood as introducing quantum fluctuations of the under-
lying lattice geometry. For an illustration, see Fig. 4.

When t � J , but before the Nagaoka regime is reached
around J/t ≈ 0.05, the spins in squeezed space do not have
sufficient time to adjust to the fluctuating lattice geometry
introduced by the chargon motion. We note that the shape and
orientation of the geometric string are strongly fluctuating,
which leads to spatial averaging of the effects of the string
on the spins in the laboratory frame; the string is in a super-
position of various possible configurations, the total number
of which grows exponentially with the average string length.
Hence, the average effect on a given spin in squeezed space
is strongly reduced, which provides a justification for the
FSA ansatz. More technically, this means that the coupling of
the fluctuating string to (para)magnon excitations in squeezed
space is weak and can be treated perturbatively.

Now, we formalize our approach. When the chargon moves
along a string �, starting from the state | js, σ, 0〉 in Eq. (6),
the many-body state within FSA becomes

| js, σ,�〉 = Ĝ� ĥ†
js f̂ js,σ |�0〉. (7)

Here the string operator, defined by

Ĝ� =
∏

〈i, j〉∈�

⎛
⎝ĥ†

i ĥ j

∑
τ=↑,↓

f̂ †
j,τ f̂i,τ

⎞
⎠, (8)

creates the geometric string by displacing the spin states along
�. The product

∏
〈i, j〉∈� is taken over all links 〈i, j〉 which are

part of the string �, starting from the valence spinon position
js.

In a 2D classical Néel state |�N
0 〉 = | . . . ↑↓↑ . . .〉, most

string states | js, σ,�〉 are mutually orthonormal. Specific
configurations, so-called Trugman loops [35], constitute an
exception, but within an effective tight-binding theory it has
been shown that this only causes a weak renormalization of
the spinon dispersion [39]. Since the ground state |�0〉 of the
infinite 2D Heisenberg model has strong AFM correlations,
similar to a classical Néel state, we expect that the assumption
that string states form an orthonormal basis remains justi-
fied. To check this, we calculate all such states with string
lengths up to � � 4 and arbitrary spinon positions js using
exact diagonalization (ED) in a 4 × 4 system. We find that
|〈 js′, σ,�′| js, σ,�〉|2 < 0.06 unless � = �′ or � and �′ are
related by a Trugman loop.

Now, we will follow the example of Rokhsar and Kivelson:
they introduced their celebrated dimer model [53] by defining
a new basis which reflects the structure of the low-energy
many-body Hilbert space in a class of microscopic spin sys-
tems. Similarly, we will postulate in the context of the FSA
that all string states are mutually orthonormal. This defines
the basis of string states | js, σ,�〉 which is at the heart of the
FSA. Note, however, that we will return to the full physical
Hilbert space of the original t-J model later.

For a spinon with spin σ fixed at js, the effective string
Hilbert space | js, σ,�〉 has the structure of a Bethe lattice, or
a Cayley graph. Its depth reflects the maximum length of the
geometric string �, and the branches correspond to different
directions of the individual string elements. The effective
Hamiltonian Ĥt

eff describing the chargon motion, i.e., fluc-
tuations of the geometric string, consists of hopping matrix
elements t between neighboring sites of the Bethe lattice. In
addition, the J-part ĤJ of the t-J model gives rise to a poten-
tial energy term. Within the FSA, it can be easily evaluated:

ĤJ
eff =

∑
js,σ

∑
�

| js, σ,�〉〈 js, σ,�| 〈 js, σ,�|ĤJ | js, σ,�〉︸ ︷︷ ︸
Vpot (�)

.

(9)

Off-diagonal terms 〈 js′, σ,�′|ĤJ | js, σ,�〉 with js′ �= js give
rise to spinon dynamics and will be discussed below. By
construction of the FSA, the potential Vpot (�) only depends
on the spin-spin correlation functions in the undoped ground
state Cd = 〈�0|Ŝd · Ŝ0|�0〉.

We proceed as in the microscopic spinon-chargon theory
of the t-Jz model [39] and simplify the effective string Hamil-
tonian further by making the linear string approximation: we
assume that the potential depends only on the string length �� .
From considering the case of straight strings (see Fig. 4) we
obtain

Vpot (�) ≈ dE

d�
�� + g0δ��,0 + μh, (10)

with a linear string tension dE/d� = 2J (Cex+ey − Cex ). The
last term μh = J (1 + C2ex − 5Cex ) corresponds to an overall
energy offset; the middle term contributes only when the
string length is �� = 0 and describes a weak spinon-chargon
attraction g0 = −J (C2ex − Cex ). Note that we assume fourfold
rotational symmetry of |�0〉, e.g., Cex = Cey .
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By solving the hopping problem on the Bethe lattice in the
presence of the string potential (10) as in Refs. [33,34,36,39],
we obtain approximations to the spinon-chargon binding en-
ergy EFSA

sc and the bound-state wave function∣∣ψFSA
sc ( js, σ )

〉 =
∑
�

ψFSA
� | js, σ,�〉. (11)

Recall that we apply the strong coupling approximation, valid
for t � J , and fix the valence spinon at js. Spinon dynamics
will be discussed below. From Eq. (11) the FSA string-length
distribution is obtained, pFSA

l = ∑
�:��=l |ψFSA

� |2, which we
use in Figs. 1–3.

B. Spinons at half-filling

Now, we return to the analysis of spinons which determine
the low-energy properties of magnetic polarons. We briefly re-
view fermionic spinon representations of quantum AFMs and
their corresponding variational wave functions. They provide
the starting point for formulating a general spinon-chargon
trial wave function in the next section.

For concreteness we consider the 2D Heisenberg Hamil-
tonian ĤJ in Eq. (3) at half-filling. Its ground state sponta-
neously breaks the SU(2) spin symmetry and has long-range
Néel order [54]. The corresponding low-energy excitations,
spin-1 magnons constituting the required Goldstone mode,
are most commonly described by a bosonic representation of
spins, using, e.g., Schwinger or Holstein-Primakoff bosons.
Recently, it has been argued that the high-energy excitations
of the AFM ground state can be captured more accurately by
a fermionic spinon representation [55].

The fermionic spinon representation which we use in
Eq. (4) is partly motivated by analogy with the 1D t-J
model, where spinons can be understood as forming a weakly
interacting Fermi sea [56–58]. On the other hand, Marston
and Affleck [59] have shown in 2D that the ground state of
the Heisenberg model in the large-N limit corresponds to the
fermionic π -flux, or d-wave [56], state of spinons. For our
case of interest, N = 2, the π -flux state is not exact, but it
can be used as a starting point for constructing more accurate
variational wave functions. To this end we consider a general
class of fermionic spinon mean-field states |�MF(Bst,�)〉,
defined as the ground state at half-filling of the following
Hamiltonian:

Ĥ f ,MF = −Jeff

∑
〈i, j〉,σ

(
eiθ�

i, j f̂ †
j,σ f̂i,σ + H.c.

)

+ Bst

2

∑
j,σ

(−1) jx+ jy f̂ †
j,σ (−1)σ f̂ j,σ , (12)

with Peierls phases θ�
i, j = (−1) jx+ jy+ix+iy�/4 corresponding

to a staggered magnetic flux ±� per plaquette and a staggered
Zeeman splitting ∼Bst which can be used to explicitly break
the SU(2) symmetry.

A trial wave function for the SU(2)-symmetric π -flux state
is obtained by applying the Gutzwiller projection [20,56] to
the mean-field state with � = π and Bst = 0, i.e., |�π 〉 =
P̂GW|�MF(0, π )〉. Although it features no long-range AFM
order, this trial state leads to a low variational energy at
half-filling and is often considered as a candidate state at finite

doping [21]. Another extreme is the � = 0 uniform RVB state
with Bst = 0, i.e., |�0〉 = P̂GW|�MF(0, 0)〉, which also yields
a good variational energy at half-filling.

The best variational wave function of the general type
P̂GW|�MF(Bst,�)〉 has been found to have a nonzero stag-
gered field Bst �= 0, consistent with the broken SU(2) sym-
metry of the true ground state, and staggered flux 0 < � < π

[60]. More recent calculations have determined the optimal
variational parameters of this “staggered-flux + Néel” (SF +
N) trial state |�SF+N〉 = P̂GW|�MF(Bopt

st ,�opt )〉 to be �opt ≈
0.4π and Bopt

st /Jeff ≈ 0.44 [55]. The corresponding variational
energy per particle ESF+N

0 /L2 = −0.664J is very close to
the true ground-state energy E0/L2 = −0.669J known from
first-principles Monte Carlo simulations [61].

The main shortcoming of mean-field spinon theories as in
Eq. (12) is that they neglect gauge fluctuations [52]. These
lead to spinon confinement in the ground state of the 2D
Heisenberg model [52] and, hence, free spinon excitations as
described by Eq. (12) cannot exist individually. Indeed, if the
Gutzwiller projection method is used to define a variational
wave function, the underlying mean-field spinon dispersion is
usually considered not to have a concrete physical meaning.
We emphasize, however, that a single spinon can exist in
combination with a chargon if they form a meson. In this case,
which is of primary interest to us, we argue that the spinon
dispersion (13) has a concrete physical meaning.

The main difference between spinon models with different
values of the staggered flux � is their dispersion relation.
From the Hamiltonian (12) we obtain the mean-field spinon
dispersion

ωs(k) = −
√

4J2
eff | cos(kx )e−i �

4 + cos(ky)ei �
4 |2 + B2

st

4
. (13)

For Bst = 0 and � �= 0 it has Dirac points at the nodal point
k = (π/2, π/2). A finite staggered magnetic field Bst opens
a gap everywhere. In this case the dispersion has a minimum
at k = (π/2, π/2), unless � = 0 when the dispersion is de-
generate along the edge of the magnetic zone boundary. The
energy difference between the antinodal point (0, π ) and the
nodal point (π/2, π/2) is zero for � = 0 and maximal when
� = π [see Fig. 5(a)].

For the optimal variational parameters �opt and Bopt
st , the

shape of the mean-field spinon dispersion relation (13) closely
resembles the known dispersion of a single hole moving inside
an AFM: it is weakly dispersive on the edge of the MBZ, has
its minimum at (π/2, π/2), and a pronounced maximum at
(0,0) [see Fig. 5(a)]. This is consistent with our conjecture
from the spinon-chargon theory that the magnetic polaron
dispersion is dominated by the spinon at strong couplings
t � J .

C. Meson trial wave function

To obtain a complete description of the mesonlike bound
state constituting a hole in an AFM, we combine geometric
strings with the fermionic spinon representation. Starting
from Eq. (7) with |�0〉 = |�SF+N

MF 〉 ≡ |�MF(Bopt
st ,�opt )〉

we construct a translationally invariant trial wave
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FIG. 5. Dispersion relation of a single hole in an AFM. We
consider cuts through the Brillouin zone along the path sketched
in (a), starting at (0,0). (a) The shape of the mean-field spinon
dispersion [Eq. (13)] is shown at Bst = 0.44Jeff for � = 0.4π (left)
and � = 0, π (right). (b) We calculate the magnetic polaron dis-
persion for t = 3J in a 12 × 12 system from the meson trial wave
function [Eq. (14)] (string-VMC) and compare it to predictions by
the analytical FSA theory combined with a simplified tight-binding
expression for the spinon dispersion [Eq. (18)]. (c) As expected
from the strong coupling spinon-chargon picture, only the part of
the variational energy associated with spin-exchange terms 〈ĤJ〉
depends on kMP (top), whereas 〈Ĥt 〉 is nondispersive (bottom).

function (string-VMC)

|�sc(kMP)〉 =
∑

js

eikMP· js

L

∑
�

ψ� Ĝ� P̂GW f̂ js,σ

∣∣�SF+N
MF

〉
.

(14)
Here, kMP denotes the total lattice momentum of the spinon-
chargon magnetic polaron state, and L denotes the linear
system size. Note that we drop the chargon operators ĥ j in the
expression because they are uniquely defined by the condition
(5) after the Gutzwiller projection in our case with single hole.

In general, the values of the string wave function ψ� ∈ C
can be treated as variational parameters in Eq. (14), but in
practice we use the result obtained explicitly from the FSA
calculation in Eq. (11): i.e., we set ψ� in Eq. (14) equal
to ψFSA

� determined in Eq. (11). Unless stated differently,
all results based on the trial wave function (14) use this
procedure. The undoped parent state |�SF+N

MF 〉 in Eq. (14) can

be replaced by any fermionic spinon mean-field wave function
|� f

MF〉. In particular, Eq. (14) can then be used to describe
spinon-chargon bound states even in phases with deconfined
spinon excitations.

We recapitulate the physics of Eq. (14): first, the valence
spinon is created in the mean-field state. At strong couplings
it carries the total momentum kMP of the mesonlike bound
state f̂kMP,σ = L−1 ∑

j eikMP· j f̂ j,σ . The Gutzwiller projection
subsequently yields a state in the physical Hilbert space

P̂GW f̂kMP,σ

∣∣�SF+N
MF

〉 =
∑

js

∑
α

�kMP ( js, α)ĥ†
js f̂ js,σ |α〉, (15)

where
∑

α denotes a sum over all half-filled Fock states |α〉. In
this state the spinon and chargon positions js coincide. In the
last step we apply the string operators Ĝ� to this state and cre-
ate a superposition of fluctuating geometric strings in Eq. (14),
which captures the internal structure of the mesonlike bound
state.

When the string length in Eq. (14) is short, � � 1, the
spinon-chargon bound state resembles the five-site polaron
state predicted at small values of t/J by the small-polaron
theory in Refs. [41,62]. For larger values of t/J , Eq. (14)
describes how the string length grows continuously until
the Nagaoka polaron with a ferromagnetic core is realized
[18,40] for t/J � 20. The latter is correctly captured by the
semiclassical theory [62] but goes beyond the spinon-chargon
description in Eq. (14).

D. Simplified tight-binding description of spinons

To obtain additional qualitative analytical insights to the
properties of mesonlike spinon-chargon bound states, we re-
turn to the simplified FSA description developed in Sec. II A
and extend it by an approximate tight-binding treatment of the
spinon dispersion. This approach captures fewer details than
the trial wave function (14) but provides an intuitive physical
picture of the main features revealed in the spinon dispersion.

So far, the J part of the effective FSA Hamiltonian ĤJ
eff in

Eq. (9) includes only the string potential. Now, we add terms
Js( js

2, js
1; �2, �1)| js

2, σ,�2〉〈 js
1, σ,�1| changing the position

of the valence spinon, with matrix elements

Js
(

js
2, js

1; �2, �1
) = 〈

js
2, σ,�2

∣∣ĤJ

∣∣ js
1, σ,�1

〉
. (16)

We first evaluate Eq. (16) for string states | js, σ,�〉 con-
structed from a classical Néel state |�0〉 = |�N

0 〉. Ignoring
loop configurations of the strings �1,2 [35], one obtains
nonzero matrix elements Js = J/2 only if js

1 and js
2 can be

connected by two links in arbitrary directions and if the string
length changes by two units ��2 = ��1 ± 2; such pairs of sites
are shown in Fig. 6 and we will denote them as 〈〈 js

2, js
1〉〉.

Next, we check that these terms remain dominant when the
string states are constructed from the exact ground state |�0〉
of the 2D Heisenberg model. To this end we perform ED in a
4 × 4 system with periodic boundary conditions and confirm
that the matrix elements between sites 〈〈 js

2, js
1〉〉 remain dom-

inant with magnitudes Js = 0.52J close to the result from the
classical Néel state. In contrast, matrix elements (16) between
states with spinons on neighboring sites 〈 js

2, js
1〉 remain small,

|Js( js
2, js

1)| < 0.1J , and will be neglected.
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FIG. 6. Simplified tight-binding description of the spinon disper-
sion. In a classical Néel state, a spinon at site js

1 (left) can hop to
another site js

2 by spin-exchange processes on the bonds indicated by
ellipses. The spin exchange on the bond indicated by the red ellipse
leads to the spinon configuration shown on the right, where js

2 =
js

1 + 2ex and the string length changes by two units, ��2 = ��1 + 2.
Similarly, spinons at js

2 = js
1 − 2ex , ±2ey, +ex ± ey, and −ex ± ey

can be reached, with ��2 = ��1 ± 2.

In a generic quantum AFM we expect that this picture
remains valid, at least qualitatively. The spin-exchange cou-
plings on the bonds around the spinon indicated in Fig. 6
can be written as Ŝi · Ŝ j = P̂i, j/2 − 1/4, where P̂i, j |σi, σ j〉 =
|σ j, σi〉 exchanges the two spins irrespective of their orienta-
tion. Hence, both spins change their sublattice index, which
is expected to lead to a large overlap with a state describing
a geometric string of length ��2 = ��1 ± 2 and a modified
spinon position. The corresponding matrix element is thus
expected to be Js ≈ J/2, irrespective of the details of the
undoped AFM |�0〉.

Now, we focus on strong couplings t � J , and make a
Born-Oppenheimer ansatz [63]. As in Eq. (11) we first fix
the spinon position and determine the ground state of the
fluctuating geometric string |ψFSA

sc ( js, σ )〉. Here, we have to
be careful in order to avoid double counting: In our original
derivation of the FSA string potential in Eq. (10) we included
the energy J〈Ŝi · Ŝ j〉 between any pair of spins on sites 〈i, j〉
as a constant energy. However, we argued above that the
exchange part JP̂i, j/2 of the Heisenberg couplings JŜi · Ŝ j

on the bonds shown in Fig. 6 lead to spinon dynamics, and
we will include them in the tight-binding spinon Hamiltonian.
Hence, to avoid double counting of terms in ĤJ , we mod-
ify the effective string potential in Eq. (10) by subtracting
J〈P̂i, j〉/2 = J〈�0|Ŝi · Ŝ j + 1/4|�0〉 for bonds 〈i, j〉 contribut-
ing to the matrix elements in Eq. (16).

Next, we include spinon dynamics. Due to the presence
of geometric strings, the spinon hopping elements Js between
sites 〈〈 js

2, js
1〉〉 are renormalized by a Franck-Condon overlap

νFC,

J∗
s =

∑
�1,�2

Js
(

js
2, js

1; �2, �1
) (

ψFSA
�2

)∗
ψFSA

�1
= νFC Js, (17)

where ψFSA
� denotes the FSA string wave function from

Eq. (11). The resulting tight-binding hopping Hamiltonian
gives rise to the strong coupling expression for the spinon-
chargon energy

Esc(k) = 2JsνFC[2 cos(kx + ky) + 2 cos(kx − ky)

+ cos(2kx ) + cos(2ky)] + EFSA
sc , (18)

where EFSA
sc is the energy contribution from the fluctuating

geometric string. This expression coincides with the semiclas-
sical polaron dispersion [62].

The Franck-Condon factor can be calculated in the limits
t/J → ∞, 0. For weak couplings t � J the string length
becomes short and the Franck-Condon factor approaches zero,
νFC → 0. This leads to a strong suppression of the mag-
netic polaron bandwidth W . For strong couplings t � J , the
Franck-Condon factor approaches νFC = 1

2 . This leads to a
bandwidth W ∝ J � t .

III. RESULTS

Now, we present numerical results from the microscopic
spinon-chargon theory, obtained from the simplified tight-
binding description (see Sec. II D) and from the variational
energy of the trial wave function in Eq. (14). To calculate
the latter we utilize standard Metropolis sampling, commonly
employed in variational Monte Carlo (VMC) calculations
(see, e.g., Ref. [64]).

A. Dispersion relation

Shape. In Fig. 5(b) we show the variational dispersion
relation EMP(kMP) = E1h(kMP) − E0h of the single hole in
the AFM, or magnetic polaron, where E0h = ESF+N

0 is the
variational energy of the SF + N state without doping and
E1h(kMP) = 〈�sc(kMP)|Ĥt−J |�sc(kMP)〉 for doping with one
hole. The result is in good quantitative agreement with numer-
ical Monte Carlo calculations [12,16] and other variational
methods [19], capturing all properties of the single-hole dis-
persion.

From the spinon-chargon theory we expect that the dis-
persion of a hole in an AFM is dominated by the spinon
properties when t � J . Indeed, the shape of the variational
dispersion in Fig. 5(b) closely resembles the mean-field
spinon dispersion [see Fig. 5(a)]. To corroborate this picture
further, we calculate the variational energies 〈ĤJ〉 and 〈Ĥt 〉
as a function of kMP individually in Fig. 5(c). Only the spin-
exchange part 〈ĤJ〉 is dispersive, whereas the chargon part
〈Ĥt 〉 does not depend on kMP within error bars. This is a direct
indication that a hole in an AFM has two constituents, one
of which mainly affects spin exchanges and determines the
dispersion of the mesonlike bound state.

In Fig. 5(b) we also compare our result from the spinon-
chargon trial wave function to the FSA tight-binding predic-
tion from Eq. (18). While there is remarkable overall agree-
ment, the semianalytical FSA tight-binding calculation misses
some important qualitative features: Eq. (18) does not capture
the minimum of the single-hole dispersion at (π/2, π/2) but
predicts a degenerate minimum along the edge of the MBZ,
resembling more closely the mean-field spinon dispersion
(13) without staggered flux � = 0 [see Fig. 5(a)].

Bandwidth. In Fig. 7 we vary the ratio J/t and calculate
the bandwidth W = EMP(0, 0) − EMP(π/2, π/2). At strong
couplings t � J , our results from the trial wave function
(14) (string-VMC) are in good agreement with numerical
results from various theoretical approaches. When t � J/3,
the errorbars of our variational results are large. In this regime
the average length of the geometric string exceeds one lattice
site, and our string-VMC calculations suffer from strongly
fluctuating numerical signs.

We also compare the bandwidth W of the magnetic polaron
to the tight-binding prediction in Eq. (18). While quantitative
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FIG. 7. Bandwidth W of a single hole in an AFM. We compare
our variational results (string-VMC) from Eq. (14), valid at strong
couplings, to quantum Monte Carlo simulations by Brunner et al.
[16], ED studies by Dagotto et al. [10] and Leung and Gooding
[15], a variational wave function by Sachdev [8], and spin-wave
calculations by Martinez et al. [11] and by Liu and Manousakis
[12]. The overall shape of W (J/t ) is well captured by the effective
FSA theory [Eq. (18)]. The string-VMC calculations are performed
at Bst = 0.44Jeff , � = 0.4π in a 12 × 12 system.

agreement is not achieved everywhere, the overall dependence
on J/t is captured. At strong couplings t � J , the bandwidth
W ∝ J is proportional to J , i.e., strongly suppressed relative
to t . At weak couplings t � J , the Franck-Condon factor
vanishes, νFC → 0, which leads to a strong suppression of W
relative to both t and J .

B. Ground-state energy

In Fig. 8 we calculate the ground-state energy of the
mesonlike bound state as a function of J/t . The variational
result (string-VMC) from the trial wave function (14) agrees

FIG. 8. Ground-state energy of a hole in an AFM. We compare
our variational result from the meson trial wave function in Eq. (14)
(string-VMC) to quantum Monte Carlo calculations by Mishchenko
et al. [17] (QMC) and semianalytical predictions by the tight-binding
FSA theory from Eq. (18). In the shaded region, defined by J <

0.05t , the ground state is expected to be a Nagaoka polaron [18,40].
The string-VMC calculations are performed at Bst = 0.44Jeff , � =
0.4π in a 12 × 12 system at kMP = (π/2, π/2).

FIG. 9. Optimization of the trial wave function. We change the
average length of the geometric string in the spinon-chargon wave
function (14), 〈�〉 = ∑

� |ψ� |2�� shown in the inset, by rescaling
the linear string tension in Eq. (10) with a factor λdE/d�. The
resulting variational energy 〈Ĥt-J〉 − E0h, in units of J , is calculated
as a function of λdE/d� for the parameter t = 2J . The string-VMC
calculations are performed at Bst = 0.44Jeff , � = 0.4π in a 12 × 12
system at kMP = (π/2, π/2). Lines are guides to the eye.

well with numerically exact Monte Carlo calculations [17]
at strong couplings, before the fluctuating signs prevent ef-
ficient numerical calculation. The deviations from the ex-
act result are on the order of J even when J > t . When
t � J , the ground-state energy of the single hole is of
the form EMP = −2

√
3t + c t1/3J2/3 + O(J ), which can be

understood as a consequence of the geometric string with
an approximately linear string tension [33,39]. The varia-
tional ground-state energy is accurately described by the
semianalytical FSA prediction from Eq. (18), for all values
of t/J .

So far, we evaluated the spinon-chargon trial wave function
(14) using the FSA string wave function and set ψ� = ψFSA

� ,
where ψFSA

� was obtained from Eq. (11). Because the num-
ber of allowed string states � grows exponentially with the
maximum length of the strings, it is numerically too costly to
treat all amplitudes ψ� as variational parameters. To study the
quality of the trial state, we now introduce a single variational
parameter. We calculate the string wave function ψ� in the
overcomplete FSA Hilbert space but modify the potential
in Eq. (10) by rescaling the linear string tension dE/d� →
λdE/d� dE/d�. The numerical factor λdE/d� � 0 is then used
as a variational parameter which controls the average string
length.

In Fig. 9 we show the variational energy as a function of
λdE/d�. We observe a minimum at approximately λdE/d� ≈ 4,
around which the variational energy depends rather insensi-
tively on λdE/d�. For larger values of λdE/d�, where the average
length of the geometric string is close to zero, higher varia-
tional energies are obtained. This indicates that the formation
of geometric strings is energetically favorable. For smaller
values of λdE/d� the average string length exceeds one lattice
constant. This makes the fluctuations of the numerical sign in
the VMC method worse, but our results indicate an increase of
the variational energy in this regime as well. In combination,
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FIG. 10. Magnetic polaron cloud. Using the trial wave func-
tion (string-VMC) in Eq. (14) we calculate the local spin corre-
lations Cn(d ) = 〈n̂h

rh
Ŝr1 · Ŝr2 〉/〈n̂h

rh
〉, where d = |(r1 + r2)/2 − rh| is

the bond-center distance between r1 and r2 and n = 1 (n = 2) corre-
sponds to nearest- (next-nearest-) neighbor spin correlations. (a) For
t = 3J we compare our string-VMC result Cn(d )/3 to Cz

n(d ) obtained
from the same DMRG simulations as in Fig. 2: MPS corresponds to
the full solution in the case of a mobile hole and the FSA predictions
are generated from snapshots of the undoped Heisenberg AFM.
(b) We calculate the momentum dependence of Cn(d ) from the trial
wave function at t = 2J . The string-VMC calculations in (a) and
(b) are performed at Bst = 0.44Jeff , � = 0.4π in a 14 × 14 system;
in (a) k = (π/2, π/2).

these results support the spinon-chargon pairing mechanism
by geometric strings.

C. Magnetic polaron cloud

Finally, we study the dressing cloud of magnetic polarons
and calculate local spin correlations from the trial wave func-
tion (14). In Fig. 10(a) we compare the variational result to
our DMRG simulations described in Sec. I C for t = 3J . The
DMRG results are based on the same snapshots from which
we obtained the string-length histogram in Fig. 1(d). This
method also allows us to compare to predictions by the FSA

(see Fig. 2), where geometric strings are included by hand into
snapshots of an undoped Heisenberg model (see Sec. I C).

For t = 3J , i.e., for strong couplings, we find excellent
agreement of the trial wave function with DMRG simulations.
The numerical results confirm that diagonal next-nearest-
neighbor correlations next to the mobile hole are strongly
suppressed, i.e., C2(1/

√
2) ≈ 0. At distances d � 2.5, no

significant dependence of the correlations on t/J can be
identified by either method.

The most striking feature predicted by DMRG and the trial
wave function is the formation of a peak with reduced nearest-
neighbor correlations C1(d ) at the distance d = 2.06 from
the mobile dopant. This feature becomes more pronounced
as t/J increases. Additionally, we observe enhanced nearest-
neighbor correlations C1(d ) at d = 1.5, but this feature disap-
pears for values of t/J � 0.5 [see Figs. 11(a) and 11(b)].

The additional spatial structure featured by the trial wave
function and DMRG at d = 1.5 and 2.06 is not captured by
the simplified FSA approach [see Fig. 11(c)]. The fact that
the feature is present in the trial wave function when t � J
indicates that it is caused by the microscopic correlations of
the spinon position with its spin environment. The emergence
of a second length scale, in addition to the string length
� ∝ (t/J )1/3 captured by the FSA, can be considered as an
indirect indication of fermionic spinon statistics: the Fermi
momentum kF defines a second intrinsic length scale in this
case.

For weaker couplings t � J , the trial wave function is
less accurate since the Born-Oppenheimer approximation is
no longer valid. As shown in Fig. 11(a), it predicts a strong
suppression of diagonal next-nearest-neighbor correlations
around the hole C2(1/

√
2) ≈ 0 for all values of t/J . In con-

trast, the DMRG features a strong dependence of C2(1/
√

2)
on t/J when t � J , which is accurately described by the
FSA [see Figs. 11(b) and 11(c)]. On the other hand, the FSA
approach is less reliable for the nearest-neighbor correlations,
whose qualitative shape is remarkably well described by the
trial wave function for all values of t/J .

In Fig. 10(b) we calculate local spin-spin correlations at a
distance d from the hole, for different total momenta k of the
spinon-chargon bound state. We observe that the feature in
C1(d ) around d ≈ 1.5 is most pronounced in the ground state
at k = (π/2, π/2). For k = (0, 0) the additional structure
disappears almost completely. This observation supports our
earlier conclusion that the characteristic structure of C1(d ) is
related to the spinon, which also carries the center-of-mass
momentum k of the magnetic polaron at strong couplings.

IV. DISCUSSION AND OUTLOOK

We have introduced a microscopic theoretical framework
to describe a hole doped into an AFM as a mesonlike bound
state of a spinon and a chargon. As a binding mechanism of
spinons and chargons at strong couplings, we suggest geo-
metric strings: they model how the chargon motion dynami-
cally changes the underlying lattice geometry. The trial wave
function introduced in this paper puts earlier results [42] on
a mathematical footing, allowing quantitative predictions be-
yond the simplified t-Jz model [39]. While we focus on a sin-
gle hole at zero temperature in a spin system with long-range
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FIG. 11. Comparison of the different theoretical approaches. We calculate the local spin correlations Cn(d )/3 and Cz
n(d ) for n = 1, 2 in the

vicinity of a mobile dopant, using different theoretical approaches: (a) the trial wave function (string-VMC) from Eq. (14), (b) by numerical
DMRG simulations (MPS), and (c) using the FSA and starting from snapshots for the undoped Heisenberg model generated by DMRG. The
string-VMC calculations in (a) are performed at Bst = 0.44Jeff , � = 0.4π in a 14 × 14 system at k = (π/2, π/2).

AFM order, our method should also be applicable at finite
doping, for higher temperatures and in systems without long-
range Néel order.

Our results obtained here for the energy, the dispersion
relation, and the magnetic dressing cloud of a single hole
in an AFM are in good agreement with the commonly used
magnetic polaron theory [6–8,11,12]. The spinon-chargon
approach can be understood as a refinement of the magnetic
polaron picture. We find that many properties of the polarons
formed by holes in the Fermi-Hubbard model follow more
directly from the spinon-chargon ansatz. Moreover, simple
theoretical pictures can be derived from the parton approach
at strong couplings, where the magnetic polaron theory be-
comes notoriously difficult to solve, and our approach is
particularly useful for understanding the structure of magnetic
polarons in real space, which has recently become accessible
by quantum gas microscopy of ultracold atoms in optical
lattices [50].

Another key advantage of the spinon-chargon approach is
that it continuously connects systems with and without long-
range AFM order. In contrast to the magnetic polaron theory,
our variational wave function captures correctly the physics of
the 1D t-J model, where geometric strings become infinitely
long and spinons are no longer bound to chargons. We thus
believe that our method is well suited to study the dimensional
crossover from the 1D to the 2D t-J model in the future. In this
paper we only consider the case when spinons and chargons
form a bound state, but we do not exclude the possibility that
the attractive potential between spinons and chargons is finite
and an unbound state could exist at finite energy. This would
correspond to a phase with deconfined spinons.

As an important application, we expect that our approach
can also provide the means for a microscopic description,
starting form first principles, of the FL∗ state proposed as an
explanation of the pseudogap phase in cuprates [45]. As a key
ingredient, the FL∗ state contains bound states of spinons and
chargons, similar to the mesonlike bound states discussed in
this paper. We propose geometric strings as a possible spinon-
chargon binding mechanism in this finite-doping regime. In-
deed, recent experiments in the corresponding region of the
cuprate phase diagram [29] have found indications for the
presence of geometric strings, and here we confirmed these
results at low doping and for zero temperature by state-of-the-
art DMRG simulations.

To shed more light on the connection between the spinon-
chargon trial wave function and the pseudogap phase, as a
next step it would be useful to study spectral properties of
mesons as measured in angle-resolved photoemission spec-
troscopy (ARPES) experiments. From the strong coupling
wave function introduced here, we expect two contributions
to the spectral weight: a spinon part, which is strongly dis-
persive, and a chargon, or string, contribution which only
has a weak momentum dependence. We expect that this
allows to draw further analogies with ARPES spectra in 1D
systems [57,58], and it may provide new insights to the
physics of Fermi arcs observed in the pseudogap phase of
cuprates.

We close by a comment about the relation of our ap-
proach to Anderson’s resonating valence bond picture of high-
temperature superconductivity [20,65]. As in his approach,
we use Gutzwiller projected mean-field states of spinons [56]
as key ingredients in our trial wave function. By adding
geometric strings we include short-range hidden order and
take Anderson’s ansatz in a new direction. Our method is not
based on spin-charge separation but instead describes meson-
like bound states of spinons and chargons. The implications
for unconventional superconductivity will be explored in the
future.

ACKNOWLEDGMENTS

We would like to thank C. S. Chiu for critical reading of our
manuscript, and E. Altman, M. Knap, M. Punk, S. Sachdev,
T. Shi, R. Verresen, Y. Wang, and Z. Zhu for useful feedback
and comments. We also acknowledge fruitful discussions with
I. Bloch, C. S. Chiu, D. Chowdhury, D. Greif, M. Greiner, C.
Gross, T. Hilker, S. Huber, G. Ji, J. Koepsell, S. Manousakis,
F. Pollmann, A. Rosch, G. Salomon, U. Schollwöck, L.
Vidmar, J. Vijayan, and M. Xu. F.G. acknowledges financial
support by the Gordon and Betty Moore foundation under the
EPIQS program. F.G. and A.B. acknowledge financial support
from the Technical University of Munich-Institute for Ad-
vanced Study, funded by the German Excellence Initiative and
the European Union FP7 under Grant Agreement No. 291763,
from the DFG Grants No. KN 1254/1-1, and No. DFG TRR80
(Project F8), and funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy Grant No. EXC-2111–390814868. A.B.

224422-12



MICROSCOPIC SPINON-CHARGON THEORY OF MAGNETIC … PHYSICAL REVIEW B 99, 224422 (2019)

also acknowledges financial support from the Studienstiftung
des deutschen Volkes. E.D. and F.G. acknowledge support

from Harvard-MIT CUA, NSF Grant No. DMR-1308435,
AFOSR Quantum Simulation MURI.

[1] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott insula-
tor: Physics of high-temperature superconductivity, Rev. Mod.
Phys. 78, 17 (2006).

[2] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J.
Zaanen, From quantum matter to high-temperature supercon-
ductivity in copper oxides, Nature (London) 518, 179 (2015).

[3] J. K. Jain, Composite-Fermion Approach for the Fractional
Quantum Hall-Effect, Phys. Rev. Lett. 63, 199 (1989).

[4] N. Read, Order Parameter and Ginzburg-Landau Theory for the
Fractional Quantum Hall Effect, Phys. Rev. Lett. 62, 86 (1989).

[5] J. K. Jain, Composite Fermions (Cambridge University Press,
Cambridge, UK, 2007).

[6] S. Schmitt-Rink, C. M. Varma, and A. E. Ruckenstein, Spectral
Function of Holes in a Quantum Antiferromagnet, Phys. Rev.
Lett. 60, 2793 (1988).

[7] C. L. Kane, P. A. Lee, and N. Read, Motion of a single hole in
a quantum antiferromagnet, Phys. Rev. B 39, 6880 (1989).

[8] S. Sachdev, Hole motion in a quantum Néel state, Phys. Rev. B
39, 12232 (1989).

[9] V. Elser, D. A. Huse, B. I. Shraiman, and E. D. Siggia, Ground
state of a mobile vacancy in a quantum antiferromagnet: Small-
cluster study, Phys. Rev. B 41, 6715 (1990).

[10] E. Dagotto, R. Joynt, A. Moreo, S. Bacci, and E. Gagliano,
Strongly correlated electronic systems with one hole: Dynami-
cal properties, Phys. Rev. B 41, 9049 (1990).

[11] G. Martinez and P. Horsch, Spin polarons in the t-J model, Phys.
Rev. B 44, 317 (1991).

[12] Z. Liu and E. Manousakis, Dynamical properties of a hole in a
Heisenberg antiferromagnet, Phys. Rev. B 45, 2425 (1992).

[13] M. Boninsegni and E. Manousakis, Green’s-function Monte
Carlo study of the t-J model, Phys. Rev. B 46, 560 (1992).

[14] M. Boninsegni and E. Manousakis, Variational description of a
quasihole excitation in a quantum antiferromagnet, Phys. Rev.
B 45, 4877 (1992).

[15] P. W. Leung and R. J. Gooding, Dynamical properties of the
single-hole t-J model on a 32-site square lattice, Phys. Rev. B
52, R15711(R) (1995).

[16] M. Brunner, F. F. Assaad, and A. Muramatsu, Single-hole
dynamics in the t − J model on a square lattice, Phys. Rev. B
62, 15480 (2000).

[17] A. S. Mishchenko, N. V. Prokof’ev, and B. V. Svistunov, Single-
hole spectral function and spin-charge separation in the t − J
model, Phys. Rev. B 64, 033101 (2001).

[18] S. R. White and I. Affleck, Density matrix renormalization
group analysis of the Nagaoka polaron in the two-dimensional
t − J model, Phys. Rev. B 64, 024411 (2001).

[19] F. Mezzacapo, Variational study of a mobile hole in a
two-dimensional quantum antiferromagnet using entangled-
plaquette states, Phys. Rev. B 83, 115111 (2011).

[20] P. W. Anderson, The resonating valence bond state in La2CuO4

and superconductivity, Science 235, 1196 (1987).
[21] P. A. Lee, From high temperature superconductivity to quantum

spin liquid: Progress in strong correlation physics, Rep. Prog.
Phys. 71, 012501 (2008).

[22] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo,
L. Pollet, I. Bloch, and C. Gross, Spin- and density-resolved

microscopy of antiferromagnetic correlations in Fermi-Hubbard
chains, Science 353, 1257 (2016).

[23] L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H.
Zhang, E. Khatami, N. Trivedi, T. Paiva, M. Rigol, and M. W.
Zwierlein, Observation of spatial charge and spin correlations
in the 2D Fermi-Hubbard model, Science 353, 1260 (2016).

[24] M. F. Parsons, A. Mazurenko, C. S. Chiu, G. Ji, D. Greif, and
M. Greiner, Site-resolved measurement of the spin-correlation
function in the Fermi-Hubbard model, Science 353, 1253
(2016).

[25] P. T. Brown, D. Mitra, E. Guardado-Sanchez, P. Schauss, S. S.
Kondov, E. Khatami, T. Paiva, N. Trivedi, D. A. Huse, and W. S.
Bakr, Spin-imbalance in a 2D Fermi-Hubbard system, Science
357, 1385 (2017).

[26] T. A. Hilker, G. Salomon, F. Grusdt, A. Omran, M. Boll,
E. Demler, I. Bloch, and C. Gross, Revealing hidden antifer-
romagnetic correlations in doped Hubbard chains via string
correlators, Science 357, 484 (2017).

[27] G. Salomon, J. Koepsell, J. Vijayan, T. A. Hilker, J. Nespolo, L.
Pollet, I. Bloch, and C. Gross, Direct observation of incommen-
surate magnetism in Hubbard chains, Nature (London) 565, 56
(2019).

[28] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanasz-
Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M.
Greiner, A cold-atom Fermi-Hubbard antiferromagnet, Nature
(London) 545, 462 (2017).

[29] C. S. Chiu, G. Ji, A. Bohrdt, M. Xu, M. Knap, E. Demler, F.
Grusdt, M. Greiner, and D. Greif, String patterns in the doped
Hubbard model, arXiv:1810.03584.

[30] M. Ogata and H. Shiba, Bethe-ansatz wave function, momen-
tum distribution, and spin correlation in the one-dimensional
strongly correlated Hubbard model, Phys. Rev. B 41, 2326
(1990).

[31] J. Zaanen, O. Y. Osman, H. V. Kruis, Z. Nussinov, and J.
Tworzydlo, The geometric order of stripes and Luttinger liq-
uids, Philos. Mag. B: Phys. Condens. Matter 81, 1485 (2001).

[32] H. V. Kruis, I. P. McCulloch, Z. Nussinov, and J. Zaanen,
Geometry and the hidden order of Luttinger liquids: The uni-
versality of squeezed space, Phys. Rev. B 70, 075109 (2004).

[33] L. N. Bulaevskii, E. L. Nagaev, and D. I. Khomskii, A new
type of auto-localized state of a conduction electron in an
antiferromagnetic semiconductor, Zh. Eksp. Teor. Fiz. 54, 1562
(1968) [JETP 27, 836 (1968)].

[34] W. F. Brinkman and T. M. Rice, Single-particle excitations in
magnetic insulators, Phys. Rev. B 2, 1324 (1970).

[35] S. A. Trugman, Interaction of holes in a Hubbard antiferromag-
net and high-temperature superconductivity, Phys. Rev. B 37,
1597 (1988).

[36] B. I. Shraiman and E. D. Siggia, Two-Particle Excitations in
Antiferromagnetic Insulators, Phys. Rev. Lett. 60, 740 (1988).

[37] E. Manousakis, String excitations of a hole in a quantum
antiferromagnet and photoelectron spectroscopy, Phys. Rev. B
75, 035106 (2007).

[38] D. Golez, J. Bonca, M. Mierzejewski, and L. Vidmar, Mecha-
nism of ultrafast relaxation of a photo-carrier in antiferromag-
netic spin background, Phys. Rev. B 89, 165118 (2014).

224422-13

https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevLett.62.86
https://doi.org/10.1103/PhysRevLett.62.86
https://doi.org/10.1103/PhysRevLett.62.86
https://doi.org/10.1103/PhysRevLett.62.86
https://doi.org/10.1103/PhysRevLett.60.2793
https://doi.org/10.1103/PhysRevLett.60.2793
https://doi.org/10.1103/PhysRevLett.60.2793
https://doi.org/10.1103/PhysRevLett.60.2793
https://doi.org/10.1103/PhysRevB.39.6880
https://doi.org/10.1103/PhysRevB.39.6880
https://doi.org/10.1103/PhysRevB.39.6880
https://doi.org/10.1103/PhysRevB.39.6880
https://doi.org/10.1103/PhysRevB.39.12232
https://doi.org/10.1103/PhysRevB.39.12232
https://doi.org/10.1103/PhysRevB.39.12232
https://doi.org/10.1103/PhysRevB.39.12232
https://doi.org/10.1103/PhysRevB.41.6715
https://doi.org/10.1103/PhysRevB.41.6715
https://doi.org/10.1103/PhysRevB.41.6715
https://doi.org/10.1103/PhysRevB.41.6715
https://doi.org/10.1103/PhysRevB.41.9049
https://doi.org/10.1103/PhysRevB.41.9049
https://doi.org/10.1103/PhysRevB.41.9049
https://doi.org/10.1103/PhysRevB.41.9049
https://doi.org/10.1103/PhysRevB.44.317
https://doi.org/10.1103/PhysRevB.44.317
https://doi.org/10.1103/PhysRevB.44.317
https://doi.org/10.1103/PhysRevB.44.317
https://doi.org/10.1103/PhysRevB.45.2425
https://doi.org/10.1103/PhysRevB.45.2425
https://doi.org/10.1103/PhysRevB.45.2425
https://doi.org/10.1103/PhysRevB.45.2425
https://doi.org/10.1103/PhysRevB.46.560
https://doi.org/10.1103/PhysRevB.46.560
https://doi.org/10.1103/PhysRevB.46.560
https://doi.org/10.1103/PhysRevB.46.560
https://doi.org/10.1103/PhysRevB.45.4877
https://doi.org/10.1103/PhysRevB.45.4877
https://doi.org/10.1103/PhysRevB.45.4877
https://doi.org/10.1103/PhysRevB.45.4877
https://doi.org/10.1103/PhysRevB.52.R15711
https://doi.org/10.1103/PhysRevB.52.R15711
https://doi.org/10.1103/PhysRevB.52.R15711
https://doi.org/10.1103/PhysRevB.52.R15711
https://doi.org/10.1103/PhysRevB.62.15480
https://doi.org/10.1103/PhysRevB.62.15480
https://doi.org/10.1103/PhysRevB.62.15480
https://doi.org/10.1103/PhysRevB.62.15480
https://doi.org/10.1103/PhysRevB.64.033101
https://doi.org/10.1103/PhysRevB.64.033101
https://doi.org/10.1103/PhysRevB.64.033101
https://doi.org/10.1103/PhysRevB.64.033101
https://doi.org/10.1103/PhysRevB.64.024411
https://doi.org/10.1103/PhysRevB.64.024411
https://doi.org/10.1103/PhysRevB.64.024411
https://doi.org/10.1103/PhysRevB.64.024411
https://doi.org/10.1103/PhysRevB.83.115111
https://doi.org/10.1103/PhysRevB.83.115111
https://doi.org/10.1103/PhysRevB.83.115111
https://doi.org/10.1103/PhysRevB.83.115111
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1088/0034-4885/71/1/012501
https://doi.org/10.1088/0034-4885/71/1/012501
https://doi.org/10.1088/0034-4885/71/1/012501
https://doi.org/10.1088/0034-4885/71/1/012501
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aam7838
https://doi.org/10.1126/science.aam7838
https://doi.org/10.1126/science.aam7838
https://doi.org/10.1126/science.aam7838
https://doi.org/10.1126/science.aam8990
https://doi.org/10.1126/science.aam8990
https://doi.org/10.1126/science.aam8990
https://doi.org/10.1126/science.aam8990
https://doi.org/10.1038/s41586-018-0778-7
https://doi.org/10.1038/s41586-018-0778-7
https://doi.org/10.1038/s41586-018-0778-7
https://doi.org/10.1038/s41586-018-0778-7
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
http://arxiv.org/abs/arXiv:1810.03584
https://doi.org/10.1103/PhysRevB.41.2326
https://doi.org/10.1103/PhysRevB.41.2326
https://doi.org/10.1103/PhysRevB.41.2326
https://doi.org/10.1103/PhysRevB.41.2326
https://doi.org/10.1080/13642810108208566
https://doi.org/10.1080/13642810108208566
https://doi.org/10.1080/13642810108208566
https://doi.org/10.1080/13642810108208566
https://doi.org/10.1103/PhysRevB.70.075109
https://doi.org/10.1103/PhysRevB.70.075109
https://doi.org/10.1103/PhysRevB.70.075109
https://doi.org/10.1103/PhysRevB.70.075109
https://doi.org/10.1103/PhysRevB.2.1324
https://doi.org/10.1103/PhysRevB.2.1324
https://doi.org/10.1103/PhysRevB.2.1324
https://doi.org/10.1103/PhysRevB.2.1324
https://doi.org/10.1103/PhysRevB.37.1597
https://doi.org/10.1103/PhysRevB.37.1597
https://doi.org/10.1103/PhysRevB.37.1597
https://doi.org/10.1103/PhysRevB.37.1597
https://doi.org/10.1103/PhysRevLett.60.740
https://doi.org/10.1103/PhysRevLett.60.740
https://doi.org/10.1103/PhysRevLett.60.740
https://doi.org/10.1103/PhysRevLett.60.740
https://doi.org/10.1103/PhysRevB.75.035106
https://doi.org/10.1103/PhysRevB.75.035106
https://doi.org/10.1103/PhysRevB.75.035106
https://doi.org/10.1103/PhysRevB.75.035106
https://doi.org/10.1103/PhysRevB.89.165118
https://doi.org/10.1103/PhysRevB.89.165118
https://doi.org/10.1103/PhysRevB.89.165118
https://doi.org/10.1103/PhysRevB.89.165118


GRUSDT, BOHRDT, AND DEMLER PHYSICAL REVIEW B 99, 224422 (2019)

[39] F. Grusdt, M. Kánasz-Nagy, A. Bohrdt, C. S. Chiu, G. Ji, M.
Greiner, D. Greif, and E. Demler, Parton Theory of Magnetic
Polarons: Mesonic Resonances and Signatures in Dynamics,
Phys. Rev. X 8, 011046 (2018).

[40] Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled s
band, Phys. Rev. 147, 392 (1966).

[41] A. Auerbach and B. E. Larson, Small-Polaron Theory of Doped
Antiferromagnets, Phys. Rev. Lett. 66, 2262 (1991).

[42] P. Beran, D. Poilblanc, and R. B. Laughlin, Evidence for
composite nature of quasiparticles in the 2D t-J model, Nucl.
Phys. B 473, 707 (1996).

[43] A. L. Chernyshev and P. W. Leung, Holes in the t-Jz model: A
diagrammatic study, Phys. Rev. B 60, 1592 (1999).

[44] K. Bieniasz, P. Wrzosek, A. M. Oles, and K. Wohlfeld, From
“weak” to “strong” electron localization in a Mott insulator,
arXiv:1809.07120.

[45] M. Punk, A. Allais, and S. Sachdev, Quantum dimer model for
the pseudogap metal, Proc. Natl. Acad. Sci. USA 112, 9552
(2015).

[46] G. Baskaran, 3/2-Fermi liquid: The secret of high-Tc cuprates,
arXiv:0709.0902.

[47] F. Grusdt, Z. Zhu, T. Shi, and E. A. Demler, Meson forma-
tion in mixed-dimensional t-J models, SciPost Phys. 5, 057
(2018).

[48] X. J. Zhou, T. Cuk, T. Devereaux, N. Nagaosa, and Z.-X.
Shen, Polaronic behavior and electron-phonon coupling in
high temperature cuprate superconductors as revealed from
angle-resolved photoemission spectroscopy, in Handbook of
High-Temperature Superconductivity: Theory and Experiment,
2007th ed., edited by J. Robert Schriefer and J. S. Brooks
(Springer, New York, 2007).

[49] J. Hauschild and F. Pollmann, Efficient numerical simula-
tions with Tensor Networks: Tensor Network Python (TeNPy),
SciPost Phys. Lect. Notes 5, 2018.

[50] J. Koepsell, J. Vijayan, P. Sompet, F. Grusdt, T. A. Hilker,
E. Demler, G. Salomon, I. Bloch, and C. Gross, Imag-
ing magnetic polarons in the doped Fermi-Hubbard model,
arXiv:1811.06907.

[51] A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer, Berlin, 1998).

[52] X.-G. Wen, Quantum Field Theory of Many-body Systems
(Oxford University Press, Oxford, 2004).

[53] D. S. Rokhsar and S. A. Kivelson, Superconductivity and the
Quantum Hard-Core Dimer Gas, Phys. Rev. Lett. 61, 2376
(1988).

[54] J. D. Reger and A. P. Young, Monte Carlo simulations of the
spin-1/2 Heisenberg antiferromagnet on a square lattice, Phys.
Rev. B 37, 5978 (1988).

[55] B. Dalla Piazza, M. Mourigal, N. B. Christensen, G. J. Nilsen, P.
Tregenna-Piggott, T. G. Perring, M. Enderle, D. F. McMorrow,
D. A. Ivanov, and H. M. Ronnow, Fractional excitations in
the square-lattice quantum antiferromagnet, Nat. Phys. 11, 62
(2015).

[56] G. Baskaran, Z. Zou, and P. W. Anderson, The resonating
valence bond state and high-Tc superconductivity - a mean field
theory, Solid State Commun. 63, 973 (1987).

[57] Z. Y. Weng, D. N. Sheng, and C. S. Ting, Spin-charge separation
in the t-J model: Magnetic and transport anomalies, Phys. Rev.
B 52, 637 (1995).

[58] A. Bohrdt, D. Greif, E. Demler, M. Knap, and F. Grusdt,
Angle-resolved photoemission spectroscopy with quantum gas
microscopes, Phys. Rev. B 97, 125117 (2018).

[59] J. B. Marston and I. Affleck, Large-n limit of the Hubbard-
Heisenberg model, Phys. Rev. B 39, 11538 (1989).

[60] T. K. Lee and S. Feng, Doping dependence of antiferromag-
netism in La2CuO4: A numerical study based on a resonating-
valence-bond state, Phys. Rev. B 38, 11809 (1988).

[61] N. Trivedi and D. M. Ceperley, Green-function Monte Carlo
study of quantum antiferromagnets, Phys. Rev. B 40, 2737
(1989).

[62] A. Auerbach, Spin tunneling, Berry phases, and doped antifer-
romagnets, Phys. Rev. B 48, 3287 (1993).

[63] M. Bruderer, A. Klein, S. R. Clark, and D. Jaksch, Polaron
physics in optical lattices, Phys. Rev. A 76, 011605(R) (2007).

[64] C. Gros, Physics of projected wavefunctions, Ann. Phys. (NY)
189, 53 (1989).

[65] P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N.
Trivedi, and F. C. Zhang, The physics behind high-temperature
superconducting cuprates: The ‘plain vanilla’ version of RVB,
J. Phys.: Condens. Matter 16, R755 (2004).

224422-14

https://doi.org/10.1103/PhysRevX.8.011046
https://doi.org/10.1103/PhysRevX.8.011046
https://doi.org/10.1103/PhysRevX.8.011046
https://doi.org/10.1103/PhysRevX.8.011046
https://doi.org/10.1103/PhysRev.147.392
https://doi.org/10.1103/PhysRev.147.392
https://doi.org/10.1103/PhysRev.147.392
https://doi.org/10.1103/PhysRev.147.392
https://doi.org/10.1103/PhysRevLett.66.2262
https://doi.org/10.1103/PhysRevLett.66.2262
https://doi.org/10.1103/PhysRevLett.66.2262
https://doi.org/10.1103/PhysRevLett.66.2262
https://doi.org/10.1016/0550-3213(96)00196-4
https://doi.org/10.1016/0550-3213(96)00196-4
https://doi.org/10.1016/0550-3213(96)00196-4
https://doi.org/10.1016/0550-3213(96)00196-4
https://doi.org/10.1103/PhysRevB.60.1592
https://doi.org/10.1103/PhysRevB.60.1592
https://doi.org/10.1103/PhysRevB.60.1592
https://doi.org/10.1103/PhysRevB.60.1592
http://arxiv.org/abs/arXiv:1809.07120
https://doi.org/10.1073/pnas.1512206112
https://doi.org/10.1073/pnas.1512206112
https://doi.org/10.1073/pnas.1512206112
https://doi.org/10.1073/pnas.1512206112
http://arxiv.org/abs/arXiv:0709.0902
https://doi.org/10.21468/SciPostPhys.5.6.057
https://doi.org/10.21468/SciPostPhys.5.6.057
https://doi.org/10.21468/SciPostPhys.5.6.057
https://doi.org/10.21468/SciPostPhys.5.6.057
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.21468/SciPostPhysLectNotes.5
http://arxiv.org/abs/arXiv:1811.06907
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevB.37.5978
https://doi.org/10.1103/PhysRevB.37.5978
https://doi.org/10.1103/PhysRevB.37.5978
https://doi.org/10.1103/PhysRevB.37.5978
https://doi.org/10.1038/nphys3172
https://doi.org/10.1038/nphys3172
https://doi.org/10.1038/nphys3172
https://doi.org/10.1038/nphys3172
https://doi.org/10.1016/0038-1098(87)90642-9
https://doi.org/10.1016/0038-1098(87)90642-9
https://doi.org/10.1016/0038-1098(87)90642-9
https://doi.org/10.1016/0038-1098(87)90642-9
https://doi.org/10.1103/PhysRevB.52.637
https://doi.org/10.1103/PhysRevB.52.637
https://doi.org/10.1103/PhysRevB.52.637
https://doi.org/10.1103/PhysRevB.52.637
https://doi.org/10.1103/PhysRevB.97.125117
https://doi.org/10.1103/PhysRevB.97.125117
https://doi.org/10.1103/PhysRevB.97.125117
https://doi.org/10.1103/PhysRevB.97.125117
https://doi.org/10.1103/PhysRevB.39.11538
https://doi.org/10.1103/PhysRevB.39.11538
https://doi.org/10.1103/PhysRevB.39.11538
https://doi.org/10.1103/PhysRevB.39.11538
https://doi.org/10.1103/PhysRevB.38.11809
https://doi.org/10.1103/PhysRevB.38.11809
https://doi.org/10.1103/PhysRevB.38.11809
https://doi.org/10.1103/PhysRevB.38.11809
https://doi.org/10.1103/PhysRevB.40.2737
https://doi.org/10.1103/PhysRevB.40.2737
https://doi.org/10.1103/PhysRevB.40.2737
https://doi.org/10.1103/PhysRevB.40.2737
https://doi.org/10.1103/PhysRevB.48.3287
https://doi.org/10.1103/PhysRevB.48.3287
https://doi.org/10.1103/PhysRevB.48.3287
https://doi.org/10.1103/PhysRevB.48.3287
https://doi.org/10.1103/PhysRevA.76.011605
https://doi.org/10.1103/PhysRevA.76.011605
https://doi.org/10.1103/PhysRevA.76.011605
https://doi.org/10.1103/PhysRevA.76.011605
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1088/0953-8984/16/24/R02
https://doi.org/10.1088/0953-8984/16/24/R02
https://doi.org/10.1088/0953-8984/16/24/R02
https://doi.org/10.1088/0953-8984/16/24/R02

