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Off-resonant all-optical switching dynamics in a ferromagnetic model system
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We present a theoretical study of the effects of optical fields on a ferromagnetic model system of itinerant
carriers that includes both magnetism at the level of a time-dependent mean-field and spin-orbit coupling. In
the framework of this model, which contains a band gap and is similar to the one introduced by Qaiumzadeh
et al. [Phys. Rev. B 88, 064416 (2013)] we investigate the inverse Faraday effect, i.e., how the magnetization
of the ferromagnetic bands can be influenced by the helicity of off-resonant optical fields. The magnetization
dynamics are calculated self-consistently by including a dynamic ferromagnetic splitting and the corresponding
single-particle states. We study the magnetization dynamics for the case of a rapid ramping-up of an optical field
that is off-resonant with respect to the gap and find that the magnetization switching occurs due to the interplay
of the coherence between the spin-split ferromagnetic bands and incoherent scattering/dephasing processes.
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I. INTRODUCTION

The optical excitation of magnetic systems has many facets
that have been explored over the last two decades. After
demagnetization of 3D ferromagnets by ultrashort pulses
was discovered, it was realized that in alloys with anti-
ferromagnetically coupled sublattices ultrafast magnetization
dynamics occurs with the possibility of going through a tran-
sient ferromagnetic-like state [1] and may lead to magnetiza-
tion switching, which can be understood in terms of transient
heating effects [2–5]. More recently, there has also been ev-
idence for magnetization switching induced in ferromagnets
[6,7] where a purely heat-induced effect should not work. In
the connection with ultrafast magnetism, the inverse Faraday
effect (IFE) has been introduced as a possible candidate for a
coupling of polarized optical fields to the magnetization that
can be responsible for all-optical switching [8,9], that is, a
switching process controlled directly by the helicity of the
optical field and not due to heating effects. For a while, the IFE
in ultrafast magnetism was envisaged phenomenologically as
an additional B field [8,9], without clarifying the microscopic
mechanism with which the polarized optical fields act on the
magnetization. However, there has been an ongoing debate
of what the important contributions to all-optical switch-
ing are and what the role of magnetic circular dichroism
is [10–12].

The inverse Faraday effect, which was investigated in the
1960s [13,14] for nonmagnetic, nonabsorbing systems. These
early quantum-mechanical analyses relied on an effective
potential that is strictly valid only in equilibrium but are still
in use [15]. There have also been papers that stress the in-
teraction of ferromagnets with classical fields [16–19], which
is outside the scope of this paper. Gridnev [20] has analyzed
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the switching behavior of the magnetization in an s-d model
considering essentially a heat-induced mechanism without
taking into account the microscopic details of the matter-field
interaction. Other authors investigated light-matter interac-
tions that do not explicitly refer to ferromagnetic switching.
[21–23]

For the purpose of discussing the results of the present
paper, by way of comparison or contrast, we mention the
following approaches to the inverse Faraday effect. In semi-
conductors, such as GaAs and CdMnTe, the so-called specular
IFE has been measured using picosecond pulses and explained
by the spin-selective absorption of polarized optical fields
and subsequent spin relaxation [24]. Because of the important
role of incoherent absorption the specular IFE is not an off-
resonant effect. In Refs. [25,26] stimulated spin-flip Raman
scattering of photons was analyzed using time-dependent
quantum-mechanical calculations for few-level systems. In
this case, the field was assumed to be resonant with intermedi-
ate levels and the angular momentum needed for the switching
is transferred from the field via a spin-flip Raman process.
Qaiumzadeh et al. [27] analyzed the IFE in nonmagnetic
and magnetic semiconductor models using the second-order
perturbation theory approach of Pershan et al. [14]. Follow-
ing Shen [28], Qaiumzadeh et al. call it the spin-selective
optical Stark effect. The stationary perturbation calculation in
Ref. [27] does not explicitly include magnetization dynamics,
but the authors stress that the actual magnetization change
has to occur by spin-flip transitions of electrons between the
magnetically split bands, for which the spin-orbit coupling
would be responsible [14,27]. This is an important aspect
of their approach as the change in spin angular momentum
that accompanies helicity-dependent switching arises from
spin-orbit coupling and is not transferred from photons. For
band ferromagnets, a second-order perturbation theory ap-
proach to the IFE based on ab initio matrix elements has
only recently been introduced in Refs. [29,30]. Here, the
induced magnetization due to the optical fields is calcu-
lated. While this approach has been successfully combined
with classical spin models to describe the magnetization
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dynamics, a drawback of this approach is that the “intrinsic”
magnetization dynamics is not calculated self consistently
with the spin-dependent effects introduced by the optical
fields [7].

The present paper theoretically analyzes magnetization
dynamics in a ferromagnetic model system that, as we show,
exhibits all-optical switching by off-resonant fields, which
constitutes the IFE. The model system contains itinerant elec-
trons, exhibits a ferromagnetic splitting and has a gap. Our
dynamical calculation is self-consistent in the sense that when
the polarization of the magnetic system is changed by the
optical field and incoherent electronic scattering processes,
the system properties (states and quasiparticle energies) are
changed. This allows us to investigate, in one comprehen-
sive microscopic model, the complete magnetic switching
process due to polarized optical fields in which the system
reaches a switched state. We also note that incoherent elec-
tronic scattering processes cannot be classified in orders of
the optical field, and our approach is nonperturbative in the
optical field. This requires a relatively simple model band
structure, for which we can determine the ferromagnetic state
using a time-dependent mean-field approximation, and the
first requirement means that we consider in our model also
bands that are energetically removed by a band gap from
the “magnetic” bands, but also dipole coupled to them. With
these requirements, we end up with a microscopic, dynamical
model for the IFE, described in Sec. II, that has important
aspects in common with the ferromagnetic semiconductor
considered by Qaiumzadeh [27] or the system considered
by Li and Haney [31] to investigate optical spin torques
and spin-orbit torques, albeit with a fixed magnetic splitting
[31].

Compared to recent ab initio based approaches to magnetic
materials [30,32], our band structure is does not describe
a band ferromagnet or local magnetic correlations, [33] but
is closer to a magnetic semiconductor or perovskite Rashba
semiconductor [31]. However, our approach contributes to
the conceptual understanding of the inverse Faraday effect,
as the simplicity of the band structure used in this paper
is offset by our calculation of the “self-consistent” magne-
tization dynamics and the inclusion of incoherent scattering
mechanisms. Our results should also have some bearing on
the interaction of polarized fields with magnetic dielectrics
such as YIG. In difference to any second-order perturba-
tion theory with respect to the field, we can follow the
whole switching process including the self-consistent change
of the ferromagnetic splitting. The inclusion of incoherent
redistribution processes means that this model can reach a
driven steady state or a new equilibrium after the switching
process.

The paper is organized as follows. We introduce the model
and the dynamical equations for the reduced density matrix in
Sec. II, where we also explain our relaxation-time ansatz used
for the incoherent redistribution of carriers. In Sec. III, we
discuss results of dynamical calculations for a parabolic band
structure (without spin-orbit coupling) and for the ferromag-
netic Rashba band structure. We discuss the features of the
magnetization dynamics and compare with previous pictures
of the IFE in Refs. [27,34]. Our conclusions are contained in
Sec. IV.

FIG. 1. Schematic structure of the four-band system with two
magnetically split conduction bands separated from two filled va-
lence bands by a gap. Dipole transitions between the valence and
conduction bands are shown for a few k points schematically by
vertical lines. The coherence ρ+− between the magnetic bands is also
shown. Note that we do not show the k dependence of the valence
bands and plot them side by side instead of on top of each other.
The different dipole coupling matrix elements are indicated by the
thickness of the arrows and the angular momentum transferred to the
carriers by a left (right) circularly polarized photon is indicated by
−h̄(+h̄). Both |+〉 and |−〉 states are connected to each of the p-like
states by dipole transitions with both helicities.

II. MODEL

In this section, we describe the band structure of our
ferromagnetic model system and present the dynamical equa-
tions for the coherent and incoherent processes that affect the
electrons in the magnetic bands.

A. Ferromagnetic model system

The band structure for the electronic states is sketched in
Fig. 1. It combines two spin-split bands |±, k〉 of a ferro-
magnetic Rashba system, as described in Ref. [35], and two
filled parabolic bands. The band structure is somewhat similar
to the models used by Qaiumzadeh et al. [27], and in that
it possesses a band gap separating conduction and valence
bands. We refer to the valence bands as hole bands for clarity,
but the magnetic splitting, which is of primary interest in this
paper, is due to a Stoner mean field in the electronic Rashba
bands. While the hole bands are p-like, we include only heavy
holes such that there is no direct spin mixing in the hole
bands. The Rashba spin-orbit contribution introduces a spin
mixing in the magnetically split electronic bands. There is
no contribution from holes and/or magnetic impurities to the
magnetism. In Ref. [27], only the p-like hole bands are spin
mixed due to spin-orbit coupling and in Ref. [31] both electron
and hole bands are spin mixed. As mentioned in Sec. I, this
system does not describe a real material, but is designed
to contain the essential ingredients for the occurence of an
inverse Faraday effect, notably spin-orbit coupling [14,25],
electronic scattering processes and a ferromagnetic exchange
splitting that can change in response to the electronic
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dynamics. The simplicity of the band structure makes it
possible to calculate the electronic dynamics and the corre-
sponding magnetization dynamics self-consistently by taking
into account the time-dependent magnetic properties and the
concomitant change of the band structure. Electronic scatter-
ing processes in connection with the spin-orbit coupling play
a decisive role in the electronic spin dynamics [35] and are
therefore crucial for a correct description of the self-consistent
magnetization dynamics.

We first discuss the band structure shown schematically in
Fig. 1 in some more detail. The two partially filled s-like bands
|±, k〉 exhibit a magnetic splitting of about 20 meV due to
a Stoner mean-field contribution but also include spin-orbit
coupling. They are dipole coupled to two hole bands | ± 3

2 〉,
which are modeled as filled p-like bands with total angular
momentum j = 3/2, l = 1, and mj = ±3/2 [36]. The band
gap is large compared to the equilibrium magnetic splitting
and amounts to 1.5 eV for k = 0. We use a Rashba-type spin-
orbit coupling with an effectively two-dimensional k space
and include magnetism at the level of a Stoner splitting

Ĥ =
(

h̄2k2

2m∗ + U
2 (n − m) −α(ky + ikx )

α(−ky + ikx ) h̄2k2

2m∗ + U
2 (n + m)

)
, (1)

where n = ∑
k

∑
μ=± ρ

μμ

k denotes the particle density in the
magnetic bands and is calculated as the trace of the density
operator, whereas

m =
∑

k

〈σz(k)〉 =
∑

k,μ,μ′=±
〈μ, k|σz|μ′, k〉ρμ,μ′

k (2)

represents the spin polarization per site in the magnetic bands,
which is as well determined from the reduced spin density
matrix. The Stoner exchange splitting is � = Um, and the
magnetic and spin-orbit splitting are controlled, respectively,
by the Stoner and Rashba parameters U and α. While the
carrier densities and splitting are smaller than in metallic
ferromagnets, the effective Hamiltonian (1) allows one to
determine the band structure in a “self-consistent” fashion as
the effective Hamiltonian depends on the spin splitting and
the spin splitting depends on the single-particle eigenstates
of the effective Hamiltonian. In the time-dependent calcula-
tion, we use the instantaneous distributions to determine the
instantaneous eigenstates. Using the instantaneous eigenstates
and the instantaneous splitting has been shown to be important
for “heat-induced” magnetization dynamics in ferromagnetic
model systems [37,38].

The magnetic equilibrium state before the interaction with
the optical fields is determined self-consistently from Eqs. (2)
and (1). The Rashba Hamiltonian with additional magnetic
contributions results in band energies

ε±(k) = h̄2�k2

2m∗ + Un

2
±

√
α2k2 +

(
Um

2

)2

, (3)

The eigenstates, see, e.g., Ref. [35], are nonpure spin states,
which we denote by |⇑〉 = |−〉 for the lower and |⇓〉 = |+〉
for the upper Rashba band, so the resulting spin polarization
in z direction is positive in the equilibrium magnetic state. The
spin operator σz is not diagonal in the basis of the Rashba
Hamiltonian, which results in a characteristic spin structure.

Last, the hole bands are considered to be parabolic bands filled
with charge carriers, and their wave functions are assumed to
be k independent.

The magnetization dynamics are induced by the coupling
to the optical field via dipole matrix elements connecting
the magnetic electron bands and the hole bands, as shown
in Fig. 1. The Rashba spin mixing in the magnetic states
means that each helicity state of the optical field couples
both magnetic bands to a common p-like state. Note that
in the approach of Qaiumzadeh et al. [27], the spin-orbit
coupling was contained in the light-hole states, but not in the
electronic states. The asymmetry between opposite circular
field polarizations arises from the different strengths of the
dipole matrix elements between the magnetic states and p-like
states, as indicated in Fig. 1.

B. Dynamics of the reduced density matrix

We describe the coherent dynamics of the four band system
sketched in Fig. 1 using the reduced single-particle density
matrix ρ

μν

k = 〈ĉ†
k,ν ĉk,μ

〉, where ĉ†
μ,k creates a particle in a

Bloch state labeled by band index μ, which runs over the four
bands shown in Fig. 1, and crystal momentum k:

∂

∂t
ρ

νμ

k = i

h̄
(εμ(k) − εν (k))ρμν

k

− i

h̄

∑
μ′

[
ρ

νμ′
k 	

μ′,μ
k (t ) − 	

ν,μ′
k (t )ρμ′μ

k

]+ ∂

∂t
ρ

μν

k

∣∣∣
scat

.

(4)

Here, h̄	
μν

k (t ) = dμ,ν (k) · E(t ) are the matrix elements of the
Rabi frequency (or Rabi energy, as it is commonly called in
semiconductor optics), which contains the electric field vector
E(t ) and the matrix elements of the dipole operator d = −er.
For our choice of basis states, only certain matrix elements are
nonzero. Using the notation �σ± = (ex ± iey)/

√
2) these are,

without Rashba spin-orbit coupling in the electronic states,
〈↑|d|mj = 3/2〉 = d0 �σ+ and 〈↓|d|mj = 3/2〉 = d0σ−, with
equal magnitude |d0| = e5 Å, which is taken as a parameter
in k · p theory. Including the Rashba spin-orbit coupling in
the electronic bands leads to four nonzero matrix elements
〈±|d|mj = ±3/2〉, two of which are weaker due to the relative
smallness of the spin-orbit coupling. These dipole allowed
transitions are shown as lines in Fig. 1 with the line thick-
ness indicating their relative strengths. Due to the magnetic
splitting in the electron bands, there is an asymmetry in the
coupling to the different helicities of the optical field, but there
is no dipole matrix element between the magnetic bands. Note
that we work in the following with real-valued fields with cir-
cular polarization of the form �E (t ) = cos(νt )ex ± sin(νt )ey,
which include photon states with both helicities, so that right
and left circular polarized fields couple to transitions with
both helicities, +h̄ and −h̄. In absorption, these dipole matrix
elements would give rise to circular dichroism, which plays an
important role in heat-induced magnetic switching phenom-
ena [39]. Note that, in addition to the spin-orbit coupling of
Rashba type in the electronic bands, the model includes spin-
orbit coupling in the valence bands, which gives rise to the
above-mentioned dipole matrix elements 〈↑|d|mj = 3/2〉 =
d0 �σ+ and 〈↓|d|mj = 3/2〉 = d0σ−. In the following, we will
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have effects due to the valence band spin-orbit coupling alone,
if we switch off the Rashba spin-orbit contribution. In this
case, angular momentum changes in the system will be due
to the coupling to the electromagnetic field alone. This effect
is referred to as optical spin-transfer torque in Ref. [31]. When
we include the Rashba spin-orbit coupling, we introduce a
k-dependent spin mixing or noncollinearity, which gives rise
to the possibility of an electronic spin dynamics not directly
related to angular momentum transfer by the optical field.
A similar contribution is called optical spin-orbit torque in
Ref. [31], which also draws attention to the fact that here the
lattice acts as a source or sink of angular momentum.

It is an important feature of Eq. (4) that the band energies
εμ(k) and basis states |μ, k〉 used for the matrix elements are
the instantaneous eigenenergies of the mean-field Hamilto-
nian (1). In each time step, we use the basis of single particle
states |μ, k〉 corresponding to the instantaneous values of n
and m. This procedure includes the influence of the coherent
optical field and the change of the instantaneous quasiparticle
band structure via incoherent redistribution and relaxation
processes, which we discuss next.

An important difference of the model band structure in-
troduced here from that used by Qaiumzadeh et al. is that
the spin orbit coupling is in the spin-split electronic states
where it can be converted into electronic spin dynamics
by spin-independent electronic scattering processes [35]. To
model this redistribution of carriers for the magnetic electron
bands, we introduce scattering contributions to the dynamical
equations (4) for those elements of the reduced density matrix
that describe the electronic system, namely, ρμν with μ, ν =
±, in the form of a relaxation-time ansatz. This ansatz models
electron-electron scattering in (4) as a spin-independent scat-
tering process in the following way:

dρ
μν

k

dt

∣∣∣∣
scat

= −ρ
μν

k − ρ̃
μν

k

τ
. (5)

Here, ρ̃
μν

k indicates the elements of a suitably determined
quasi-equilibrium spin density matrix.

In order to specifically model electron-electron scattering,
we determine ρ̃ such that the relaxation-time ansatz conserves
spin polarization, energy density and charge density of the car-
riers in the essential bands. The quantity τ is the effective scat-
tering time for the incoherent electron-electron scattering. The
spin polarization of the magnetic bands, which we take as the
magnetization, is calculated via m = ∑

k,ν,ν ′ 〈ν, k|�σ |ν ′, k〉ρνν ′
k

and includes the time-dependent spin expectation values of the
eigenstates |ν, k〉 of (1).

The Bloch equations (4) are written using an index notation
for the density matrix elements, formally including coher-
ences between all bands, i.e., magnetic electron bands and
hole bands. Here, we stress a particular contribution, namely,
the coherence

∂

∂t
ρ+,−

k = i

h̄
(εk+ − εk−)ρ+,−

k

+ i

h̄

(
	

+,−3/2
k ρ

−3/2,−
k − ρ

+,−3/2
k 	

−3/2,−
k

+	
+,3/2
k ρ

3/2,−
k − ρ

+,3/2
k 	

3/2,−
k

)
, (6)

where the indices mj = ±3/2 refer to the j = 3/2 valence
band states, and ± labels the electronic states including
Rashba and Stoner coupling. At each k, the electron-hole
coherence corresponding to transitions of a given helicity and
the coherence ρ+,−

k , forms a three-level system, as sketched
in Fig. 1. In the theory of optically driven few-level systems,
such a coherence is sometimes called a “quantum coherence”
[40], or in spintronics, a spin coherence [41]. It is driven
in second order of the field as can be seen from Eq. (6):
both the Rabi energy and the polarizations between valence
and conduction bands are first order in the E field. These
terms involve photons of the same helicity, so that it is
fundamentally different from the process studied by Popova
et al. [26]. What we describe here in terms of the dynam-
ical quantum coherence is related to the occurrence of an
effective interaction Hamiltonian between different spin states
calculated to second order in the field by Qaiumzadeh et al.
[27]. It is also related to contributions in second order to
the field that connect different spin states in the calculation
of the induced magnetization performed by Berritta et al.
[30]. These contributions are respectively interpreted as spin-
selective optical Stark effect in Ref. [27] and Raman-type
contributions in Ref. [30]. In the framework of the dynamical
density matrix calculation, it is more natural to interpret the
field driven quantum coherence as a spin expectation value at
each k point that deviates from the direction of the effective
spin-orbit field at this k point. [35] Note that the relaxation
time ansatz provides also a dephasing contribution for the
ρ+,− coherence. In the absence of spin-orbit coupling in the
electron bands, no quantum coherence occurs.

To complete the discussion of the dynamical equations (4),
we note that in addition to the quantum coherence (6) there
are dynamical equations for the electronic distributions in the
spin-split Rashba bands that are of the form

∂

∂t
ρ+,+

�k = − i

h̄

(
ρ

+,3/2
�k 	3/2,+(�k) − 	+,3/2(�k)ρ3/2,+

�k

+ ρ
+,−3/2
�k 	−3/2,+(�k) − 	+,−3/2(�k)ρ−3/2,+

�k
)

(7)

and, analogously,

∂

∂t
ρ−,−

�k = − i

h̄

(
ρ

−,3/2
�k 	3/2,−(�k) − 	−,3/2(�k)ρ3/2,−

�k

+ ρ
−,−3/2
�k 	−3/2,−(�k) − 	−,−3/2(�k)ρ−3/2,−

�k
)
. (8)

While these equations contain contributions that arise from
spin-orbit coupling in the electron bands, i.e., those due to
dipole matrix elements shown as thin lines in Fig. 1, they
also contain field induced effects in the absence of spin-orbit
coupling in the electron bands. For clarity, we show those
transitions that occur without Rashba spin-orbit coupling in
the electronic states in a separate sketch in Fig. 2. When the
Rashba parameter is set to 0, the bands become pure spin
states of parabolic shape that are shifted in energy by the
mean-field Stoner splitting. Even without Rashba SOC, in the
case of uncoupled two-level systems at each k, the E field
gives rise to a spin-dependent effect via Eqs. (7) and (8).
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FIG. 2. Schematic structure of the four-band system without
Rashba SOC: two magnetically split conduction bands are separated
from two filled valence bands by a gap. Dipole transitions between
the valence and conduction bands are shown for a few k points
schematically by vertical lines. As there are no coherences ρ+,−, at
each k point, we have effectively uncoupled two-level systems.

III. RESULTS

The effects of the optical fields on the ferromagnet are cal-
culated dynamically starting from an equilibrium state, which
is determined self-consistently for the model Hamiltonian (1)
and yields an initial magnetization, i.e., spin polarization, in
+z direction. In more detail, this is achieved for a given
particle density and temperature as follows. The equilibrium
distributions are assumed to be Fermi functions with the same
chemical potential for both Rashba bands, which is deter-
mined self-consistently. In the chemical potential calculation,
we simultaneously adjust the band structure including the
magnetic splitting, which results in a spin-polarized state.

For the calculations presented here, we assume a Stoner
parameter of U = 50 meV, a Rashba parameter of α =
20 meV nm, a reduced mass of m∗ = me for the conduction
bands, and a equilibrium temperature for the mean-field equi-
librium calculation of T = 70 K. The reduced mass of the
valence bands is 0.5 me, and we use a k cutoff of 9 nm−1.
For the effective electron-electron scattering time we take
τ = 50 fs. The self-consistent calculation for the magnetic
equilibrium state yields an equilibrium spin polarization of
35%. Starting from this equilibrium state, we compute the
dynamical distribution functions and states by solving (4)
together with Eq. (1).

We study the effects of the switch-on of a circularly po-
larized optical pulse which is ramped up with a rise time of
40 fs at t = 0 and has an amplitude corresponding to a Rabi
energy of h̄	 = 15 meV for the transition mj = |3/2〉 → |↑〉
from which all k dependent matrix elements for the Rabi
energies can be obtained. This Rabi energy corresponds to an
intensity of 27 MW/cm−2. The transitions at a fixed k are
sketched as vertical lines in Fig. 1. As we are interested in the
dynamics due to an off-resonant optical excitation, we take the
frequency of the optical field to be detuned by 200 meV from
the gap, which we measure from the top of the valence band
to the minimum of the lower conduction band.

We assume a vanishing dephasing contribution, i.e.,
dρμν/dt |scat ≡ γ → 0 for the off-diagonal elements of the

density matrix corresponding to the optical transitions across
the gap, which is well justified for a large detuning [36].

We study here the dynamics due to off-resonant optical
fields which create coherently driven carrier distributions
using a simple switch-on scenario for the E field, instead
of a sequence of pulses [42]. While in band ferromagnets
resonant transitions and irreversible absorption most likely
play a role [42], off-resonant interactions with optical fields
are believed to be responsible for the microscopic mechanism
of the inverse Faraday effect. Furthermore, an optical field can
only be close to a resonance in some parts of k space in the
band structure of a realistic d-band ferromagnet because of
the very different curvatures of sp and d bands. In ab initio
calculations with a relatively coarse k grid, the resonance
condition is usually softened by an effective energy broaden-
ing in excess of 100 meV while still describing off-resonant
effects in large parts of the Brillouin zone. In our model band
structure, however, the electron and hole band curvatures are
not very different and our resolution in k space is high, so that
we work with a vanishing broadening for our investigation of
off-resonant field effects [30].

In the following, we first focus on results without Rashba
spin-orbit coupling in the electronic bands. As mentioned
before, in this case only angular momentum exchange with
the optical field is possible, which makes this scenario rem-
iniscent of the optical spin-transfer torque [31]. Then we
discuss in some details the switching dynamics including
Rashba spin-orbit coupling, where the lattice can act as a
source or sink of electronic spin angular momentum during
the switching process.

A. Dynamics without Rashba SOC

We first discuss the system dynamics for the case without
Rashba spin-orbit contributions in the electronic band struc-
ture. Apart from its importance for the optical spin-transfer
scenario, it also establishes a test case for comparison with
results including Rashba spin-orbit coupling below. The band
structure and the relevant transitions for this case are shown
in Fig. 2. We solve the dynamical equations (4) and include
the dynamical Stoner gap determined from the instantaneous
density matrix according to Eq. (2). Importantly, without
Rashba SOC the there is no dynamical Eq. (6). In Fig. 3(a), we
show the spin polarization (magnetization), for the excitation
conditions discussed above. In addition to the magnetization,
we characterize the electronic dynamics by means of the total
energy density

e =
∑
kμ

εkμρ
μμ

k + Un↑n↓ (9)

in Fig. 3(b). We find that the spin polarization is lowered by
right circular polarization and enhanced by the left-circular
polarization of the optical field. The effect is small, less than
1%, but does not have the same magnitude for the two polar-
izations because of an asymmetry of the relevant transitions
shown in Fig. 2. For right-circularly polarized light, which
couples mainly to the transition |m = −3/2〉 → |+〉 ≡ |↓〉
the magnetization change is somewhat more pronounced be-
cause there are more empty states in the minority |+〉 band,
which makes the coupling to this channel more efficient. This
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FIG. 3. (a) Time dependent magnetization (spin polarization) of
the ferromagnetic model system with parabolic bands (no spin-orbit
coupling in magnetic bands, no quantum coherence) excited by an
optical field with right-circular (dashed line) and left-circular (solid
line) polarization. The intensity of the driving field is shown, in
arbitrary units, as thin grey dashed line. (b) Corresponding energy
density.

transition changes the angular momentum of the electron plus
hole system by +h̄ per photon, but because it couples to
the |+〉 = |↓〉 band, the magnetization is reduced for right-
circularly polarized light. For the left-circular excitation, the
transition couples to the majority band |−〉 = |↑〉 where there
are fewer final states, and we observe a smaller effect in the
opposite direction, i.e., the magnetization is enhanced slightly.

We can gauge the influence of the electromagnetic field
on our magnetic model system from the energy density plot,
which also shows an increase of about 5% for both circular
polarizations. The influence on the spin polarization occurs
only on the short time scale on which the intensity of the
optical field changes. Only then there are spectral components
of the field that can lead to dipole transitions in the system.
Since we neglect dephasing in the electron-hole polarizations
here, the excited carrier distributions are completely coherent.

Without Rashba spin-orbit coupling in the electronic states,
there is no quantum coherence contribution (6) in the dy-
namics shown in Fig. 3 because the driving terms to second
order in the field are zero as there are no dipole moments
for the +3/2 →↓ and −3/2 →↑ transitions. As we do not
include an explicitly spin-dependent interaction, the vanishing
of the quantum coherence entails that there are no scattering
transitions that lead to a change in the ensemble spin, as a
scattering mechanism has to be combined with the quantum
coherence dynamics to lead to effective spin-flip transitions,
if one uses the full electronic density matrix [35]. In this
calculation without SOC in the electron bands, Eqs. (8) and
(7) lead to a spin-dependent effect because the resonance
condition for the field and the occupations are different for
the |↑〉 and |↓〉 bands, as discussed above. The magnetization
dynamics in Fig. 3 is thus somewhat similar to the mech-
anism for inverse Faraday effect measured and analyzed in
semiconductors by Zheludev and coworkers [24] for resonant

FIG. 4. (a) Time-dependent magnetization (spin polarization) of
the ferromagnetic model system excited by a optical field with
right-circular (dashed line) and left-circular (solid line) polarization.
Magnetization switching occurs only for left-circularly-polarized ex-
citation. (b) corresponding energy density. (c) corresponding density.

excitation. In their case, the real absorption of photons of
different helicity leads to excited electrons with opposite spin
due to the dipole selection rules between electron and hole
bands and the available phase space for the transitions.

B. Dynamics with Rashba SOC

In Fig. 4, we turn to the field induced dynamics computed
for the model of Eq. 1 including Rashba spin-orbit coupling
and dynamical Stoner mean-field splitting. We keep the same
excitation conditions, i.e., we ramp the optical field up over
40 fs. Figure 4(a) shows the time-dependent magnetization
for off-resonant optical fields with right- and left-circular
polarization. For the left-polarized optical field the magne-
tization is reduced to about 1/4 of its initial value during
about 200 fs, and then the magnetization direction is reversed
rapidly in about 50 fs. After the magnetization has switched
its sign at about 250 fs, there is a much slower decay of the
magnetization. For right-polarized light, we find in Fig. 4(a)
essentially only demagnetization. Comparison of the magneti-
zation dynamics for the two light polarizations shows that this
model ferromagnet system exhibits off-resonant all-optical
switching and our calculations follows the whole state of the
system during the switching process including the self con-
sistent determination of the band structure. We stress that the
magnetization-switching behavior does not result only for a
narrow range of parameters, but is a rather robust phenomenon
in our model system. In particular, it does not depend strongly
on the detuning in the range of several 10s to about 500 meV.
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FIG. 5. (a) Time-dependent magnetization (spin polarization) of the ferromagnetic model system excited by a optical field with right-
circular (dashed line) and left-circular (solid line) helicity. Magnetization switching occurs only for left-circularly-polarized excitation.
(b) without quantum coherence but with scattering, (c) with quantum coherence, no scattering, (d) no quantum coherence, no scattering.

The different magnetization switching behavior for the
opposite polarizations must come from those terms in the
calculation that arise from including the spin-orbit coupling
in the electron bands, in particular the nonvanishing quantum
coherence. In the presence of spin-orbit coupling, there is a
nonzero contribution to the dynamics of the quantum coher-
ence in Eq. (6), because now terms involving 	+,−3/2 and
ρ−3/2,− are nonzero, which vanish in the case of parabolic
bands depicted in Fig. 3. The quantum coherence can be
viewed as a dynamical counterpart to the field induced matrix
elements calculated by Qaiumzadeh et al. In our view, in
a dynamical calculation, a more direct interpretation of the
influence of the quantum coherence is that it describes a
vector component perpendicular to the direction of the k-
dependent internal effective magnetic fields, which are present
due to the spin-orbit coupling. Tilting the spin out of its
equilibrium position at each k point leads to k-resolved pre-
cessional dynamics, which can be converted into a change of
the ensemble spin (i.e., the magnetization) by combination
with a spin-independent scattering process, such as the one
described by Eq. (5) [35]. The field-dependent driving terms
in Eq. (6) are second order in the optical field and thus
contribute after the switching-on dynamics when the field is
essentially continuous wave. In addition to the magnetization
we also show the total energy density (9) in Fig. 4(b) and the
carrier density in the electronic bands in Fig. 4(c). As in the
case of Fig. 3, when the optical field is switched on, the energy
density increases rapidly, and we see the same behavior for
the coherently driving electronic occupations. The increase in
energy roughly corresponds to an effective heating. It opens
up the scattering phase space that is needed to convert the
precessional dynamics into a change of magnetization, which
is the microscopic mechanism of change in spin polarization
of spin-orbit coupled conduction electrons, as we have shown
in Ref. [35]. However, this increase of energy, or “heating”
also contributes to a demagnetizing effect, that reduces the
magnetization, regardless of the helicity of the optical excita-
tion. The combination of both contributions leads to a steady
state. For left circular polarization the heat-induced effect
works at first in the same direction as the helicity dependent

effect, but after the switching it contributes to demagnetization
at later times, which gives rise to a steady state with switched
magnetization, that is reduced in magnitude compared to the
unexcited system.

C. Influence of the quantum coherence

In Fig. 5, we investigate the influence of the quantum
coherence, which is driven in second order of the field. To this
end, we show the spin polarization (magnetization) dynamics
for different calculations. Figure 5(a) is the same as Fig. 4(a),
which results from the full calculation with all microscopic
polarizations in Eq. (4), in particular the quantum coherence
shown explicitly in Eq. (6) and the scattering contribution
(5). In Fig. 5(b), we keep all parameters fixed, but artificially
switch off the contributions of the “quantum coherence” to
the equations of motion (4) that couple to the E field, i.e.
those terms occurring in (6) that are multiplied by 	 s (i.e.,
the optical field). In the picture of Fig. 1, the coherence
ρ+− may still exist due to electronic redistribution in the
spin-orbit coupled bands due to Eq. (5), but it is not driven
by the E field. In this case, no helicity dependent dynamics
occur and no switching is achieved, only a comparatively
slow demagnetization. As already mentioned in connection
with Fig. 4, this is the demagnetizing effect of increasing
the electronic energy density, which acts in the same way
as heating, and this process leads to spin flips and thus a
reduction in the magnetization. The absence of switching in
Fig. 5(b) shows that the role of the quantum coherence is
crucial for the switching process.

Furthermore, without the quantum coherence, the dynam-
ics for circularly left polarized optical fields and circularly
right polarized optical fields are very similar, so that the
effect of the light polarization is exclusively due to the
quantum coherence. The latter can enhance the heat-induced
demagnetization or work against the heat induced effect, as
the comparison of the full calculation in Fig. 5(a) with the
heating-only calculation in Fig. 5(b) shows. We next turn to
Fig. 5(c) where we keep the full quantum coherence dynam-
ics, but set the scattering contribution (5) to zero. In this case,
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we find a weak polarization dynamics that does not lead to
magnetization switching, but the helicity dependence is more
pronounced than in the case of Figs. 3(a) and 5(b) where the
field-driven quantum coherence was neglected. Because of
the more complicated k-dependent electron-hole transitions
in the presence of the Rashba spin-orbit coupling there is
an oscillatory behavior and at long times and the helicity
dependence is actually opposite to that obtained in Fig. 3,
where the Rashba contribution and the field driven quantum
coherence was neglected. If one looks closely at the dynamics
at early times in Fig. 5, the initial dynamics are in the same
direction as in Fig. 3, as the system responds directly to the
optical fields. Only after the quantum coherence is driven and
starts building up, the spin polarizations are changed in the
opposite direction compared to Fig. 3. This again illustrates
nicely the influence of the quantum coherence and its role as a
supplier of lattice angular momentum to the system. Lastly,
Fig. 5(d) serves as a check what happens if we switch off
both the field-driven quantum coherence and the scattering
contributions. In this case we find only a very weak helicity
dependence, comparable to that of Fig. 3(a). In Figs. 5(c)
and 5(d), there is no demagnetization due to heating at longer
times because there is no scattering that can lead to effective
spin flips.

We would like to comment here on the connection to
perturbation calculations with respect to the external field,
which is often regarded as the contribution of the coherent
optical field alone. We have achieved such a setup already
in Fig. 5(c) where the magnetization dynamics occurs for
an essentially fixed band structure. In this case, the Stoner
mean-field splitting is practically constant, so that the change
in magnetization comes from the dynamics of the reduced
density matrix under the influence of the optical field. In
this scenario, depending on the helicity of the optical field,
the magnetization approaches different steady states with a
magnetization that is changed from its equilibrium value. As
the density matrix includes the influence of the coherent field
to all orders of the field, this result should correspond to a
mechanism for the inverse Faraday effect analyzed by Oppe-
neer and coworkers in the framework of second-order pertur-
bation theory for close-to-resonance fields. Indeed, Berritta
et al. [30] have found that the influence of optical fields
with opposite circular polarization may lead to a reduced
steady-state magnetization. Our result is somewhere in be-
tween Ref. [30] and older theories of the inverse Faraday
effect for nonmagnetic materials that yielded exactly opposite
effective magnetic fields. These should change the magneti-
zation in opposite directions, but with the same magnitude.
This “antisymmetry” between the opposite helicities is broken
because of the finite equilibrium magnetization. In our case,
we find almost the antisymmetry expected for the nonmag-
netic materials due to our off-resonant optical field. We have
checked that for fields closer to resonance or for larger mag-
netic splittings we obtain a larger deviation from the perfect
antisymmetry.

D. Excitation conditions and model parameters

In this section, we discuss the influence of the excita-
tion conditions and the model parameters on the switching

FIG. 6. (a) Spin polarization dynamics for a Rabi energy h̄	 = 5
(blue solid line), 10 (red dashed line), 15 (light blue dotted line), and
20 meV (green dash-dotted line) for a circularly left polarized optical
field. (b) Corresponding energy density. (c) Corresponding particle
density.

dynamics. In particular, we examine the optical intensity (i.e.,
Rabi energy), detuning of the optical field with respect to the
gap, the Rashba parameter, and the Stoner parameter.

We first analyze the influence of the intensity of the optical
field for the same detuning and model parameters as above.
In Fig. 6, we show the magnetization dynamics, the energy
density and the carrier density in the magnetic bands for Rabi
energies in the range of 5.0 to 20.0 meV. This figure can be
compared to Fig. 4. As the intensity is proportional to the
Rabi energy squared, this corresponds to an increase by a
factor of 16. The magnetization dynamics results shown in
Fig. 6(a) differ in three characteristics: the switching time,
which becomes shorter for increasing intensity, the magnitude
of the fast switching component, and the long-time behavior
of the “switched” magnetization. As Figs. 6(b) and 6(c) show,
the larger intensity also leads to an increase in the energy
density and density that scales roughly quadratically with
Rabi energy (or linearly with intensity). The switching time
is determined by an interplay of the increase in energy density
and the helicity dependent effect of the optical field. The
inreased energy density leads to a stronger initial quenching of
the magnetization, and the increased helicity-dependent effect
can switch a larger residual magnetization. The latter effect
is the reason for the different changes in magnetization that
happen during the almost instantaneous switching process.
The increase in energy is also responsible for the long-time
behavior as the switched magnetization is reached for an sys-
tem with increased kinetic energy of the electrons for larger
Rabi energies, and the increased energy density corresponds
to a smaller magnetitude of the magnetization.
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FIG. 7. Spin polarization dynamics a detuning δ = 50, 100, 200,
400, and 800 meV for a circularly left polarized optical field.

In Fig. 7, we investigate the dependence of the magnetiza-
tion dynamics on the detuning of the off-resonant circularly
left polarized optical fields. We increase the detuning over
the appreciable range from 50 to 800 meV with respect to
a 1.5 eV gap. We find a robust switching scenario that does
not strongly depend on the detuning. For smaller detuning,
we obtain a faster switching and a larger magnitude of the
switched magnetization. In accordance with the discussion
above concerning Fig. 6, the smaller detuning leads to an
increased energy density and a larger helicity-dependent ef-
fect. Also, this combination leads to faster switching times
for smaller detuning. We now have a smaller deviation in
energy density between the different curves (as compared to
Fig. 6, not shown), but we still see a pronounced difference
in the helicity dependent effect that determines the almost in-
stantaneous switching process. The smaller increase in energy
density does not lead to a reduction of the long-time switched
magnetization for closer-to-resonance excitation.

We next examine the switching behavior for different
model parameters. In Fig. 8, we display the dependence of the
spin polarization/magnetization dynamics for different values
of the sRashba parameter. We keep the excitation conditions
as in Fig. 4 and change the Stoner parameter such that the
equilibrium spin polarization is the same for all configura-
tions. The Stoner parameter is changed by no more than 4%.
The magnitude of the Rashba parameter allows us to control
the strength of the Rashba SOC in the electronic states, which

FIG. 8. Spin polarization dynamics for α = 0 (black dashed
line), 5 (blue solid line), 10 (light blue dashed line), 10 (green dotted
line), and 25 meV nm (red dash-dotted line) for a circularly left
polarized optical field.

FIG. 9. Spin polarization dynamics for a Stoner parameter U =
50.8, 51.8, 53.5, 56.8, and 64.0 meV for a circularly left polarized
optical field.

influences the noncollinearity of the electronic spin structure
and enhances the dipole transitions associated with the thin
lines in Fig. 1. The latter effect means that the optical field can
drive the quantum coherence more efficiently, and the former
effect means that the magnetization quenching due to the
“heating” effect is more pronounced. The connection between
magnetization quenching on the one hand and the interplay
between precessional dynamics around k-local internal mag-
netic fields and spin-independent scattering mechanisms has
become has been stressed by us earlier [35]. Instead of the
microscopic scattering contribution in Ref. [35] we here use a
spin-conserving relaxation time ansatz, but this approximation
captures the effect on the magnetization dynamics of spin-
independent scattering mechanisms quite well. Figure 8 thus
shows that the change in Rashba spin-orbit coupling works in
the expected way inasmuch as an increase in α leads to a more
efficient switching. It shortens the switching time and leads to
larger magnitude of the switched magnetization. In case of a
vanishing quantum coherence, switching does not occur and
the spin polarization dynamics is completely determined by
the angular momentum provided by the optical field alone.
For large values of α, we do not approach a complete reversal
of the magnetization because for two reasons. First, we end
up in a state with increased energy density, as discussed
above. Second, the α and U parameters are coupled together
to ensure the same initial magnetization, but they work in
opposite directions as far as the magnetization switching is
concerned, as will be discussed next.

Finally, in Fig. 9, we plot the spin polarization/

magnetization dynamics for different values of the Stoner
parameter U . Here, we keep the excitation conditions as
in the previous section and the Rashba parameter fixed at
α = 20 meV nm. For increasing magnitude of the Stoner
parameter U , the magnetic splitting increases, resulting in
a larger equilibrium magnetization, as visible in Fig. 9. For
increasing Stoner parameter, which is equivalent to an in-
creased magnetic gap in the electronic bands, the switching
becomes suppressed so that only demagnetization occurs, and
the demagnetization becomes less pronounced with further in-
crease of U . As discussed in connection with Fig. 4 above, the
optical field can switch the magnetization only if electronic
energy (“heating”) is large enough to sufficiently quench the
magnetization before the switching occurs, and if the helicity-
dependent effect is large enough. For larger magnetic gaps,
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a similar electronic excitation will lead to a less pronounced
quenching of the magnetization and thus either a less efficient
switching process or only to a moderate demagnetization. In
addition, electron-electron scattering processes becomes less
efficient as the magnetic gap increases because the transfer
of momentum and energy between the scattering partners
becomes larger, thus leaving few possible scattering channels.

IV. CONCLUSIONS

We introduced a microscopic dynamical model to study the
all-optical magnetization switching process in a simple ferro-
magnetic band structure with a band gap, which includes spin-
orbit coupling and incoherent carrier redistribution/scattering
processes. As we focus on off-resonant optical excitation with
circularly polarized optical fields, we microscopically inves-
tigated the IFE in this system. We studied the magnetization
dynamics for the case of a ramped-up CW field, and studied
the influence of excitation conditions and model parameters
that determine the strength of the spin-orbit coupling and
ferromagnetic splitting. In our computed magnetization dy-
namics, we found two contributions. One is connected with
the off-resonant analog of the specular IFE effect and the
optical spin-transfer torque of Ref. [31]. The other one is
due to the quantum coherence (or spin coherence/precession)

driven by the optical field, and corresponds to the optical
spin-orbit torque of Ref. [31]. In the first contribution, which
is responsible for the specular IFE effect, as observed by
Zheludev and coworkers in semiconductors, the angular mo-
mentum of the field is supplied to the combined system of
electrons and holes, thereby changing the spin polarization.
For off-resonant excitation, we found that this contribution
does not lead to switching, even though it does lead to
a helicity-dependent effect on the magnetization, and thus
constitutes a microscopic contribution to the IFE.

We found that magnetization switching is a rather ro-
bust effect in the present model system and occurs mainly
because the optical field drives a quantum coherence be-
tween the magnetic bands, i.e., a spin precession around
internal spin-orbit fields. Combined with incoherent car-
rier redistribution/scattering [35] the precessional dynam-
ics changes the magnetization in a polarization dependent
way, which leads to magnetization switching due to angu-
lar momentum supplied by the lattice, in accordance with
Refs. [27,31].
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