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Sign change of polarization rotation under time or space inversion in magnetoelectric YbAl3(BO3)4
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Materials with optical activity can rotate the polarization plane of transmitted light. The most typical example
is the natural optical activity, which has the symmetry property of changing sign after space inversion but being
invariant to time inversion. Faraday rotation exhibits the opposite: It is invariant to space inversion but changes
sign after time reversal. Here, we demonstrate that in a magnetoelectric material, another type of polarization
rotation is possible. This effect is investigated in magnetoelectric YbAl3(BO3)4 under the viewpoint of time
and space inversion symmetry arguments. We observe the sign change of the rotation sense under either time
or space reversal. This investigation proves that the polarization rotation in YbAl3(BO3)4 must be classified
as gyrotropic birefringence, which has been discussed within the idea of time-reversal breaking in underdoped
cuprates. The diagonal terms in the magnetoelectric susceptibility are responsible for the observed signal of
gyrotropic birefringence. Further analysis of the experimental spectra reveals a substantial contribution of the
natural optical activity to the polarization rotation. We also demonstrate that the observed activity originates
from the magnetoelectric susceptibility.
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I. INTRODUCTION

One of the classical optical effects for linearly polarized
waves is a rotation of the polarization plane during its prop-
agation through a medium. The two best known effects of
this type are natural optical activity and Faraday rotation
[1], which are commonly called natural circular birefringence
(NCB) and magnetic circular birefringence (MCB), respec-
tively. The most important difference between these two ef-
fects is their relation to the fundamental inversions of space
and time. Faraday rotation is not affected by the inversion
of space, i.e., the simultaneous inversion of all coordinates
but changes sign upon time reversal. Natural circular birefrin-
gence is transformed in the opposite manner: It changes sign
upon space inversion and is not affected by time reversal. Of
course, several optical effects, e.g., linear birefringence, are
fully symmetrical in this sense: They are not affected by space
or time inversion.

Approximately fifty years ago, it was realized that an
additional type of polarization rotation must exist from the
symmetry viewpoint. This effect is called gyrotropic birefrin-
gence and has the remarkable feature of changing sign for
either time or space inversion [2]. It has been demonstrated
that gyrotropic birefringence should be ultimately connected
to specific terms of the magnetoelectric susceptibility ten-
sor [3,4]. Alternatively, gyrotropic birefringence may be ex-
plained via the concept of spatial dispersion of the generalized
dielectric permittivity [4,5]. After its theoretical prediction,
optical experiments [6] and antiferromagnetic resonances [7]
in Cr2O3 were attributed to gyrotropic birefringence. Gy-
rotropic birefringence has also been investigated [8] in multi-
ferroic (Fe,Zn)2Mo3O8, where it was explained via a diagonal
term of the magnetoelectric susceptibility, the so-called axion
term. However, in previous experiments, no formal symmetry
proof was provided. Recently, the concept of gyrotropic bire-

fringence has become highly topical again for explaining
the results of time-reversal breaking in underdoped cuprate
superconductors [9].

Multiferroics are materials with simultaneous electric and
magnetic order [10–14]. The electric and magnetic counter-
parts are strongly coupled in these materials, which enables
effective control of the electric polarization by a magnetic
field and of the magnetization by an electric voltage. In the
dynamic regime, the magnetoelectric coupling leads to the
appearance of new magnetic modes with an electric exci-
tation channel, which are termed electromagnons [15–17].
Cross coupling of the electric and magnetic components in
electromagnons has resulted in a wealth of strong optical ef-
fects, particularly at terahertz frequencies, such as directional
dichroism [18–25], magnetochiral dichroism [26,27], or giant
rotatory power [28].

Here, we experimentally demonstrate that magnetoelec-
tric materials reveal one more fundamental optical effect
with unusual symmetry properties. In the magnetoelectric
YbAl3(BO3)4, the polarization rotation reveals sign changes
under time or space inversion operations. Experimentally, the
time-inverted sample is realized by changing the direction
of the magnetization, and the space inversion is modeled
by rotating the sample, which simultaneously reverses the
direction of the induced electric polarization.

Recent investigations of rare earth borates [29,30] have
been initiated due to the discovery of the static electric
polarization and multiferroic behavior in GdFe3(BO4)3 [31]
and NdFe3(BO4)3 [32]. The magnetoelectric interactions in
these materials have been successfully explained by the
crystal field energy scheme of the rare earth ions and the
level shifts in external electric and magnetic fields [31–33].
Later on, in samarium ferroborate SmFe3(BO3)4, a giant
magnetodielectric effect was observed and well reproduced
by a dynamic extension of the static mechanism [34]. The
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antiferromagnetic ordering of Fe3+ ions in ferroborates and
the interactions between iron and rare earth subsystems make
the full description of the observed effects complicated. Al-
though the crystal field levels of the rare earth subsystem
play a decisive role, in theoretical models, ferroborates can
be reduced to an iron subsystem with renormalized coupling
constants. It may be expected that in borates without the
magnetism of iron atoms, magnetoelectric effects purely from
rare earths can be observed. Indeed, a quadratic magneto-
electric effect has been detected in TmAl3(BO4)3 [35] and
HoAl3(BO4)3 [36] with induced electric polarization that even
exceeds static values in multiferroic ferroborates. In agree-
ment with previous considerations, the magnetoelectricity in
alumoborates can be accounted for by the crystal field splitting
of the rare earth and the symmetry of the local environment
[37–39].

Sign change of polarization rotation

To understand the experimental results below, we begin
with a simple theoretical consideration. Compared to samar-
ium ferroborate, in calculating the light propagation, several
contributions to the electrodynamic response cannot be ne-
glected. The polarization-plane rotation of electromagnetic
radiation may be described in several equivalent manners
[1]. In the regime near visible light, an approach based on
the spatial dispersion [40,41] of the dielectric permittivity in
the form of εi,k (ω, k) = ε(ω, 0) + iγi,k,l kl is common. Here,
only terms that are linear in k are included, and the effects
that arise from the magnetic properties of the material are
neglected. Particularly toward the terahertz frequency range,
the approximation k → 0 is reasonable, and the polarization
rotation is described via the magnetoelectric susceptibilities
[3,4] χme,em. However, simultaneously considering both ap-
proaches, the magnetoelectric and spatial dispersion effects
enter additively into the final expressions, which suggests that
both terms are equivalent and can be reduced to each other by
a linear transformation [42]. To simplify the discussion, we
illustrate the topic using the following example.

Assuming light propagation along the c axis (or z axis), the
relevant term in the picture of spatial dispersion is given by
the off-diagonal elements of the dielectric permittivity εxy =
−εxy = ikα. Solving the Maxwell equations and neglecting
all other susceptibilities results in the eigenmodes as circular
waves with a refractive index of n12 = n0 ± α. This term
leads to a polarization rotation during the propagation of
linearly polarized waves by an angle that is proportional to
α. An alternative approach, which uses the magnetoelectric
susceptibility term χme

yy , results in a polarization rotation pro-
portional to χme

yy . However, in the general magnetoelectric
case, the propagating eigenmodes are circularly polarized in
the approximation χme

yy � 1 only, and they are elliptical in the
general case (see Sec. III below).

The symmetry of YbAl3(BO3)4 enables us to prove the
existence of gyrotropic birefringence in the terahertz trans-
mission experiments. Here, the antisymmetric behavior can
be investigated for both time inversion and space inversion
symmetries. The concept of the experimental arrangements
is presented in Fig. 1. We start with a reference experiment
with the sample geometry given in the middle panel of Fig. 1.

In this case, k̄ � c axis, and M̄ � P̄. Here, k̄, M̄, and P̄
are the wave vector, magnetization, and electric polarization,
respectively.

To prove the unconventional character of the optical activ-
ity in YbAl3(BO3)4, the symmetry properties must be inves-
tigated with respect to space and time symmetry operations.
The effect of both symmetries is shown in the right panels of
Fig. 1. We recall that the space inversion reverses the direction
of the electric polarization and of the c axis (bottom right
panel in Fig. 1). Meanwhile, the time inversion only reverses
the direction of the magnetization. The electric polarization
and the direction of the c axis are preserved for the time inver-
sion. In experiment, the inversion of external magnetic field
properly simulates the time inversion as it reverses the direc-
tion of magnetic moments. Pure space inversion of the phys-
ical is not possible experimentally. However, in the case of
YbAl3(BO3)4 the relevant vectors which determine the
symmetry are P̄, M̄, and k̄. As demonstrated in Fig. 1 the
space inversion in YbAl3(BO3)4 is properly modeled by 180◦
sample rotation around the b axis (or c axis) with respect to
starting configuration.

Figure 1 shows two experimental possibilities to prove
the symmetry of gyrotropic birefringence in YbAl3(BO3)4

experimentally: (i) reversal of the external magnetic field
and (ii) 180◦ rotation of the sample around the b axis. A
comparison of the left and right panels of Fig. 1 demonstrates
that they represent the same experimental geometry for the
symmetry conditions of magnetization, polarization, and light
propagation. Therefore, the set of two geometries in the left
panels provides a good model to prove the effects of time and
space inversions on YbAl3(BO3)4. Strictly speaking, to real-
ize space inversion for the optical activity, an enantiomorph
crystal is necessary. However, the sign of the gyrotropic bire-
fringence follows the static electric polarization. Therefore,
the rotation of the sample around the b axis provides sufficient
data to model the corresponding symmetry condition.

II. EXPERIMENTAL

Large single crystals of YbAl3(BO3)4 with typical dimen-
sions of ∼10 × 10 × 1 mm3 were grown by crystallization
from the melt on seed crystals. A detailed analysis of the static
magnetic and magnetoelectric properties of YbAl3(BO3)4

can be found in Ref. [39]. The polarization rotation was
investigated in the terahertz frequency range (40 GHz <

ν < 1000 GHz). Transmission experiments were conducted
in a Mach-Zehnder interferometer arrangement [44], which
enabled to measure the amplitude and phase shift in a ge-
ometry with controlled polarization of the radiation. In all
experiments, linear incident polarization was used, and the po-
larization state of the transmitted wave was analyzed. The the-
oretical transmittance curves [45] for various geometries were
calculated from the susceptibilities within the Berreman for-
malism [46]. The experiments in external magnetic fields up
to 7 T were performed in a superconducting split-coil magnet
and within Voigt geometry with magnetic field perpendicular
to the propagation of light. Due to possible misalignment of
the sample with respect to magnetic field a small contribution
of Faraday rotation can be present in the spectra. We estimate
the absolute values of this effect as below 2 degrees.
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FIG. 1. Experimental geometry to prove the reversal of the polarization rotation by time and space inversions. Middle: starting configuration
with the indicated directions of relevant vectors and crystallographic axes. Top right: time inversion of the sample. Bottom right: space inversion
of the sample. Left panels: experimental realization of the inversion symmetries as described in the text. The axes a, b, and c correspond to
the Cartesian axes x, y, and z, respectively. In YbAl3(BO3)4 the external magnetic field B̄‖a axis induces a weak magnetization M‖a. In
magnetoelectric alumo-borates and within the present geometry, the static electric polarization along the a axis Pa ∼ B2

a is induced [38,39,43],
see Eq. (4).

To investigate the polarization rotation in YbAl3(BO3)4,
several spectra in magnetic fields ±6 T and ±7 T as well as
field dependencies at fixed frequencies of 70 GHz 110 GHz,
and 120 GHz were measured. Below, basically the data at
±6 T and 110 GHz will be presented. All other results and
fits showed qualitatively similar behavior.

III. THEORETICAL CONSIDERATIONS

A. Analysis of dynamic susceptibilities

We begin this section with the symmetry analysis of the
susceptibilities. The geometry, relevant in the present case, is
given by H‖M‖P‖a. Here H is the external magnetic field,
M is the static magnetization, P is the static electric polariza-
tion, and a is the crystallographic axis in the basis plane of
the sample. We assume that the crystallographic a, b, c axes
are along cartesian x, y, z coordinates. The symmetry of the
problem corresponds to the point group 2x.

Dynamic magnetic and electric response of the system in
the most general case may be written as:

�m = χmh + χmee,
�p = χ emh + χ ee. (1)

Within the point group 2x the components of the susceptibility
matrices may be written as:

χ̂m =

⎛
⎜⎝

χm
xx 0 0

0 χm
yy χm

yz

0 χm
zy χm

xx

⎞
⎟⎠ χ̂me =

⎛
⎜⎝

χme
xx 0 0

0 χme
yy χme

yz

0 χme
zy χme

zz

⎞
⎟⎠

χ̂ em =

⎛
⎜⎝

χ em
xx 0 0

0 χ em
yy χ em

yz

0 χ em
zy χ em

zz

⎞
⎟⎠ χ̂ e =

⎛
⎜⎝

χ e
xx 0 0

0 χ e
yy χ e

yz

0 χ e
zy χ e

zz

⎞
⎟⎠.

(2)
All elements in Eq. (2) are in general case complex. If
dissipation can be neglected, the following relations hold:
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χm
i j = (χm

ji )∗, χ e
i j = (χ e

ji )
∗, and χme

i j = (χ em
ji )∗, where ()∗

means complex conjugation.
In order to obtain the simplified susceptibility matrices we

use the procedure similar to the case [25,28] of SmFe3(BO3)4

and write the thermodynamic potential of the system as a
function of magnetization and electric polarization:

	(m, P) = −N[μ⊥(mxHx + myHy) + μ‖Hzmz] − kBT S(m)

− Px[Ex + c2(Hymz + Hzmy) + c4(Hxmx − Hymy)]

− Py[Ey − c2(Hxmz + Hzmx ) − c4(Hxmy + Hymx )]

− PzEz + 1

2χE
⊥

(
P2

x + P2
y

) + 1

2χE
‖

P2
z , (3)

where the first term represents the Zeeman energy of the
ground Yb3+ ion doublet with magnetic moments μ‖ and μ⊥,
along and perpendicular to the trigonal C3 axis, respectively,
the second one is determined by the entropy S(m), the third
and fourth terms represent the magnetoelectric coupling, and
the remaining tree terms give the electric part of the thermo-
dynamic potential in external electric field. N is the number of
Yb3+ ions.

Minimizing the free energy with respect to electric polar-
ization we obtain:

Px = χE
⊥ [Ex + c2(Hymz + Hzmy) + c4(Hxmx − Hymy)]

Py = χE
⊥ [Ey − c2(Hxmz + Hzmx ) − c4(Hxmy + Hymx )]

Pz = χE
‖ Ez (4)

and

Mx = − ∂	

∂Hx
= Nμ⊥mx + c4Pxmx − Py(c2mz + c4my)

My = − ∂	

∂Hy
= Nμ⊥my + Px(c2mz − c4my) − Pyc4mx

Mz = − ∂	

∂Hz
= Nμ‖mz + Pxc2my − Pyc2mx .

In the geometry with H‖x‖a we get:

m0
x 	= 0; P0

x = χE
⊥c4Hxm0

x , (5)

where m0
x ≈ tanh(μ⊥Hx/kBT ) is the static value of the nor-

malized magnetic moment of Yb3+ ions along the x axis.
Similar to Ref. [28] we solve the Landau-Lifshitz equations

for dynamic magnetic and electric response. The suscepti-
bility matrices are obtained in the approximation linear in
coupling constants c2 and c4 as:

χ̂m =

⎛
⎜⎝

χm
xx 0 0

0 χm
yy χm

yz

0 χm
zy χm

xx

⎞
⎟⎠ χ̂me =

⎛
⎜⎝

χme
xx 0 0

0 χme
yy 0

0 χme
zy 0

⎞
⎟⎠

χ̂ em =

⎛
⎜⎝

χ em
xx 0 0

0 χ em
yy χ em

yz

0 0 0

⎞
⎟⎠ χ̂ e =

⎛
⎜⎝

χ e
xx 0 0

0 χ e
yy 0

0 0 χ e
zz

⎞
⎟⎠ ,

(6)

where the single components are given by:

χm
xx = χE

⊥c2
4(m0

x )2

χm
yy = Nμ⊥

m0
x

Hx
R(ω)

χm
yz = iω

ω0
Nμ‖

m0
x

Hx
R(ω)

χm
zz = μ‖

μ⊥
Nμ‖

m0
x

Hx
R(ω)

χme
xx = (

χ em
xx

)∗ = χE
⊥c4m0

x

χme
yy = (

χ em
yy

)∗ = −χE
⊥c4m0

x (1 + R(ω)) − iω

ω0
χE

⊥c2m0
xR(ω)

χme
zy = (

χ em
yz

)∗

=
[

iω

ω0

μ‖
μ⊥

χE
⊥c4m0

x −
(

1 + μ‖
μ⊥

− ω2

ω2
0

)
χE

⊥c2m0
x

]
R(ω)

χ e
xx = χE

⊥

χ e
yy = χE

⊥ + (χE
⊥ )2m0

xHx

Nμ⊥

(
c2

2 + c2
4

)
R(ω)

χ e
zz = χE

‖ . (7)

Here, χE
⊥ is the background dielectric susceptibility, m0

x is the
static magnetic polarization, R(ω) is the Lorentzian centered
around ω0 ∝ H , c4 and c2 are magnetoelectric constants that
describe the chirality of YbAl3(BO3)4, and R(ω) = ω2

0/(ω2
0 −

ω2 − iωg) is the resonance function with ω0 = 2μ⊥H/h̄ and
g being the resonance frequency and linewidth, respectively.
Strictly speaking, the term χm

xx is quadratic in the coupling
constants and may be neglected in the same approximation.
On the contrary, the last term in χ e

yy is the first nonzero term
and it is resonant in frequency due to R(ω). Therefore, we
keep this term in the present approximation.

B. Electrodynamics of YbAl3(BO3)4

1. General expressions

We start with rewriting the materials relations in the form:

B = μ̂H + α̂meE
(8)

D = α̂emH + ε̂E.

Here μ̂ = 1̂ + 4πχ̂m, ε̂ = 1̂ + 4πχ̂ e, α̂me,em = 4πχ̂me,em,
and χ̂m, χ̂ e, χ̂me,em are determined in the previous section.

The Maxwell equations ∇ × E = −Ḃ/c,∇ × H = Ḋ/c
for the propagation vector k = n ω

c parallel to the z axis can
be reduced to contain transverse components of the electric
fields Ex,y only:

(
n2

z − n2
z10

)
Ex − δ1nzEy = 0

(9)
δ2nzEx + (

n2
z − n2

z20

)
Ey = 0

224417-4



SIGN CHANGE OF POLARIZATION ROTATION UNDER … PHYSICAL REVIEW B 99, 224417 (2019)

where

n2
z10 = εxxμ̃yy − αme

xx αem
xx μ̃yy/μxx

n2
z20 = ε̃yyμxx − α̃em

yy α̃me
yy μxx/μ̃yy

δ1 = α̃me
yy − αem

xx μ̃yy/μxx

δ2 = αme
xx − α̃em

yy μ/
xxμ̃yy

μ̃yy = μyy − μzyμyz/μzz

ε̃yy = εyy − αme
zy αem

yz /μzz

α̃me
yy = αme

yy − μyzα
me
zy /μzz

α̃em
yy = αem

yy − μzyα
em
yz /μzz.

The solution of Eq. (9) is given by four elliptical eigen-
modes with the eigenvalues of the refractive index being
different for forward and backward directions:

n2
z1,2 = 1

2

(
n2

z10 + n2
z20 − δ1δ2

)

±
√

1

4

(
n2

z10 + n2
z20 − δ1δ2

)2 − n2
z10n2

z20. (10)

The corresponding normalized eigenvectors of the modes are
given by the relations:

e1x = nz1δ1√∣∣n2
z1 − n2

z10

∣∣2 + |nz1δ1|2

e1y = n2
z1 − n2

z10√∣∣n2
z1 − n2

z10

∣∣2 + |nz1δ1|2

e2x = n2
z2 − n2

z20√∣∣n2
z2 − n2

z20

∣∣2 + |nz2δ2|2

e2y = −nz2δ2√∣∣n2
z2 − n2

z20

∣∣2 + |nz2δ2|2
. (11)

As a result, the electromagnetic wave propagating in the me-
dia can be represented by the superposition of two eigenmodes

E(z, t ) = E (1)e1 exp(iωt − ik1z) + E (2)e2 exp(iωt − ik2z).

The electric field of the electromagnetic wave propagating for
the distance z in the media is determined by

E(z) = Ŝ(z)E0 ≡ 1

�

(
e1x e2x

e1y e2y

)(
e−ik1z 0

0 e−ik2z

)(
e2y −e1y

−e2x e1x

)
E0, (12)

where Ŝ(z) is the Jones matrix and � = e1xe2y − e1ye2x. If the incident wave has a linear polarization E0 = Eo(cos α, sin α)
the propagating wave is in general case elliptically polarized that can be characterized by the polarization plane rotation θ and
ellipticity η:

tan(θ + iη) = Ey(z)

Ex(z)
= (e1ye2y cos α − e2xe1y sin α)e−ik1z + (−e1ye2y cos α + e1xe2y sin α)e−ik2z

(e1xe2y cos α − e2xe1x sin α)e−ik1z + (−e1ye2x cos α + e1xe2x sin α)e−ik2z
. (13)

Neglecting the weak nonresonance terms in μxx, εyy, α
em
xx , αme

xx (χm
xx, χ

e
yy, χ

em
xx , χme

xx ) one can rewrite the eigenvalues and
eigenvectors as:

n2
z1,2 = 1

2
(εxxμ̃yy + ε̃yyμxx ) ±

√
1

4
(εxxμ̃yy − ε̃yyμxx )2 + εxxμxxα̃em

yy α̃me
yy

= ε0
⊥ + 1/2(ε0

⊥�μ + �εc4 + �εc2)R(ω) ± R(ω)
√

1/4(ε0
⊥�μ + �εc4 + �εc2)2 + ε0

⊥�μ�εc2
(
ω2/ω2

0 − 1
)
, (14)

where

μxx ≈ 1, εxx ≈ ε0
⊥ , αem

xx = αme
xx ≈ 0

μ̃yy = μyy − μzyμyz/μzz ≈ μyy = 1 + �μR(ω)

ε̃yy = εyy − αme
zy αem

yz /μzz ≈ εyy = ε0
⊥ + (�εc2 + �εc4)R(ω)

α̃me
yy = αme

yy − μyzα
me
zy /μzz ≈ αme

yy =
(

−
√

�μ�εc4 + i
ω

ω0

√
�μ�εc2

)
R(ω)

α̃em
yy = αem

yy − μzyα
em
yz /μzz ≈ αem

yy =
(

−
√

�μ�εc4 − i
ω

ω0

√
�μ�εc2

)
R(ω)

�μ = 4πNμ⊥m0
x/Hx

�εc2,4 = 4π (χE
⊥c2,4)2m0

xHx/N/μ⊥. (15)
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2. Gyrotropic birefringence

To consider the pure effect of the gyrotropic birefringence,
we neglect the terms with optical activity, i.e., put �εc2 =
0. In this case the eigenvalues and eigenvectors are deter-
mined by gyrotropic birefringence associated with χme

yy ∼√
�μ�εc4:

n2
z1 = ε0

⊥ + (ε0
⊥�μ + �εc4)R(ω),

n2
z2 = ε0

⊥ (16)

e1x

e1y
= ρ1 = −nz1

√
�μ/�εc4

= −
√

(ε0
⊥ + (ε0

⊥�μ + �εc4)R(ω))�μ/�εc4

≈ −
√

ε0
⊥�μ/�εc4

e2y

e2x
= ρ2 =

√
ε0
⊥�μ/�εc4. (17)

In the nondissipative media the eigenvectors (i.e., ρ1,2) are real
and thus the corresponding eigenmodes are linearly polarized
but they are not orthogonal in the general case. Their orienta-
tion is determined by

ctanα1 = e1x

e1y
= ρ1 = −nz1

√
�μ/�εc4

= −
√

(ε0
⊥ + (ε0

⊥�μ + �εc4)R(ω))�μ/�εc4

≈ −
√

ε0
⊥�μ/�εc4

tanα2 = e2y

e2x
= ρ2 =

√
ε0
⊥�μ/�εc4. (18)

If the incident linear polarization coincides with one of
the eigenmodes, e.g., E0 = E0(cos α1, sin α1), the electromag-
netic wave corresponding to nz1 remains linearly polarized
and propagates without a polarization rotation (i.e., θ = 0). In
this case the second mode with nz2 is not excited. Similarly, for
an incident wave polarized as E0 = E0(cos α2, sin α2) only
the mode with nz2 propagates without polarization rotation
while the mode nz1 is not excited (Fig. 2).

Beyond the resonance region |ω0 − ω| � ω0 when ρ1 ≈
−ρ2, both eigenmodes become orthogonal (α2 − α1 ≈ π/2):

ctanα1 ≈ −tanα2 = ρ2 =
√

ε0
⊥�μ/�εc4 .

Note that the orientation of the eigenmodes with respect to
the crystal axes is determined by ρ2 =

√
ε0
⊥�μ/�εc4 that can

vary in a wide range.

3. Jones (gyrotropic) birefringence

The considerations above take into account not only
the magnetoelectric coupling but also the anisotropy of
permittivity and permeability. In the last step let us ne-
glect this anisotropy, quadratic magnetoelectric contributions,
and assume that εxx = ε̃yy = ε0

⊥, μxx = μ̃yy = 1. In this case
Eq. (16) for the refractive index in the forward direction can

FIG. 2. Orientation of the eigenvectors of two eigenmodes in
case of gyrotropic birefringence. In this approximation the optical
activity and dissipation are neglected, see Eqs. (17) and (18). The two
modes become orthogonal far from the resonance |ω0 − ω| � ω0

when ρ1≈ − ρ2.

be further simplified to

nz1,2 =
√

n2
z0 + 1/4δ2

0 ± 1/2δ0 ≈ nz0 ± 1/2δ0, (19)

where n2
z0 = ε0

⊥, δ0 = χme
yy − χ em

xx � ε0
⊥.

The corresponding eigenvectors are given by(
Ex

Ey

)
1,2

= nz1,2δ0

n2
z1,2 − n2

z0

≈ ∓1 . (20)

Therefore, these modes are linearly polarized and their main
optical axes are aligned by ±45◦ with respect to the a axis and
for H‖a axis.

This type of birefringence was predicted by Jones [47]. It
has been called Jones birefringence and was first experimen-
tally observed [48] in liquids in parallel electric and magnetic
fields.

IV. RESULTS AND DISCUSSION

Figure 3 shows the typical frequency-dependent transmis-
sion of YbAl3(BO3)4 for two characteristic geometries with
the light propagating along the c axis: h‖a, e‖b and h‖b, e‖a.
The external magnetic field H‖a axis induces a weak
magnetization M‖a. In magnetoelectric alumoborates and
within the present geometry, the static electric polarization
along the a axis Pa ∼ Ham0(Ha) ∼ H2

a is induced according
to Eq. (4), see also Refs. [38,39,43]. In addition, similar to
magnetoelectric ferroborates, a new electromagnon mode ap-
pears in the millimeter-wave spectra, showing electric, mag-
netic, and magnetoelectric activities [25,28,49,50]. In a simple
approximation, the resonance frequency of the electromagnon
in YbAl3(BO3)4 is proportional to external magnetic field [see
Fig. 5(c) below], and the excitation conditions by the ac fields
are schematically shown in Fig. 3. Physically, the electric
dipole activity of the electromagnon originates from c2 and
c4 terms in the free energy, Eq. (3), leading to �εc2,4 terms in
electric and magnetic susceptibilities Eqs. (7), (14) and (15).

The excitation conditions and transmission spectra in
Fig. 3, as was demonstrated [28] for SmFe3(BO3)4, show that
the electromagnon mode may be selectively excited by either
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FIG. 3. Excitation of the electromagnon in YbAl3(BO3)4.
(a) Transmission spectra of the YbAl3(BO3)4 sample in the geometry
with a magnetic excitation channel, h‖b, e‖a. Blue symbols represent
the data for the parallel orientation of the polarizer and analyzer. The
arrow indicates the position of the electromagnon for Ba = +6 T.
(b) The spectra in the geometry with an electric excitation channel,
h‖a, e‖b. Pictograms schematically show the excitation condition by
the ac components of electric and magnetic fields with respect to
static vectors M, P, and H . The periodic oscillations in the spectra
are due to Fabry-Pérot resonances on the sample surfaces.

an electric or magnetic component of the terahertz radiation.
However, because of the magnetoelectric character of the
mode, both excitation conditions are coupled, leading to the
polarization rotation of light propagating inside the sample.
The rotation in YbAl3(BO3)4 is more complex: The observed
effect can be identified as gyrotropic (or nonreciprocal) bire-

fringence because it changes sign upon undergoing both space
and time inversion symmetry operations. In addition, the
observed asymmetry of the spectra demonstrates the existence
of natural polarization rotation in YbAl3(BO3)4. Importantly,
this rotation can be attributed to the dynamic magnetoelectric
effect.

Static electric polarization in alumoborates is basically
described by the term Pa ∼ Hama − Hbmb ∼ H2

a − H2
b , where

the external magnetic field is aligned within the ab plane (see
Eq. (4) and Refs. [38,39,43]). This expression can be obtained
from symmetry arguments [31,32] for the trigonal symmetry
within the R32 space group. Here, we only reproduce the
relevant terms for our experiments. We recall that in the case
of alumoborates and specifically of YbAl3(BO3)4, no sponta-
neous electric polarization exists in zero magnetic field. The
pictograms in Fig. 3 illustrate the relevant geometry for the
present experiment with H‖a, Pa < 0. In this configuration,
the electromagnon may be selectively excited by a linear
polarization via h‖b (magnetic channel, μyy) or e‖b (electric
channel, εyy). In both cases the rotation of the polarization
plane is due to the magnetoelectric term αme

yy .
As described in the theory section, the eigenmodes in

YbAl3(BO3)4 are elliptical waves (Ex, Ey), where Ex and Ey

are the transverse components of the ac electric field. The ratio
that determines the sign of the polarization rotation is (Ex/Ey)
is determined by χ em

yy , Eq. (7):

χme
yy = −χE

⊥c4m0
x (1 + R(ω)) − iω

ω0
χE

⊥c2m0
xR(ω) . (21)

We recall that c4 and c2 are material constants that describe
the chirality of YbAl3(BO3)4. The first term in Eq. (21)

FIG. 4. Experimental test of the gyrotropic birefringence in YbAl3(BO3)4. (a),(c) Magnetic excitation channel; (b),(d) electric channel.
Panels (a) and (b) show the result in the reference geometry (middle part of Fig. 1). The results in (c) and (d) are measured for the sample
rotated by 180◦, which simulates space inversion (cf. Fig. 1). Symbols denote the experiment results, and solid lines represent the results of
the theoretical model according to Eq. (13). (e),(f) Estimation of the relative effects from the gyrotropic birefringence (Gy) and optical activity
(Op) in the geometry within the electric excitation channel.
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is responsible for the gyrotropic birefringence and is odd
with respect to both space and time inversions. The sec-
ond term describes the natural optical activity and is only
reversed after space inversion. This behavior may be ob-
served from the following arguments. The coefficients c4

and c2 in Eq. (21) represent the chirality of the crystal
structure. They change sign after space inversion (i.e., for
another enantiomorph structure) and are not sensitive to time
inversion. Meanwhile, the magnetization m0 and magnetic
resonance frequency ω0 do not change after space inversion
and are reversed by time inversion. Because coefficients c4

and m0 are simultaneously present in the gyrotropic bire-
fringence, the latter changes sign after both time and space
inversions. The optical activity term contains c2, m0, and ω0.
Therefore, the effects of the time inversions cancel, and only
the space inversion due to c4 remains.

Figure 4 shows the experimental results of the polarization
rotation according to the arguments above. The experimental
geometries are given in the left panels of Fig. 1 and are
equivalent to either time inversion of the starting geometry
(reversal of the magnetic field) or space inversion (rotation
of the sample around the b axis). In Fig. 4, all four possible
geometries are compared on the same scale to demonstrate
the inversion of the rotation signal in both time and space
inversion symmetries. In all geometries, the rotation angle
near the resonance is inverted if the external magnetic field
changes sign. Importantly, the sequence of rotations also
reverses after the sample rotates around the b axis, which
proves the expected reversal of the signal with respect to
the space inversion. We note that compared to the spectra
in Fig. 3, the Fabry-Pérot oscillations on the surfaces of the
sample are not observed because of the suppression of the
polarization rotation after internal reflections.

Concerning the rotation around the electromagnon mode
near ±6 T, the data reveal an approximate antisymmetric
behavior in the magnetic field. That is, the rotation direction
changes after reversing the magnetic field, which qualitatively
resembles the conventional experiments with Faraday rotation
[51]. However, we recall that our experiment has been con-
ducted in the Voigt geometry, i.e., k̄⊥H , where the classical
Faraday signal is zero.

In addition, a nonperfect asymmetry is observed after the
field reversal in Fig. 4, and the data cannot be adequately
described by the model with only gyrotropic birefringence.
The additional contribution is clearly not sensitive to the
reversal of the magnetic field and to the sample rotation
but changes sign between two excitation geometries. This
second contribution corresponds to the natural optical activity
and is generated by the second term in the magnetoelectric
susceptibility χme

yy in Eq. (21). The effects from gyrotropic
birefringence and from the optical activity are of comparable
amplitudes in YbAl3(BO3)4. To illustrate this schematically
we may utilize the approximation of a thin sample in which
the rotation is simply proportional to the magnetoelectric
susceptibility, and we neglect all other contributions. In this
approximation the optical activity may be roughly obtained,
e.g., as a sum of spectra in reference geometry and after
C2b rotation, respectively. Similarly, the difference of both
spectra gives an estimate for the gyrotropic birefringence. The
results are given in panels (e) and (f). Within the notations of

(a)

(b)

(c)

FIG. 5. Magnetic field sweeps in YbAl3(BO3)4. (a) Reference
geometry for the positive and negative directions of the magnetic
field. The reversal of the signal as a function of magnetic field
demonstrates the time asymmetry of the effect. (b) The same ex-
periments for the sample rotated around the b axis. The sign of the
polarization rotation is inverted compared to the reference geometry,
which proves the space asymmetry. Symbols denote the experimental
results, and solid lines denote the results of the theoretical model
that includes the gyrotropic birefringence and natural optical activity,
with the parameters fixed by the data in Fig. 4. Panel (c) shows the
magnetic field dependence of the electromagnon frequency.

Figs. 4(e) and 4(f) the calculation procedure may be written
as Op = (θ (ref ) + θ (C2b))/2 and Gy = (θ (ref ) − θ (C2b))/2.
The solid lines in panels (e) and (f) give the exact contribu-
tions of both rotation angles according to Eq. (13) by taking
into account one term in Eq. (21) only.

In addition, a series of experiments in sweeping magnetic
fields has been performed. These results are given in Fig. 5.
The results in the reference geometry are shown in panel (a).
The resonance rotation signal clearly changes sign with the
reversal of the magnetic field. In agreement with the spectra in
Fig. 4, this result demonstrates the time inversion asymmetry
of the gyrotropic birefringence. The effect is inverted again
after rotating the sample around the b axis, thus proving the
space inversion asymmetry. The theoretical curves in Fig. 5
are given by the solid lines and are qualitatively consistent
with the experiment. Because all model parameters have been
fixed by the fits of the transmission spectra in Fig. 4, the
observed deviations between theory and experiment cannot be
improved.

Finally, we note that the mechanism of the polarization
plane rotation by the gyrotropic birefringence [c2 term in
Eq. (21)] is unusual. As shown in the theoretical section,
in the presence of this term the solutions of the Maxwell
equations are two linearly polarized modes with polarization
planes rotated away from the crystallographic axes a and b
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(see Fig. 2). Similar to the case of an anisotropic crystal, the
light polarized along the a or b axis is split into ordinary
and extraordinary waves, which results in the polarization
rotation and ellipticity of the output radiation. In a further
simplification, the new optical axes are oriented by exactly
±45◦ with respect to the crystallographic axes. This effect is
then equivalent to Jones birefringence [47,48].

V. CONCLUSIONS

In conclusion, we investigated the rotation of the polariza-
tion plane in magnetoelectric YbAl3(BO3)4 under the view-
point of time and space inversion symmetry arguments. We
observe the sign change of the rotation sense under either time
or space reversal. This investigation rigorously proves that the

polarization rotation in YbAl3(BO3)4 must be classified as
gyrotropic birefringence. The diagonal terms in the magneto-
electric susceptibility are responsible for the observed rotation
due to gyrotropic birefringence. A substantial contribution of
the natural optical activity to the polarization rotation could
be observed as well. We demonstrate that the latter effect
originates from the dynamic magnetoelectric susceptibility.
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