
PHYSICAL REVIEW B 99, 224406 (2019)

Dynamics of bimeron skyrmions in easy-plane magnets induced by a spin supercurrent

Se Kwon Kim
Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA

(Received 8 January 2019; revised manuscript received 9 May 2019; published 4 June 2019)

We theoretically study the interaction of an isolated bimeron skyrmion in quasi-two-dimensional easy-plane
magnets with a surrounding spin superfluid associated with spontaneously broken U(1) spin-rotational symmetry,
revealing that skyrmion energy depends on the local spin current flowing in its background. The finding leads
us to propose to manipulate a skyrmion energy landscape via a spin supercurrent, which can be controlled
nonlocally by varying the magnitudes of spin-current injection and ejection through the boundaries. Two
exemplary cases are discussed: a steady-state motion of a skyrmion induced by a uniform force and a skyrmion
motion localized along a one-dimensional racetrack. We envision that a skyrmion interacting with a spin
superfluid can serve as a robust pointlike information carrier that can be operated with minimal dissipation.
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I. INTRODUCTION

Topological solitons in magnets have been attracting great
attention for many decades [1]. One example is a skyrmion,
a swirling spin texture in two dimensions, which has been of
surging interest during the last decade due to its promising
role as a robust pointlike information carrier in spintronic
devices [2,3]. The previous theoretical and experimental ef-
forts have been mainly focused on skyrmions in easy-axis
chiral magnets, which are stabilized by certain spin-orbit
coupling [4–6]. There have been two recent developments in
searching for new platforms for skyrmions. First, theoretical
and numerical investigations have shown that skyrmions can
be stabilized by frustrated Heisenberg exchange interactions
even in the absence of any spin-orbit coupling [7–12]. The
exchange interactions respect spin-rotational symmetry un-
like spin-orbit interactions, and thus the resultant skyrmions
can possess extra degrees of freedom associated with the
symmetry compared to the conventional ones [13]. Second,
magnets with easy-plane anisotropy have been emerging as
an alternative material platform for skyrmions [14–18]. The
skyrmions thereof can be viewed as composite objects of two
magnetic vortices also known as merons [19,20] (see Fig. 1).
Yu et al. [21] reported the observation of transformation
between such merons and skyrmions in an easy-plane magnet.

Easy-plane magnets with spin-rotational symmetry have a
zero-energy mode associated with the spontaneously broken
U(1) symmetry. In 1978, Sonin [22] showed theoretically
that such systems can support superfluidlike spin transport
analogous to superfluid mass transport in Helium-4 where the
U(1)-phase symmetry is spontaneously broken. The interest
on superfluid spin transport has been revived recently by
advancements in spintronic techniques for a spin current,
gathering significant attention owing to its ability for long-
distance low-dissipation spin transport [23–30]. In particular,
Takei and Tserkovnyak [26] showed that superfluid spin trans-
port can be realized in magnets by injecting and ejecting a
pure spin current through their interfaces with normal met-
als via the spin Hall effect. The resultant spin supercurrent

decays algebraically in space differing from an exponentially
decaying diffusive spin current, as seen in two spin-transport
experiments in insulators, Cr2O3 [31] and quantum Hall
graphene [32]. Previously, the spin supercurrent has been
shown to be able to induce a motion of a domain wall, which
is a topological soliton in magnets with spontaneously broken
discrete symmetry, both in easy-cone magnets [33] and in
bilayers of easy-axis and easy-plane magnets [34].

In this work, we explore the possibility to control a
skyrmion in easy-plane magnets nonlocally via a spin super-
fluid that is controlled through the boundary. To this end,
we theoretically study the interaction of a skyrmion with a
spin supercurrent flowing in its background. The skyrmion
energy is shown to depend on the magnitude of the local spin
supercurrent, which enables us to engineer the energy land-
scape by an inhomogeneous spin supercurrent and thereby
drive a skyrmion. We provide two examples of such control:
a steady-state motion of a skyrmion driven by a uniform force
and a realization of a skyrmion racetrack. One promising
material candidate is offered by frustrated triangular magnets
with easy-plane anisotropy such as NiBr2 [13,19,35], whose
exchange interactions can be tuned by chemical substitutions.
We envision that a bimeron skyrmion and a spin superfluid
in easy-plane magnets can serve as the pair of a pointlike
memory unit and an efficient controller.
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FIG. 1. (a) Spin configuration of a bimeron skyrmion in an easy-
plane magnet. (b) Illustration of a skyrmion as a composite object of
a vortex with spin-up core and an antivortex with spin-down core,
which are also referred to as merons.
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The paper is organized as follows. In Sec. II, we introduce
a bimeron skyrmion that can be stabilized in easy-plane
frustrated magnets. In Sec. III, we study its interaction with a
spin supercurrent that is carried by a spiraling spin texture in
easy plane. In particular, we discuss a one-dimensional motion
of a bimeron skyrmion induced by a spin supercurrent with
a uniform gradient in Sec. III A and proposal for realizing a
skyrmion racetrack by using a spin supercurrent in Sec. III B.
We will conclude the paper in Sec. IV by discussing certain
approximations made in our discussions and providing a
future outlook.

II. BIMERON SKYRMION IN FRUSTRATED MAGNETS

Our model system is a quasi-two-dimensional easy-plane
magnet whose static energy can be described by the following
energy functional:

U = 1

2

∫
dxdy[A(∇n)2 + Kn2

z + B(∇2n)2], (1)

where n = (nx, ny, nz ) is the unit vector in the direction of
the magnetic order (e.g., magnetization in ferromagnets and
Neel order in antiferromagnets) and A, B, and K are positive
parameters. The first two terms are the quadratic exchange and
the easy-plane anisotropy energies, respectively, which are in
the conventional miromagnetic treatment of magnetic energy.
The last term is a quartic exchange term, which has been
shown to exist in certain magnets with frustrated exchange
interactions [8,13,19]. It is well known that a soliton with a
finite size cannot be stabilized by the first two terms only,
which can be understood by invoking the Hobart-Derrick’s
scaling argument [36]: The energy of such a texture can be
lowered by shrinking its size uniformly, n(r) �→ n(r/λ) with
λ < 1, and thus it is unstable. The quartic term can stabilize a
soliton by penalizing shrinking. In particular, the Hamiltonian
has been shown to support a skyrmion in the form of a
pair of two merons, vortex and antivortex, by analytical and
numerical calculations in Refs. [11,19,20].

To describe a bimeron skyrmion with skyrmion number
Q = ±1 defined by

Q = 1

4π

∫
dxdy n · (∂xn × ∂yn), (2)

we adopt the variational ansatz used in Refs. [19,20]:

n = Rẑ(φ)Rx̂(Q�)Rŷ(−πQ/2) n0, (3)

where Râ(ϕ) is the rotation matrix by angle ϕ with re-
spect to the axis â, n0 = (sin ζ0 cos η0, sin ζ0 sin η0, cos ζ0)
is the ansatz for a skyrmion in an easy-axis magnet:
ζ0 = (1 + Q)π/2 − πQ exp(−r/R) with η0 = arctan[(y −
Y )/(x − X )], and r = [(x − X )2 + (y − Y )2]1/2 is the dis-
tance from the skyrmion center. The skyrmion is described
by four parameters X,Y,�, and R: X and Y are the skyrmion
positions, which represent zero-energy modes associated with
the translational invariance of the system; � is the angle from
the antivortex to the vortex, which is arbitrary and thus repre-
sents another zero-energy mode; R represents the skyrmion
size, or, equivalently, the distance between two constituent
merons. Its equilibrium value is determined by competition of
the anisotropy and the quartic exchange energies [19]: R0 =

C(B/K )1/4, where C is a dimensionless number of the order
of 1. The bimeron skyrmion with this equilibrium size has
been shown analytically and numerically to be stable within
the current model [Eq. (1)] in Ref. [19]. The variable φ is the
azimuthal angle of the background, which represents the zero
mode associated with the spontaneously broken U(1) spin-
rotational symmetry. Figures 1(a) and 1(b) show the skyrmion
spin textures with � = π/6 and φ = 0 and the schematic for
its composition, respectively. From now on, we will assume
that a bimeron skyrmion is already present in the system.

III. INTERACTION OF A BIMERON SKYRMION WITH A
SPIN SUPERCURRENT

Sufficiently far from a skyrmion, the order parameter stays
closely within the easy plane and thus the order parameter
configuration can be well described by its azimuthal angle
φ. Since the azimuthal angle φ and the spin density sz

along the z axis form a pair of canonical conjugate vari-
ables, the long-wavelength dynamics can be captured by
U ≈ ∫

dxdy [A(∇φ)2/2 + s2
z /(2χ )], where χ is the magnetic

susceptibility. For ferromagnets, the magnetic susceptibility is
given by χ = s2/K [see Eq. (1)], where s is the saturated spin
density. For antiferromagnets, the term ∝s2

z is not included
in the static energy functional given in Eq. (1) because it
is strongly suppressed by the antiferromagnetic exchange
in static cases, but it needs to be included to describe the
dynamics of the azimuthal angle φ. Within linear response, the
dynamics of both easy-plane ferromagnets and antiferromag-
nets can be described in terms of the same pair of canonical
conjugate variables, φ and sz, which allows us to treat a spin
current in both systems in a single framework as discussed
in Refs. [26,37,38]. See Appendices A and B for detailed
discussions about the low-energy dynamics of easy-plane
ferromagnets and antiferromagnets, respectively, on top of
their uniform states. The corresponding spin-current density
(polarized along the z axis) is given by js

i = −Aẑ · (n ×
∂in) ≈ −A∂iφ both for ferromagnets and antiferromagnets,
which can be obtained from the spin continuity equation [37].
A spin current is carried by a gradient of the angle φ while
traversing the ground-state manifold, which is analogous to
a supercurrent in conventional superfluids that is carried by
a finite gradient of the wave-function phase, and thus it is
referred to as a spin supercurrent [24]. Differing from spin-
wave modes accounting for small fluctuations of the order
parameter, a spin supercurrent can be carried by the large
nonperturbative variation.

We study the interaction of a skyrmion with a spin super-
current within linear response, by considering the skyrmion
as a perturbation to the otherwise uniform spin-current back-
ground. We assume that the skyrmion texture except for its
zero-energy mode φ is rigid enough to neglect the effect
of its change on the interaction between the skyrmion and
the spin current. By plugging n [Eq. (3)] with φ = k · r =
k(x cos φk + y sin φk ) to the Hamiltonian U [Eq. (1)], we
obtain our first main result, the skyrmion energy to linear
order in k:

U (�; k) = U0 + AR1|k| sin(� − φk ), (4)
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FIG. 2. A bimeron skyrmion [Eq. (3)] with Q = 1, angle �, and
azimuthal angle background φ = kx: (a) � = −π/2, k = 0, (b) � =
−π/2, k = 2π/Lx , (c) � = π/2, k = 0, (d) � = π/2, k = 2π/Lx ,
where Lx is the sample length in the x direction. The winding num-
bers of the azimuthal angle across certain horizontal lines are shown
on the right of the plots. The background spin current ∝k induces
an energy difference between two configurations � = ±π/2, which
otherwise possess the same energy.

where U0 is the energy with k = 0, R1 ≡ I1R0 + I2B/(AR0)
represents the effective size with which the skyrmion
interacts with the spin current, and I1 ≈ 7.6 and I2 ≈ 54
are numerical constants. The explicit expressions for I1

and I2 are given by I1 = π2 − (π/2)Si(2π ) ≈ 7.6 and
I2 = π2

∫ ∞
0 dz [(2/z − 1)(1 − cos(2πe−z ))e−z − πe−2z sin

(2πe−z ) + 2zπ2e−3z] ≈ 54. The energy minimum is achieved
when the angle is � = φk − π/2, which can be understood as
follows. The spin supercurrent ∝k exerts opposite transverse
forces on a vortex and an antivortex [39], which is analogous
to the Magnus force in superconductors by which a charge
supercurrent pushes a vortex and an antivortex in the opposite
transverse directions [40]. The opposite forces on constituent
vortices exert a torque on the skyrmion and thereby create the
derived interaction term. Figure 2 shows spin configurations
for several cases. The winding numbers of the azimuthal
angle across two horizontal lines are shown on the right.
Since the larger winding number costs the higher exchange
energy, the winding number can serve as good indicators
for the energy. In the absence of the spin current k = 0, the
energies for the two angles � = ±π/2 are equal. However,
in the presence of the spin current, k > 0, � = π/2 case has
a higher energy than the � = −π/2 case, as can be seen from
their winding numbers.

A. Spin-supercurrent-induced skyrmion motion

Below, we show that a skyrmion can be driven by a
nonuniform spin supercurrent. For the spin supercurrent that
varies very slowly in space compared to the skyrmion size, the
skyrmion will be in local equilibrium by adjusting its angle
perpendicular to the local spin current [i.e., � = φk (X,Y ) −
π/2] such that the energy is given by

U (X,Y ) = U0 − AR1|∇φ|(X,Y ). (5)
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FIG. 3. A bimeron skyrmion in the background of a nonuniform
spin current js

x that is induced via the interfacial spin Hall effects
by asymmetric charge currents Il and Ir in the left and the right
proximate metals, respectively. The skyrmion experiences a force to
the right, where the spin current is maximum. In ferromagnets, the
steady-state velocity VFM has a transverse component to the force
due to the skyrmion Hall effect. In antiferromagnets, VAFM is parallel
to the force.

The spin supercurrent in a magnet can be induced by attaching
heavy metals such as Pt to its boundaries and subsequently
using the interfacial spin Hall effect as shown in Ref. [26].
See Fig. 3 for illustrations. For the charge currents Il and Ir in
the left and the right metals, the boundary conditions for the
spin current are given by

js
x = ϑIl − γ φ̇, for x = 0,

js
x = ϑIr + γ φ̇, for x = Lx,

(6)

in linear response [41]. The left-hand sides are the spin
currents in the magnet at its interface with the metals. The
first terms on the right-hand sides are spin torques exerted by
the charge currents via the spin Hall effects. The second terms
are spin pumping from the magnet into the metals. Here, ϑ

is the coefficient parametrizing the dampinglike torque on the
magnet induced by the charge current, which is related to the
effective interfacial spin Hall angle  by ϑ = h̄ tan /2edy

with dy the thickness of the metals along the y direction,
−e the charge of electrons; γ ≡ h̄g↑↓dz/4π is the parameter
for the spin pumping at the interface with g↑↓ the effec-
tive interfacial spin-mixing conductance and dz the thickness
along the z direction. For the top and bottom boundaries, we
consider an open boundary condition js · ŷ ≡ 0 [42–44]. The
spin continuity equation in the bulk is given by

ṡz + ∇ · js + αsφ̇ = 0, (7)

both for ferromagnets [26] and antiferromagnets [38], where
sz is the z component of the spin density, α is a dimen-
sionless number parametrizing damping referred to as the
Gilbert constant [45], and s is the saturated spin density. By
solving the bulk equation of motion subjected to the boundary
conditions with uniform Il and Ir , the steady-state solution can
be obtained:

φ(x, t ) = ωt − [(ϑIl − γω)/A]x + (αsω/2A)x2 + φ0,

(8)
where φ0 is arbitrary and the frequency is given by [26,38]

ω = ϑ (Il − Ir )/(2γ + αsL). (9)
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The induced spin current is nonuniform in space and thus
creates a nontrivial energy landscape for the skyrmion. When
Ir > Il � 0 with ϑ > 0, from U (X,Y ) [Eq. (5)] with the
aforementioned solution for φ, we obtain the second main
result, the force on the skyrmion:

FX = −dU

dX
= R1

αsϑ (Ir − Il )

2γ + αsL
, (10)

and FY = 0. The direction of the resultant motion depends on
the nature of the magnet. For ferromagnets, the equations of
motion for X and Y are given by [46–48]

4πsQẎ + αsIAẊ = FX ,

−4πsQẊ + αsIAẎ = FY ,
(11)

where IA ≈ π
∫ ∞

0 dz z[z−2 sin2 ζ0(z) + {ζ ′
0(z)}2] ≈ 13 is a nu-

merical constant. For the present case, FY = 0 and thus the
solution is given by

ẊFM = αsIA

(4πs)2 + (αsIA)2
FX , (12)

ẎFM = 4πsQ

(4πs)2 + (αsIA)2
FX . (13)

Note that the motion is deflected from the direction of the
force, exhibiting the skyrmion Hall effect [49,50]. For anti-
ferromagnets, the equations of motion for X and Y are given
by [51,52]:

MẌ + αsIAẊ = FX ,

MŸ + αsIAẎ = FY ,
(14)

where M is the inertial mass for skyrmions [51,52]. The
steady-state velocity for our current situation is given by

ẊAFM = FX

αsIA
, ẎAFM = 0. (15)

The skyrmion motion is driven by a dissipation-induced gra-
dient of a spin current, not by a spin current per se, as
manifested in the α dependence of the force FX [Eq. (10)].
See Fig. 3 for the spin texture n(x, y) [Eq. (3)] when Ir =
2Il > 0 and γ = 0. For numerical estimates, we take the
following material parameters: lattice constant a ∼ 0.5 nm,√

A/K ∼ 2a, B ∼ Aa2, s = h̄/a2 [53,54], and the damping
parameter α = 0.1, which results in R0 ∼ 1.5 nm and R1 ∼ 20
nm. We also take Lx = 100 nm, dy = 5 nm, and dz = 10 nm
for sample geometry and  = 0.1 (obtained for Pt|permalloy
interface [55]) for the interfacial spin Hall effects. When the
applied current density is Ir/(dydz ) = 1010 A/m2, we obtain
VFM ∼ 0.1 m/s and VAFM ∼ 1 m/s.

B. Skyrmion racetrack

Going beyond from the previous case for a uniform force,
where the uniform charge currents are considered, let us now
allow the boundary charge currents to be inhomogeneous,
Il (y) and Ir (y). We seek a steady-state solution with ṡz = 0
and φ̇ ≡ ω. Then finding the angle configuration for given
boundary charge currents constitutes the problem of solving
Poisson’s equation ∇2φ = αsω/A [Eq. (7)] with the Neumann
boundary conditions [Eq. (6) and open boundary conditions
js
y = 0 at y = 0 and y = Ly, where Ly is the sample length

Lx

Ly U

U

U

x

y
y

x

0

U

y

x
(a) (b) (c)

FIG. 4. (a) The spin current (shown by the red arrows) induced
by nonuniform charge currents (shown by the black arrows). (b) The
corresponding energy landscape for a skyrmion. (c) Two trajectories
of a ferromagnetic skyrmion.

in the y direction], which is known to have one and only
one solution up to a constant [56]. The frequency ω can
be obtained by the bulk-boundary compatibility condition of
Poisson’s equation:∫

V
∇2φ =

∮
∂V

ν̂ · ∇φ, (16)

with ν̂ the outward normal vector to the boundary, which, in
our case, corresponds to

αsωLxLy = ϑ

∫
dy (Il (y) − Ir (y)) − 2γωLy. (17)

This expresses the conservation of spin: The left-hand side is
the spin-dissipation rate in the bulk, the first term on the right-
hand side is the rate of the current-induced spin injection, and
the second term is the spin pumping from the magnet to the
metals. The solution is given by

ω = ϑ

2γ + αsLx

1

Ly

∫
dy (Il (y) − Ir (y)), (18)

which generalizes the previous results for uniform currents
[26,38]. Note that the differential equations and the com-
patibility condition are all linear in the currents Il (y) and
Ir (y). Therefore, any linear superposition of two solutions φ =
φ1 + φ2, where φ1 and φ2 are the solutions for the different
charge-current pairs, is also a solution to the problem for the
added charge currents.

A racetrack for a skyrmion can be engineered as follows.
First, a skyrmion can be localized along the vertical center
of the sample by injecting a large spin current only near
the center so that the spin current flows dominantly along
the line defined by y = Ly/2. This decreases the skyrmion
energy along the line, engendering a racetrack. Then, a
skyrmion can be driven to the right along the racetrack by
inducing an additional spin current on the right only. As an
example, we consider the case where the left and the right
charge currents are given by ϑIl (y) = 2sech((y − Ly/2)/d )
and ϑIr (y) = 2sech((y − Ly/2)/d ) + 2.5, respectively, with
sample geometry Lx = 50 and Ly = 500, and effective race-
track width d = 20. Here, we measure energy, length, and
time in A, R0, and sR2

0/A, respectively. Figure 4(a) shows
the spin current js obtained by solving Poisson’s equation
with the given Neumann boundary conditions. Note that the
magnitude of the spin current is the largest along the racetrack.
The energy landscape is shown in Fig. 4(b). Figure 4(c)
shows two trajectories of a ferromagnetic skyrmion which
are obtained by solving the equations of motion (11) for
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the given energy landscape with α = 0.4 and R1 = 10. Both
trajectories are focused on the racetrack. The sudden velocity
change of the solid trajectory is caused by the vertical force
localized near the racetrack that pushes the skyrmion in the
negative x direction via the skyrmion Hall effect momentarily.
We would like to remark here that Fig. 4(a) illustrates one
way to inject an inhomogeneous spin current via a series of
nonmagnetic metals. It should be also possible, in principle,
to use a single nonmagnetic metal with engineered spatial
variation of material properties such as the spin Hall angle
that is directly related to spin-current injection.

IV. DISCUSSION

We have shown that a bimeron skyrmion in easy-plane
magnets can be driven by engineering its energy landscape
via its interaction with a spin supercurrent. The induced
dynamics can be controlled nonlocally by charge currents
in proximate normal metals. One assumption of our theory
is the presence of the perfect U(1) spin-rotational symmetry
of the system, which yields the conservation of spin at the
Hamiltonian level and thereby eases the theoretical treatment
of a spin current. However, even when the U(1) symmetry
is weakly broken, e.g., by additional anisotropy within the
easy plane, a superfluidlike spin current can be induced by
applying sufficiently large currents on metals [24,30,57] and
thus we expect that our theory for the skyrmion motion is
generically applicable. In addition, we would like to mention
that including dipolar interactions that can affect both the
statics and the dynamics of a bimeron skyrmion can be an
important research topic for utilizing bimeron skyrmions,
but it is beyond the scope of our current work. Lastly, we
envision that the main idea of the present work, to control a
skyrmion by manipulating a background spin texture within
its ground-state manifold, can be extended to general cases
even beyond magnetism, wherever a localized soliton exists
in a controllable background with the low-energy manifold.
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APPENDIX A: THE SPIN CONTINUITY EQUATION FOR
EASY-PLANE FERROMAGNETS IN THEIR UNIFORM

GROUND STATES

Here, we derive the continuity equation for spin (polarized
along the z axis) for easy-plane ferromagnets on top of uni-
form ground states. For ferromagnets, the long-wavelength
low-energy dynamics can be described by the following
Hamiltonian:

U = 1

2

∫
dxdy

[
A(∇φ)2 + Kn2

z

]
, (A1)

where n = (
√

1 − n2
z cos φ,

√
1 − n2

z sin φ, nz ) is the unit vec-
tor in the direction of the local spin density and A and K are
positive exchange and anisotropy coefficients, respectively.
For long-wavelength dynamics, the last term ∝B in Eq. (1),

which is quartic in the spatial gradient, can be neglected over
the term ∝A, which is quadratic in the spatial gradient. The
spin density (polarized along the z direction) is given by
sz = snz, where s is the saturated spin density. For the low-
energy theory, the two dynamic variables are sz and φ. As we
learn from quantum mechanics, the spin angular momentum
density sz is the generator of the spin rotations about the z
axis [58]. In other words, the two variables form a pair of
canonical conjugate variables, satisfying the Poisson bracket
{φ(r, t ), sz(r′, t )} = δ(r − r′) [59]. The corresponding equa-
tions of motion can be derived from the Hamiltonian and the
Poisson bracket:

ṡz = {sz,U } = A∇2φ, (A2)

φ̇ = {φ,U } = Ksz

s2
. (A3)

The first equation is the spin continuity equation and the
second equation is the spin Josephson relation. From the
right-hand side of the continuity equation, we can identify
the spin current as js = −A∇φ. The spin current is carried
by the spatial gradient of the azimuthal angle that repre-
sents the spontaneous breaking of the U(1) spin-rotational
symmetry of the Hamiltonian, and it is analogous to the
charge current in superconductors that is carried by the spa-
tial gradient of the wave-function phase that represents the
spontaneously broken U(1) phase symmetry. For this analogy,
this spin current in easy-plane ferromagnets is referred to as a
spin supercurrent [24]. The damping term, which makes a
spin supercurrent different from a charge supercurrent, can
be accounted for by considering the Rayleigh dissipation
function R = αs

∫
dxdy ṅ2/2, which is half of the energy

dissipation rate through the magnetic dynamics. For the low-
energy dynamics, R ≈ αs

∫
dxdy(φ̇2 + ṡ2

z /s2)/2. The equa-
tions of motion with the damping are then given by

ṡz = {sz,U } − δR

δφ̇
= A∇2φ − αsφ̇, (A4)

φ̇ = {φ,U } + δR

δṡz
= Ksz

s2
+ αṡz

s
. (A5)

APPENDIX B: THE SPIN CONTINUITY EQUATION FOR
EASY-PLANE ANTIFERROMAGNETS IN THEIR

UNIFORM GROUND STATES

Here, we derive the continuity equation for spin (polar-
ized along the z axis) for easy-plane antiferromagnets on
top of their uniform states. For antiferromagnets, the long-
wavelength low-energy dynamics can be described by the
following Hamiltonian:

U = 1

2

∫
dxdy

[
A(∇φ)2 + Kn2

z + s2/χ
]
, (B1)

where n = (
√

1 − n2
z cos φ,

√
1 − n2

z sin φ, nz ) is the unit vec-
tor in the direction of the local Néel order, A and K are
positive exchange and anisotropy coefficients, respectively, χ

represents the magnetic susceptibility, and s = (sx, sy, sz ) is
the spin density. Note that the last term ∝s2

z is not included in
Eq. (1) which is the energy functional for the static configu-
ration of the magnet, since sz is strongly suppressed and thus
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can be neglected for the static case. However, it is necessary
to be included in the Hamiltonian to describe the dynamics
of the antiferromagnets. Our interest is in the dynamics of the
azimuthal angle φ and the spin density sz along the z axis, and,
as we discussed above for a ferromagnetic case, they form a
pair of canonical conjugate variables, satisfying the Poisson
bracket {φ(r, t ), sz(r′, t )} = δ(r − r′) [59]. Correspondingly,
the dynamics of these two variables φ and sz are decoupled
from the dynamics of the other variables nz, sx, and sy.The
equations of motion for φ and sz can be derived from the
Hamiltonian and the Poisson bracket:

ṡz = {sz,U } = A∇2φ, (B2)

φ̇ = {φ,U } = sz

χ
. (B3)

After including the damping through the Rayleigh dissipation
function R = αs

∫
dxdy (φ̇2 + ṡ2

z /s2)/2, where s is the satu-
rated spin density, we obtain

ṡz = {sz,U } − δR

δφ̇
= A∇2φ − αsφ̇, (B4)

φ̇ = {φ,U } + δR

δṡz
= sz

χ
+ αṡz

s
. (B5)

Note the identical forms of the two equations, the spin con-
tinuity equation and the spin Josephson relation, between
ferromagnet and antiferromagnet cases.
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